Homework 2

due January 31 2017, 23:59

Task 1: Machine Epsilon

In general a computer stores a real number in the following way

$$
x=(-1)^{s} \cdot\left(0 . a_{1} a_{2} \ldots a_{t}\right) \cdot \beta^{e}=(-1)^{s} \cdot m \cdot \beta^{e-t}, \quad a_{1} \neq 0
$$

where s is either 0 or $1, \beta$ (a positive integer larger than or equal to 2) is the basis adopted by the specific computer at hand, m is an integer called mantissa whose length t is the maximum number of digits a_{i} (with $0 \leq a_{i} \leq \beta-1$) that are stored, and e is an integral number called the exponent. The numbers given in this form are called floating-point numbers, since the position of the decimal point is not fixed. The digits $a_{1} a_{2} \ldots a_{p}$ (with $p \leq t$) are called the p first significant digits of x. The accuracy with which floating-point numbers are stored depends then on β and t, and so does the amount of memory required to store them. For example, double precision real numbers are stored in registers of 8 Bytes: the sign s is stored in 1 bit, the exponent e in 11 bits, and the mantissa m in 52 bits. Note that, although there are 52 bits for m, we can count $t=53$ digits when $\beta=2$. As a matter of fact, since the first digit a_{1} of every floating point number must be different from 0 , when $\beta=2$ it is worthless to store it as it must necessarily be 1. A round-off error is inevitably generated whenever a real number $x \neq 0$ is replaced by its floating-point representative $x_{\text {num }}$, this error is always limited by

$$
\frac{\left|x-x_{\mathrm{num}}\right|}{|x|} \leq \frac{1}{2} \varepsilon
$$

where $\varepsilon=\beta^{1-t}$, called machine epsilon.
The following code can be used in MATLAB to compute ε.

```
numprec=double(1.0); % Define 1.0 with double precision
numprec=single(1.0); % Define 1.0 with single precision
while(1 < 1 + numprec)
    numprec=numprec*0.5;
end
numprec=numprec*2
```

a) Determine ε using the above program, both for single and double precision.
b) Explain in detail what the code does. Why do we consider addition to 1 ?
c) Explain the difference between single and double precision. How many Bytes are used to store a single precision number? How many for the mantissa?

Task 2: Round-off Error

In this exercise, the errors involved in the numerical approximation of derivatives are examined. Using cental finite differences the derivative of a function $f(x)$ can be approximated as:

$$
\begin{equation*}
f^{\prime}(x) \approx f_{\text {num }}^{\prime}(x)=\frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x} \tag{1}
\end{equation*}
$$

a) Compute, numerically, the relative discretization error of the derivative of the function $f(x)=\frac{1}{1+x}+x$ using equation (1). The relative discretization error is given by:

$$
\begin{equation*}
\xi_{\mathrm{d}}=\frac{\left|f^{\prime}(x)-f_{\mathrm{num}}^{\prime}(x)\right|}{\left|f^{\prime}(x)\right|} \tag{2}
\end{equation*}
$$

where $f^{\prime}(x)$ is the analytical derivative of $f(x)$. Compute ξ_{d} at $x=2$ for different stepsizes $\Delta x \in\left[10^{-20}, 1\right]$. Use both single and double precision for the calculation and present the results in a double logarithmic plot ${ }^{1}\left(\xi_{d}\right.$ vs. $\left.\Delta x\right)$. Remember that all variables used here should be defined as double or single precision as in Task 1.
b) The propagation error ξ_{p} of an arithmetic operation $\circ(+,-, \times$ or $/)$ between two numbers a_{1} and a_{2} can be evaluated as $\xi_{\mathrm{p}}=a_{1} \circ a_{2}-a_{1, \text { num }} \circ a_{2 \text {,num }}$, where $(\cdot)_{\text {num }}$ is the machine representation of the respective number.
Show that the propagation error of the addition of two positive numbers a_{1} and a_{2} is given by

$$
\begin{equation*}
\xi_{\mathrm{p}, \mathrm{add}}=\frac{a_{1}}{a_{1}+a_{2}} \varepsilon_{a_{1}}+\frac{a_{2}}{a_{1}+a_{2}} \varepsilon_{a_{2}} \tag{3}
\end{equation*}
$$

where $\varepsilon_{a_{j}}:=\left(a_{j}-a_{j, \text { num }}\right) / a_{j}$ is the machine accuracy on the quantity $a_{j, \text { num }}$.
A general formula for the propagation error for a function $g\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ representing multiple arithmetic operations is given by:

$$
\begin{equation*}
\xi_{\mathrm{p}}=\sum_{j=1}^{n}\left|\frac{a_{j}}{g} \frac{\partial g}{\partial a_{j}}\right| \varepsilon_{a_{j}} \tag{4}
\end{equation*}
$$

