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Abstract

Brain Computer Interfaces (BCls) is a new emerging technique where the user is able to
control a computer by thought. One challenge in the development of BCls is to classify the
thoughts of the user. The algorithm used for this purpose needs training data. This study
examined how the choice of training data affected the classification accuracy. A previous

study (Herman et.al 2008) showed that in sessions where the user have little expericence
of BCI there was a clear positive effect of choosing the latest session as training data

compared to choosing earlier sesisons. However in general there is a positive effect on

performance of having more training data. The objective of this study thus were to
determine which of these two strategies produced the best classification accuracy (CA)

generalizing between sessions.

The method used was to create an ensemble of classifiers, one for each time sample of a
single trial and thereafter using majority vote to decide the class of the trial. Classifiers
used were support vector machines (SVMs) and linear discriminant analysis (LDA). For
each subject data for 3 sessions were used, labeled A, B and C in chronological order.
Session A and B were used as training sets, and session C as the test data. The result in
this study could not confirm the results of Herman et. al (2008) instead a slight positive
effect of session A (average CA on session C 62%) compared to session B (average CA
on session C 58%) could be seen, but in general there was no big difference in CA based
on the choice of training data (average CA on session C using training sets:
A=62%,B=58%, A&B=61%).

Our results show that it is not always the case that training data recorded closer in time to
the test data generate higher CA. Therefore we suggest that it could be a safer choice to
use more than the latest session as training data. Still more studies are needed to confirm
that using more sessions for training really is better also on data where there is a bigger
gap in performance between the latest and earlier sessions.
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1. Introduction

Today the standard way for humans to interact with computers is by their hands. However,
during the last two decades a growing field that combines neuro and computer science has
started to explore the possibilities for humans to interact directly with a computer by their
thoughts (Nicolas-Alonso & Gomez-Gil, 2012). Right from the beginning the greatest goal
for research in this field has been to develop Brain Computer Interfaces (BCls) that could
be used by people suffering from severe motor disorders. Therefore the development of
BCls has the potential to give persons that are locked into their own bodies a way to
interact with their environment by thought-controlled devices such as communication
applications and neuro prostheses (Nicolas-Alonso & Gomez-Gil, 2012). Beside medical
applications, there is an increasing interest in non medical applications such as computer
games and market research. Today in 2014 there are already two pioneer companies
offering portable devices for brain activity registration together with APIs to a more general
public (Emotiv, 2014; Neurosky 2014). The number of scientific publications about game
applications using BCls has also clearly increased in the last 7 years (Hwang et al., 2013).
Altogether this shows that BClIs could evolve to be a tool more commonly used by
application developers.

During this rapid development a range of different methods for recording brain activity
patterns has been tested but the most commonly used method in BCls today is
electroencephalography (EEG) (Hwang et al., 2013).

To record and also successfully interpret brain activity, BCls today are limited to use a
restricted number of predefined thoughts that the system is trained to recognize, i.e. the
systems control signals. One of the most commonly used control signals have been
imaginary movements (motor imagery), an example is BCls where the user could make a
binary choice by imagining moving her right or left hand (Hwang et al.,2013).

To enable recognition of these control signals all BCl systems need to contain the following
stages: signal acquisition, preprocessing or signal enhancement, feature extraction, and
classification (Nicolas-Alonso & Gomez-Gil, 2012). In BCI applications used in a real world
environment all these stages must be performed together in real time to enable direct
feedback to the user of how her thoughts are interpreted. This is called an online session
and in these there are little or no time for tuning the methods that are used. Online sessions
have therefore been combined with so called offline sessions, i.e. performing tests of for
example different classifiers on already recorded sets of EEG data without the requirement
of giving real time feedback (Nicolas-Alonso & Gomez-Gil, 2012).



This paper will have an offline approach and focus on the stage of classification in an EEG
based BCI system that uses hand motor imagery as a control signal.

One goal in the construction of classification algorithms for BCls is that they should have
good generalization capacity i.e. that a classification algorithm that is trained on data from
one session should perform well when tested on data from a later session. This is a
challenge since EEG data from one and the same person performing the exact same
mental task is known to differ over time. However if the user gets the chance to train on
producing the control signal and gets feedback on how her ongoing thought task is
classified, then the patterns often become more stable after some training sessions
(Wolpaw, McFarland & Vaughan 2000; Grosse-Wentrup & Scholkopf, 2013).

