Chapter 7

Iterative methods for linear
systems

In this chapter we revisit the problem of solving linear systems of equations,
but now in the context of large sparse systems for which direct methods are
too expensive, in memory and execution time.

We introduce instead iterative methods, for which matrix sparsity is
exploited to develop fast algorithms with a low memory footprint.

7.1 Stationary iterative methods

Iterative methods

For a given nonsingular matrix A € R™" and vector b € R", we consider
the problem of finding a vector x € R™, such that

Az = b, (7.1)

where the size n of the system is large, and the matrix A is sparse with the
number of nonzero elements being O(n) and not O(n?).

We do not seck to construct the exact solution = A~'b, but instead we
will develop iterative methods based on algorithms that generate a sequence
of approximations {z®)},¢ that converges towards x, with

e®) =g — 2k, (7.2)

the error at iteration k.
The error is not directly computable since the exact solution is unknown,
but the error can be expressed in terms of the residual r® = b — Az, as

r® =p— Az® = Az — Az® = Ae®) (7.3)
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so that for || - || = || - ||2, we have that
le®l = 1A B < A=, (7.4)
and similarly
IO = 1A < Al (7.5)
The condition number of A relative to the norm || - || is defined as
k(A) = AIIAI, (7.6)

which together with (7.4) and (7.5) provides an estimate of the relative
error in terms of the relative residual.

Theorem 10 (Error estimate). For {#("},50 a sequence of approzimate
solutions to the linear system of equations Ax = b, the relative error can be

estimated as
[e®]
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< r(4)

(7.7)

The error estimate (7.7) may be used as a stopping criterion for when
to terminate an iterative algorithm,

<TOL, (7.8)

with TOL > 0 the chosen tolerance.

Although, to use the relative error with respect to the initial approxima-
tion can be problematic, since the choice of 2(?) may be completely arbitrary
and not of significance for the problem at hand. Instead it is more suitable
to formulate a stopping criterion based on the following condition,

Ir™®]

corresponding to z(© = 0.

Stationary iterative methods

Stationary iterative methods are formulated as a linear fized point iteration

of the form
e * D = Ma® 4o (7.10)

with M € R™*" the iteration matrix, {x(k)}kzo C R" a sequence of approx-
imations, and ¢ € R" a vector. If | M| < 1, the fixed point iteration (7.10)
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converges to & = (I — M)~'c, which follows from the Banach fixed point
theorem. Further, we can show that an equivalent condition for convergence
is that the spectral radius p(M) < 1, with

A) = . A1
p(4) = max [N (7.11)

The linear system Az = b can be formulated as a fixed point iteration
through the Richardson iteration

g* ) = (1 — A)z® 4 p, (7.12)

with an iteration matrix M = I — A, which will converge if || — A|| < 1,
or p(A) < 1.

Preconditioning

To improve convergence of Richardson iteration we can precondition the
system Ax = b by multiplication of both sides of the equation by a matrix
B, so that we get the new system

BAz = Bb, (7.13)

for which Richardson iteration will converge if || — BA|| < 1, or equivalently
p(BA) < 1, and we then refer to B as an approximate inverse of A. The
preconditioned Richardson iteration takes the form

g * ) = (1 — BA)z™ 4 Bb, (7.14)

and the preconditioned residual Bb— BAz® is used as basis for a stopping
criterion.

Iterative methods based on matrix splitting

An alternative to Richardson iteration is matriz splitting, where stationary
iterative methods are formulated based on splitting the matrix into a sum

A=A+ A, (7.15)

where A; is chosen as a nonsingular matrix easy to invert, such as a diagonal
matrix D, a (strict) lower triangular matrix L or (strict) upper triangular
matrix U, where L and U have zeros on the diagonal.
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Jacobi iteration

Jacobi iteration is based on the splitting
Al :D, A2 :L+U, (716)

which gives the iteration matrixs M; = —D~1(L + U), or in terms of the
elements of A = (a;;),

k“ a;' (b — Za” k) ), (7.17)
J#i

where the diagonal matrix D is trivial to invert. To use Jacobi iteration as
a preconditioner, we choose B = D!,

Gauss-Seidel iteration
Gauss-Seidel iteration is based on the splitting
Ai=D+ L, Ay=1U, (7.18)

which gives the iteration matrixs Mgs = —(D + L)'U, or

k‘+1) —1 b . Za” (k+1 Zazjx§k)), (719>

1<t 7>

where the matrix D + L is inverted by forward substitution.

7.2 Krylov methods

Krylov subspace

A Krylov method is an iterative method for the solution of the system Az =
b based on, for each iteration, finding an approximation 2 ~ z = A='b in
a Krylov subspace K}, spanned by the vectors b, Ab, ..., A¥=1b, that is

K =< b, Ab, ..., A" b > (7.20)

The basis for Krylov methods is that, by the Cayley-Hamilton theorem,
the inverse of a matrix A~! can be expressed as a linear combination of its
powers AF.
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GMRES

The idea of GMRES (generalized minimal residuals) is that, at each step k
of the iteration, find the vector ) € K, that minimizes the norm of the
residual 7®*) = b — Az®) | which corresponds to the least squares problem
min ||b— Az®|. (7.21)
J:(k>EICk
But instead of expressing the approximation z*) as a linear combination

of the Krylov vectors b, Ab, ..., A*~1b, which leads to an unstable algorithm,
we construct an orthonormal basis {g; };‘?:1 for K, such that

Kk =< 1,92, -,k >, (722)

with @ the n x k matrix with the basis vectors ¢; as columns.

Thus we can express the approximation as %) = Quy, with y € R* a
vector with the coordinates of z(®), so that the least squares problem take
the form

min [|b — AQxy||- (7.23)
yERK

The Arnolds iteration constructs a partial similarity transformation of
A into an Hessenberg matriz Hy, € R,

AQy, = Qpsr Hy, (7.24)
that is
ayp v Qg hiin -+ hip
ol | @] g | |
Ap1 - Qpp hnn

and multiplication of (7.23) by Q. does not change the norm, so that the
least squares problem takes the form,

min QZ, b — ]| (7.25)
yERK
where we note that by construction QX b = ||blle;, with e; = (1,0, ...)7,
that gives )
min |[[b]lex — Hyyll, (7.26)
yERK

which is the least squares problem we solve for y at each iteration k, to get
k) =Q
T kY.
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Algorithm 7: GMRES
¢ = b/||0]]
for k=1,2,3 do
Arnoldi algorithm to get Q, Hg
minyeps [|[|bller — Hyyll

™ = Quy
end