Show that when $g=a_{1}+a_{2}$ this formula results in equation (3).
c) Show that, when using the proposed central differences approximation, the relative discretization error (equation (2)) is given by:

$$
\xi_{\mathrm{d}} \approx \frac{\Delta x^{2}\left|f^{\prime \prime \prime}(x)\right|}{6\left|f^{\prime}(x)\right|}
$$

(Hint: Taylor expansion)
and that the propagation error (equation (4)) is given by:

$$
\xi_{\mathrm{p}} \approx \frac{|f(x)| \varepsilon}{\left|f^{\prime}(x)\right| \Delta x}
$$

where ε is the machine accuracy. Find, analytically, the value of Δx that minimizes the total error

$$
\xi_{\mathrm{tot}}=\xi_{\mathrm{d}}+\xi_{\mathrm{p}}
$$

Plot $\xi_{\mathrm{d}}, \xi_{\mathrm{p}}$ and $\xi_{\text {tot }}$ together with the results from part a).

[^0]
Task 3 : Discretization in time

In this problem the stability and convergence order of three numerical time discretization methods is examined. Consider the first order, linear, test equation (the Dahlquist equation)

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f(u)=\lambda u(t), \quad 0<t \leq T \tag{5}\\
u(0)=1
\end{array}\right.
$$

where $\lambda=\lambda_{\Re}+i \lambda_{\Im} \in \mathbb{C}$. The time interval $[0, T]$ is discretized into N equally spaced parts: $t_{n}=n \Delta t, n=0,1, \ldots, N$, where Δt is the step-size. The following numerical methods should be used:

- explicit Euler

$$
u^{n+1}-u^{n}=\Delta t f\left(u^{n}\right)
$$

- implicit Euler

$$
u^{n+1}-u^{n}=\Delta t f\left(u^{n+1}\right)
$$

- Crank-Nicolson

$$
u^{n+1}-u^{n}=\frac{1}{2} \Delta t\left[f\left(u^{n+1}\right)+f\left(u^{n}\right)\right]
$$

where $u^{n}:=u\left(t_{n}\right)$.
a) Solve the system (5) analytically (by hand) to obtain the exact solution $u=u_{e x}$.
b) For $\lambda=-\sqrt{3} / 2+i \pi$ and for the five cases $N=20,40,50,100$, and 200 , compute the numerical solution iteratively until $T=10$ for all the the three methods. Plot the real part of the solutions together with the exact solution for each value of N. What do you observe?
c) Now, consider $\lambda \in \mathbb{R}$. For each of the three considered schemes: (i) derive the expression of the amplification factor $G(z)$, where $z:=\lambda \Delta t$; (ii) calculate $\lim _{z \rightarrow-\infty} G(z)$; (iii) plot $G(z)$ as a function of z together with the result for the exact amplification over the interval $z \in[-10,0.5]$. Discuss the performance of the schemes in the limits $z \rightarrow-\infty$ and $z \rightarrow 0$. Also, answer: why is the imaginary part of λ irrelevant for this analysis?
d) For $\lambda=-\sqrt{3} / 2+i$, first do as in b) and explain the differences. Then, for each method, at a fixed time (chose $t=3$) compute and plot the error $\left|u_{\text {ex }}-u_{\text {num }}\right|$ as a function of N in a double logarithmic plot and estimate the order of accuracy by considering the slope of the curve. (Hint: $\log \left(x^{p}\right)=p \log (x)$.)
e) Based this task, discuss the usefulness, stability and accuracy of the methods.

[^0]: ${ }^{1}$ In MATLAB double logarithmic plots are obtained by the function $\log \log ()$.