Clearly this assumes that the classifier used to give feedback generalizes reasonably well
also over these early and more unstable sessions. This leads to a choice that must be
addressed in the construction of the classifier used. Generally, a classifier performs better
the more training data it uses. From this perspective it is best to train the classifier on all
available data. But as the patterns become more stable over time it could be the case that
training only on the latest session gives better performance. In this paper we want to
examine which of these effects that is stronger, in other words:

Which gives the best classification performance, using more training data or train only on
data from the latest available session?

2. Objective

In this paper we want to look closer on the problem of choosing training data for
classification algorithms used in BCls, i.e. if it is better to give the classifier all available
recorded data from the subject or only the latest session data.

In a previous study (Herman et. al 2008), EEG data from the sensorimotor cortex (C3 and
C4 according to the 10-20 EEG lead system) was recorded for 8 subjects, who each
performed a common BCI task, i.e. imaginary movement of the right or left hand, during
sessions where the subject got direct feedback. In the study the generalization capacity
between early training sessions was tested with different classification algorithms.
Generalization capacity was evaluated by training and testing on sessions with varying
length of time in between. In the evaluation the classifiers was divided into two classes, A
and B. The difference between the classes was that the classifiers in class A was trained
only on data from the session directly before the test session, and the classifiers in class B
were trained only on data from the second last session before the test session. The results
showed a clear trend, with the classifiers in class A having a considerable higher
classification accuracy (CA) than the classifiers in class B. We got the possibility to use



data from 4 of these subjects in the study of Herman et. al (2008), more specifically data
from three successive early training sessions for each of the four subjects.

We intend to use this EEG data to see how the choice of training data affects the
performance of some classifier algorithms that is commonly used in BCI applications
today. We plan to compare the CA on the last session if the classifier is either trained on
the second session or trained on both earlier sessions. This will show if more training data
(training on both earlier sessions) or only a session when the user has more BCI
experience (second session) leads to better classification performance.

2.1 Hypothesis

We have no prior hypothesis regarding if more training data or training on data from the
latest session would give better classification performance. However we expect an
observable effect where classification performance in general is higher when testing on
data closer in time to the training data.

3. Background

This background first explains the basics of EEG to record brain activity (section 3.1),
followed by theory on how to perform feature extraction on these recorded patterns of
imaginary movements (section 3.2). Then follows a section discussing factors that create
possible variability in BCI performance (section 3.3), and especially the training effect
(section 3.3.1). This background then ends with theory of classification algorithms (section
3.4) and two sections introducing the two most common classification algorithms used for
BCls, Support Vector Machines (SVM, section 3.41) and Linear Discriminant Analysis
(LDA, section 3.42) (Hwang, Kim, Choi & Im, 2013).



3.1 Electroencephalography and signal acquisition
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Figure 1: lllustration of the international standard for electrode placement (10-20) on the
scalp of the subject.

EEG is recording electrical currents from the scalp with electrodes placed at certain
chosen locations, usually according to the international standard for electrode placement
for EEG, called 10-20 (Niedermeyer & da Silva, 2005, p.140). The signal that is recorded
is the potential difference between a reference electrode and the active electrode,
extracted with the help of a third electrode referred to as the ground electrode. The third
electrode is used to measure the differential voltage between the active electrode and the
reference electrode (Nicolas-Alonso & Gomez-Gil, 2012). As there is several layers
between the electrodes and the actual brain tissue, EEG is sensitive to other disturbing
currents, for example muscle activity and exterior objects such as power lines, creating
possible unwanted signals called artifacts in the recorded pattern. This leads to a situation
where parts of recorded data often need to be rejected in order to obtain an acceptable
quality (Nicolas-Alonso & Gomez-Gil, 2012). The general resolution of the data is also
affected by the material of the electrodes being used and if conductive gel is applied to the
subject’s skin (Nicolas-Alonso & Gomez-Gil, 2012).

