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Homework 2

due January 31 2017, 23:59

Task 1: Machine Epsilon

In general a computer stores a real number in the following way

x = (−1)s · (0.a1a2...at) · βe = (−1)s ·m · βe−t, a1 6= 0

where s is either 0 or 1, β (a positive integer larger than or equal to 2) is the basis adopted by
the specific computer at hand, m is an integer called mantissa whose length t is the maximum
number of digits ai (with 0 ≤ ai ≤ β−1) that are stored, and e is an integral number called the
exponent. The numbers given in this form are called floating-point numbers, since the position
of the decimal point is not fixed. The digits a1a2...ap (with p ≤ t) are called the p first significant
digits of x. The accuracy with which floating-point numbers are stored depends then on β and
t, and so does the amount of memory required to store them. For example, double precision
real numbers are stored in registers of 8 Bytes: the sign s is stored in 1 bit, the exponent e in 11
bits, and the mantissa m in 52 bits. Note that, although there are 52 bits for m, we can count
t = 53 digits when β = 2. As a matter of fact, since the first digit a1 of every floating point
number must be different from 0, when β = 2 it is worthless to store it as it must necessarily
be 1. A round-off error is inevitably generated whenever a real number x 6= 0 is replaced by its
floating-point representative xnum, this error is always limited by

|x− xnum|
|x|

≤ 1

2
ε,

where ε = β1−t, called machine epsilon.

The following code can be used in MATLAB to compute ε.

numprec=double(1.0); % Define 1.0 with double precision

numprec=single(1.0); % Define 1.0 with single precision

while(1 < 1 + numprec)

numprec=numprec*0.5;

end

numprec=numprec*2

a) Determine ε using the above program, both for single and double precision.

b) Explain in detail what the code does. Why do we consider addition to 1?

c) Explain the difference between single and double precision. How many Bytes are used to
store a single precision number? How many for the mantissa?
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Task 2: Round-off Error

In this exercise, the errors involved in the numerical approximation of derivatives are examined.
Using cental finite differences the derivative of a function f(x) can be approximated as:

f ′(x) ≈ f ′num(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
(1)

a) Compute, numerically, the relative discretization error of the derivative of the function

f(x) =
1

1 + x
+ x using equation (1). The relative discretization error is given by:

ξd =
|f ′(x)− f ′num(x)|

|f ′(x)|
, (2)

where f ′(x) is the analytical derivative of f(x). Compute ξd at x = 2 for different step-
sizes ∆x ∈ [10−20, 1]. Use both single and double precision for the calculation and present
the results in a double logarithmic plot1 (ξd vs. ∆x). Remember that all variables used
here should be defined as double or single precision as in Task 1.

b) The absolute propagation error of an arithmetic operation ◦ (+,−,× or /) between two
numbers a1 and a2 can be evaluated as: a1 ◦ a2 − a1,num ◦ a2,num, where (·)num is the
machine representation of the respective number.

Show that the propagation error of the addition of two positive numbers a1 and a2 is given
by

ξp,add =
a1

a1 + a2
εa1 +

a2
a1 + a2

εa2 , (3)

where εaj := (aj − aj,num)/aj is the machine accuracy on the quantity aj,num.

A general formula for the propagation error for a function g(a1, a2, . . . , an) representing
multiple arithmetic operations is given by:

ξp =

n∑
j=1

∣∣∣∣ajg ∂g

∂aj

∣∣∣∣ εaj , (4)

Show that when g = a1 + a2 this formula results in equation (3).

c) Show that, when using the proposed central differences approximation, the relative dis-
cretization error (equation (2)) is given by:

ξd ≈
∆x2|f ′′′(x)|

6|f ′(x)|

(Hint: Taylor expansion)
and that the propagation error (equation (4)) is given by:

ξp ≈
|f(x)|ε
|f ′(x)|∆x

where ε is the machine accuracy. Find, analytically, the value of ∆x that minimizes the
total error

ξtot = ξd + ξp.

Plot ξd, ξp and ξtot together with the results from part a).

1In MATLAB double logarithmic plots are obtained by the function loglog().
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Task 3 : Discretization in time

In this problem the stability and convergence order of three numerical time discretization meth-
ods is examined. Consider the first order, linear, test equation (the Dahlquist equation){

u′(t) = f(u) = λu(t), 0 < t ≤ T,
u(0) = 1

(5)

where λ = λ< + iλ= ∈ C. The time interval [0, T ] is discretized into N equally spaced parts:
tn = n∆t, n = 0, 1, . . . , N , where ∆t is the step-size. The following numerical methods should
be used:

• explicit Euler
un+1 − un = ∆tf(un)

• implicit Euler
un+1 − un = ∆tf(un+1)

• Crank-Nicolson

un+1 − un =
1

2
∆t
[
f(un+1) + f(un)

]
where un := u(tn).

a) Solve the system (5) analytically (by hand) to obtain the exact solution u = uex.

b) For λ = −
√

3/2 + iπ and for the five cases N = 20, 40, 50, 100, and 200, compute the
numerical solution iteratively until T = 10 for all the the three methods. Plot the real
part of the solutions together with the exact solution for each value of N . What do you
observe?

c) Now, consider λ ∈ R. For each of the three considered schemes: (i) derive the expression
of the amplification factor G(z), where z := λ∆t; (ii) calculate limz→−∞G(z); (iii) plot
G(z) as a function of z together with the result for the exact amplification over the interval
z ∈ [−10, 0.5]. Discuss the performance of the schemes in the limits z → −∞ and z → 0.
Also, answer: why is the imaginary part of λ irrelevant for this analysis?

d) For λ = −
√

3/2 + i, first do as in b) and explain the differences. Then, for each method,
at a fixed time (chose t = 3) compute and plot the error |uex − unum| as a function of N
in a double logarithmic plot and estimate the order of accuracy by considering the slope
of the curve. (Hint: log(xp) = p log(x).)

e) Based this task, discuss the usefulness, stability and accuracy of the methods.