3.2 Brain activity patterns during motor imagery - Feature extraction
The point of interest when recording brain activity through EEG is patterns extracted from
different electrodes in different frequency ranges. Well known EEG rhythms are therefore



labeled after location and frequency range (Niedermeyer & da Silva, 2005, p.167). When
studying motor imagery, the most common choice of EEG-rhythms to study are so called
beta-waves and mu-waves recorded from sensory motor cortex (Nicolas-Alonso et
al.,2012). Beta rhythm is defined as EEG-rhythms recorded in the frequency range 14-30
Hz. Mu rhythms are rhythms recorded from the sensorimotor cortex in the frequency range
8-13 Hz (Niedermeyer & da Silva, 2005, p.167,175). In awake relaxed persons are one or
both of these rhythms often (but not always) present. What makes Beta and Mu rhythms
interesting for BCI control is that it has been shown that motor imagery tasks can produce
so called event related desynchronization (ERD) and event related synchronization (ERS)
in these rhythms. ERD is defined as a decrease in the amplitude of the rhythm and ERS is
the opposite i.e., an increase in the amplitude of the rhythm (Niedermeyer & da Silva,
2005, chapter 51). Typically ERDs caused by hand motor imagery is observed at the
contralateral side of the imagined movement while ERS (which are more uncommon in the
context of hand motor imagery) is observed at the ipsilateral side. These two patterns have
been interpreted as ERD standing for a readiness in the involved cortical areas to actually
perform the movement while ERS stand for the opposite i.e. that the area is idle or
inhibited (Graimann, Allison & Pfurtscheller 2010, p. 52)

In the international standard for electrode placement for EEG (called the 10-20 system) the
electrodes for channels C3 and C4 are placed right over the primary sensorimotor cortex,
making them suitable targets for recording sensorimotor rhythms (beta and mu rhythms)
(Millan, Franzé, Mourifio, Cincotti & Babiloni, 2002). In another study made by Millan et.al
(2002) it was shown that the optimal electrode placement for obtaining ERS and ERD in
sensory motor cortex varied between subjects. For some individuals it could therefore be
hard to categorize motor imagery control signals when the EEG features are extracted only
from electrodes placed on C3 and C4 (Millan, Franzé, Mourifio, Cincotti & Babiloni, 2002).

3.3 Performance variation of BCls

EEG data from one subject performing the same action is known to vary strongly over time,
also within the same session. (Shenoy, Krauledat, Blankertz, Rao & Miller, 2006;
Grosse-Wentrup & Schdlkopf, 2013). In addition to the effect that training have on the
control signal (that is discussed in detail in section 3.3.1) there are also other factors
contributing to a session-to-session variance which is discussed below (section 3.3.2).

3.3.1 The training effect - Adaption of man to machine
Within a BCI setup there are two parts which can adopt to each other to a higher or lesser
degree, the user and the BCI methods (Graimann, 2010, p. 331-332). For the user to



control a BCl she must able to voluntarily modulate the electrical signals so it can be
successfully differentiated into separate classes.

When the control signal generated by the user is created by imaginary movement Neuper
et al. (2005) describe that the user can adopt different techniques to cope with this task.
They bring up examples where the user can for example try to visualize movement of their
own hand, or visualize someone else performing the required hand movement, compared
to creating a kinesthetic feeling of movement. From Neuper et al.’s (2005) results it could
be concluded that only kinesthetic motor imagery created ERD/ERS patterns which could
be detected using EEG recordings from the sensory motor cortex. Hwang et al. (2009)
continued this research by training subjects to perform kinesthetic motor imagery and could
successfully increase classification rates for subjects that initially had trouble performing
kinesthetic motor imagery. Thus showing one example of how learning with feedback could
increase the performance of the BCI.

Another training effect reported by Millan et. al (2002) shows that features extracted from
electrodes placed on C3 and C4 became more relevant the more the subject trained on
performing the motor imagery task. The study made by Herman et al. (2008) further shows
that a training effect affects classification i.e., CA is higher when training data and test data
is close to each other in time.

3.3.2 More factors of variance in BCl performance over time

Below follows a description of factors that have been shown to generate possible session
to session variability in EEG task related data except the training effect, which is discussed
in detail above (section 3.3.1).

e Changes in recording conditions: As the recording method can be varied there is an
apparent risk that changes can occur over time, creating a variability in the recorded
brain activity patterns (Graimann, 2010, p. 331-332). One example of this
phenomenon is the placement of the EEG electrodes on the scalp of the subject,
creating a possible variation over session to session (Guger, Ramoser, &
Pfurtscheller, 2000). Park et al. (2013) investigated the effect slight changes in
placement of EEG electrodes had on CA when using different feature extraction
methods. They found that the CA was strongly affected by slight changes in
electrode placement when some of the commonly used methods for feature
extraction was used.

e Mood and motivation: Nijboer et al. (2010) argues that it is often hypothesized that
the mood and motivation of the subject is correlated with BCI performance, and that



this could explain the interindividual differences. Since mood and motivation also
can vary in the same individual over time, this is applicable to intra individual
differences, such as between sessions with the same subject. Nijboer et al. (2010)
also performed tests on 6 subjects with Amyotrophic Lateral Sclerosis to see if any
intra subject changes could be detected over sessions based on psychological
factors such as mood and motivation. They found that the psychological factors
played a bigger role when the amount of sessions increased, especially for
sensorimotor rhythms sessions. Further they found that the challenge and
confidence the subjects felt towards the task was positively related to BCI
performance for two of the subjects. Fear of failing the task was negatively related to
BCI performance for one of the subject.

e Concentration and fatigue - During recording of brain activity there is a natural risk
of the subject getting tired or losing concentration, perhaps even due to factors
which are outside the control of the study. These factors can create changes over
time in the recorded brain activity patterns (Graimann, 2010; Sun, S., & Zhang, C.
2006).

3.4 BClI classification

Classification algorithms serve the central part in BCls by classifying the user input into
computer commands. In this section the most common algorithms for BCI applications will
be introduced and their ability to generalize briefly mentioned. Lastly different problems that
BCI classifiers must handle are presented and discussed.

Hwang et al. (2013) performed a thorough literature survey on BCI research articles from
2007 to 2011 and investigated which classification algorithms that were most commonly
used. They found that a range of different algorithms were used such as LDA,SVMs, linear
regression and neural networks. The most common over the period of 2007 to 2011 was
LDA followed by SVM, together being used in more than 50% of the articles reviewed.

Both LDA and SVM are linear methods that are known to have good abilities to

generalize, i.e., when the system has been trained it can also successfully handle new data
(Lotte,Congedo, Lécuyer, Lamarche & Arnaldi, 2007). But since both LDA and SVM are
sensitive to noisy data and strong outliers, both methods should make use of regularization
methods to increase performance and lessen the impact from outliers and noise
(Lotte,Congedo, Lécuyer, Lamarche & Arnaldi, 2007; Nicolas-Alonso et al.,2012). A more
in detail review of SVM and LDA can be found in section 3.4.2 and 3.4.3 respectively.



In general the more data that is available to the classifier, the better the performance of the
classifier will be. This is based on the premise that training data comes from the same
distribution as the test data, as then more training data will likely to enhance the
generalization capacity (Marsland, 2009).

3.4.1 Common challenges in Classification for BCls

This section explains many challenges that come with classification of EEG data due to
properties of its features (see section 3.1 & 3.3 for more details). First, details of the
bias-variance dilemma is explained, followed by noise, outliers and the “curse of
dimensionality”. Last the problem of handling the time dimension in EEG data is
discussed.

3.4.1.1 Bias-Variance Dilema

Tightly connected to a classification algorithms ability to generalize is how the
bias-variance dilemma is handled, a dilemma which affects most classification algorithms
used in BCls (Marsland, 2009, p. 177-178; Lotte,Congedo, Lécuyer, Lamarche & Arnaldi,
2007). Simply put, bias problem is when the complexity of the function that the classifier
uses for classification is too simple to meet the complexity of data and when the classifier
in general have adapted too little to the available training data. This gives a situation with
stable but biased performance. Problem with variance on the other hand is when the
classification algorithm adapts too strongly to the available data, and as a consequence
has a highly varying performance, typically with good results on training data but poor
results on data which it has not seen before. The more the data varies, the harder it is to
find an optimal balance between these two (Marsland, 2009, p. 177-178). One approach
used to balancing the variance and bias tradeoff is cross-validation, which splits data into
three sets: the training set, the validation set and the test set. While training the classifier on
the training set the validation set is used to validate the current learning, and thereby test
the classifiers’ current generalization ability. The test set is saved to be used for the finals
sets (Marsland, 2009, p. 67-69).

3.4.1.2 Curse of dimensionality

Data extracted from EEG is gathered from a set of electrodes, one channel for each
electrode, creating a large possible of set of features to base the classification on
(Lotte,Congedo, Lécuyer, Lamarche & Arnaldi, 2007). With a large set of features a
classifier must be able to handle what is known as the “curse of dimensionality” in machine
learning. It can be summarised as that with the dimension of indata to the classifier
increasing, more training data will be needed to accurately fit the classification (Marsland,
2009, s. 106-108).




3.4.1.3 Handling time information in EEG data

Another problem that needs to be considered in the context of BCI classifiers is how to
handle the time information in the EEG signal, i.e., to handle that different patterns in the
EEG signal (obtained during one mental task) is relevant during different time segments
from the recording of one task. Lotte et al. (2007) lists a range of different approaches that
have been used to address this problem; two of them being (a) concatenation of features
from different time segments and (b) combination of classifications at different time
segments.

The first tactic (a) creates a feature vector based on concatenation of different time
samples, creating a possibly high dimensional vector depending on the number of samples
included. Haselsteiner et al. (2000) remark that the strength of combining time samples
comes in its simplicity and that you can apply standard classification algorithms to the
feature vector. But in turn they point out that weaknesses are that there is no standard on
which time samples to chose nor how many of them.

The second tactic (b) classifies the separate time samples one by one or in small groups
with different classifiers, and then the result on the whole task is the aggregated result of all
individual classifiers. This method of splitting up the data and letting different classifiers
combined effort be the result is referred to as ensemble learning in machine learning.
(Marsland, 2009, p. 155-164). An open question when using machine learning is how to
aggregate the result of the different classifiers.

One basic approach is majority voting, where the most common result of the classifiers are
chosen as the final ensemble result. Marsland (2009) writes the following about ensembles
using majority voting:

If the number of classifiers is odd and the classifiers are each independent of each other, then
majority voting will return the correct label if more than half of the classifiers agree. Assuming that
each individual classifier has a success rate of p, the probability of the ensemble getting the correct
answer is a binomial distribution of the form:

Z:-I:'j';zH (i)Pk(l - 'P)T_ka (7.5)

where T is the number of classifiers. If p > 0.5 then this sum approaches 1 as T — «. (Marsland,
2009, p. 162)

This means that the success rate of the ensemble classification will increase as the
number of classifiers increases, as long as each individual classifier has a slightly better
success rate than random (50% in case of two classes with about the same amount of data
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points). This shows the inherent strength of the ensemble method (Marsland, 2009, p.
162-164).

Sun et al. (2007) describes that it is important that the individual classifiers of an ensemble
are different, for example due to the fact that they have trained on different parts of data or
are using different parameters, otherwise a singular classifier could perform the same job
as the ensemble. Further with an increasing number of classifiers the computational burden
increases, especially during training where tuning of each of the classifier's parameters

can be necessary (Sun, Zhang, & Zhang 2007).

3.4.2 Support Vector Machines (SVMs)
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Figure 2: lllustration showing two classes A and B in 2-dimensional space being
separated so that the margin gets maximized. Points marked in red color function as
support vectors.

SVMs are based on the natural classification concept that two linearly separable classes in
2-dimensional space should be separated by a line equidistant from the two classes
(Marsland, 2009, p. 120-124). This means that the separation line in the 2-dimensional
case will be placed so that the distance (referred to as margin) between the two classes is
as wide as possible, see figure 2. The margin is measured using a select set of points
from each class (marked red in figure 2), referred to as the support vectors, these are
chosen to maximize the margin (Marsland, 2009, p. 120-124).
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As the margin lies symmetric around the line, it will create a cylinder around the separation
line in 3-dimensional space and a hypercylinder in higher dimensional spaces. In the same
way the line or lines used to separate data will become hyperplanes in higher dimensions
(Marsland, 2009, p. 120-124). Thereby allowing the algorithm to solve classification
problems in higher dimensions. Due to SVM creating hyperplanes to separate classes it
constrains data to be linearly separable to effectively be classified and therefore SVMs can
be regarded as a linear classifier (Nicolas-Alonso & Gomez-Gil, 2012).

To solve nonlinear classification problems the SVM algorithm builds on Cover’s theorem
which states that a non-linearly separable problem transformed into a high dimensional
non-linear space increases the likelihood of the data becoming linearly separable (Cover,
1965 according to Nicolas-Alonso & Gomez-Gil, 2012). Thus making it possible for SVM

to classify also non-linearly separable data by transforming the given data. This is usually
done by introducing a kernel function which maps indata into a higher dimension. In BCI
applications one common kernel function to use is the radial basis function (Nicolas-Alonso
& Gomez-Gil, 2012). With the use of a kernel function the SVM can act as a non-linear
classifier, allowing a non-linear boundary to separate the classes (Nicolas-Alonso &
Gomez-Gil, 2012).
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Figure 3: lllustration showing an example of how SVMs with a soft margin parameter can
ignore noise in data to possibly increase generalization capacity.
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Another issue that classifiers must be able to handle is noise in data. Noise can if left
unchecked negatively affect the classification performance, see for example how noise
klan affect the placement of the red separation line in figure 3 (Steinwart & Christmann,
2008, p. 14-15). One way to handle noise with SVMs is to introduce a so called soft margin
parameter, which allows the separating hyperplane to ignore certain data points, thereby
possibly lessening the risk of noise having effect on classification performance for new
data, see for example the black separation line in figure 3 which ignores data assumed to
be outliers (Steinwart & Christmann, 2008, p. 14-15).

Below are strengths and weaknesses of SVM listed:

Strengths

e Its ability to cope with high dimensional problems, reducing the effect of “the curse
of dimensionality” (Rakotomamonjy & Guigue, 2008; Lotte, Congedo, Lécuyer,
Lamarche, Arnaldi, 2007)

e Can be used both on linear and nonlinear problems (Nicolas-Alonso & Gomez-Gil,
2012; Marsland, 2009).

e Due to the benefit of a maximum margin possibly combined with regularization, a
SVMs has good generalization abilities (Lotte, Congedo, Lécuyer, Lamarche,
Arnaldi, 2007)

Weaknesses

e Does not work well on large data sets due to the algorithm being computationally

heavy (Marsland, 2009; Lotte, Congedo, Lécuyer, Lamarche, Arnaldi, 2007).

3.4.3 Linear discriminant analysis (LDA)

Classifiers based on LDA are the most commonly used classifiers in BCI applications
today (Hwang et.al, 2013). As the name indicates LDA is a classification method that tries
to linearly separate two (or more) classes of data. The basic idea in LDA is that
multidimensional data could be easier discriminated when it is projected down to an vector
w where the two classes is as far as possible from each other (see figure 4 below).
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Figure 4: lllustration showing two classes A and B in 2-dimensional space projected onto
the one dimensional vector w in two cases, the first case (to the left) not being able to
differentiate between the classes, while the second case (to the right) successfully
differentiates the two classes.

In the case of two different classes of data the classification is done by introducing a
hyperplane that intersects the projection vector, and by that divide the data points into two
sets, one on each side of the plane (Lotte et.al, 2007; Nicolas-Alonso & Gomez-Gil, 2012).

Figure 4 shows how the discrimination ability of the two classes is totally dependent on the
choice of the projection vector w. To find the optimal projection vector w it is therefore
essential to define a measure of separation as a function of w (Marsland, 2009). In the
simplest version of LDA, this separation function is only based on the means of the two
classes.

J(W) = |w(uq-up)| where uqand u, are the mean vector for each class

and w is chosen to maximize J(w). This simple separation function unfortunately cannot
handle cases when variance within the classes is high in comparison to the difference in
mean (see figure 5):
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Figure 5: Example of data where one axis (the x-axis) has greater distance between

means (4 and uy ) but the other axis (the y-axis) has better separation of the two classes
if projected to this axis.

The standard solution to this is using Fisher LDA (Nicolas-Alonso & Gomez-Gil, 2012)
where the separation function has an additional term S, representing the sum of the
variances of the two classes, when projected to the vector w:

W) = [W(uq-z)] /S

The maximal value of J is obtained when data points from the same classes are projected
close to each other and at the same time, the projected means are as far apart as possible
(Marsland, 2009).

As both Lotte et.al (2007) and Nicolas-Alonso & Gomez-Gil (2012) point out, that LDA
could perform better when combined with different regularization methods. This because
regularization is a method to handle problems related to noise in data, extreme outliers and
small training data sets, which are all common in the BCI context.
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4. Method

4.1 Data

Subjects
Fnmw

For each subject
data consists of:

Training Data Test Data
1 1

Session A Session B Session C

Time

Figure 6: lllustration showing available data from the four subjects, for each subject there
was 3 sessions: A, B and C, where A was the eatrliest session and C the latest session.

The data used in this study was given to us by our supervisor, and originated from the study
Herman et al. (2008). The data consisted of 4 subjects performing imaginary movement of
either left or right hand recorded through electrodes placed over the sensorimotor cortex
(C3 and C4 in the international standard system 10-20). The data consisted of 3 sessions
for each subject, each session was conducted with direct feedback to the subject, see
figure 6 for an illustration of the data. The data had gone through a feature extraction using
spatio-temporal analysis and also the least relevant parts of the signal had been

discarded.

This means that the data we were given consisted of a total of 12 session, and each
session contained a number of trials, ranging from 100 to 180 trials. Each trial in turn
contained 85 time samples in the form of 4-dimensional vectors (2 signals from each of the
2 electrodes). These four numbers represented the signal power in the beta and mu
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frequency bands for the two electrodes. Coupled to each trial were also the correct class of
the trial, represented as either -1 or 1.

4.2 Construction of ensembles and normalization

Due to the problem of handling time information in EEG recordings (see section 3.4.1.3)
we chose to create one unique classifier for each of the 85 time samples of one trial, thus
making an ensemble of classifiers to handle one whole trial at the time. The results of each
individual classifier for one trial was gathered and a majority vote decided the class of the
tested trial. This method allowed us to avoid problems regarding concatenation of features
as there is no standard method on how to concatenate features (Haselsteiner &
Pfurtscheller, 2000). Concatenation of features also runs the risk of creating high
dimensional data, leading to poorer performance due to the curse of dimensionality
described in section 3.4.1.2. Early test of our ensemble method also showed to give
reasonable results, further motivating us to use this method.

Data available

Session A Session B Session C

Time

Training Sets

Tmlnir:g Data TastJDala
T oy
Session A Session C
| S e
Y Y
Session B Session C
|
Session A Session B Session C

Figure 7: lllustration showing available data and the training sets used to test
generalization ability on the test data.

As training data for the ensembles we used the two earlier sessions (A and B in figure 7) of
each subject, and saved the last session C as test data to test the generalization ability.
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Training was performed either by training on one separate session or training on both
training sessions combined into one data set (when training on a single session the other
training session was also used to test generalization). This created three possible training
sets, the two individual training session alone and these two sessions combined into one
set (see figure 6).

For each training set all of the 85 classifiers in the ensemble trained on N patterns of their
respective time sample, where N was the number of trials in the current training set. Lastly
the generalization ability was evaluated on the final test session for each possible training
set. CA was measured by dividing the number of correctly classified trials with the total
amount of trials tested on, rounded to the nearest percent (see formulae below).

e . __ Correctly classified trials
Classification Accuracy (CA) = = rorr mls

Scaling of data (normalization) while training the classifiers was performed separately
before the data was presented to the classifiers to allow more control of the normalization
process. Each features mean and standard deviation was calculated, and then the
respective data was scaled by subtracting the mean and dividing by the standard
deviation, once for each classifier and their respective part of the data set.

Test data was normalized before presented to the classifiers according to its own mean
and standard deviation, a process which cannot be adopted in an online BCI context as the
full test set would be unknown.

4.21 SVM ensemble

The 85 SVMs used as an ensemble were trained with a linear kernel function, no auto
scaling of data and the use of quadratic programming to place the decision hyperplane. All
other parameters used default values, including the soft margin parameter (see section
3.4.2 for details regarding this parameter). The use of the default value for the soft margin
parameter is due to that our investigation of different possible values of the parameter
values gave little to no effect on the CA when testing on the other training session (when
available) or when using cross validation on the training set.

4.22 LDA ensemble

The 85 LDA classifiers used as an ensemble were trained using a linear discriminant type.
Similar to the case of SVMs, our investigation of tuning available regularization parameters
had small or no effect on the CA of the ensemble, and was thereby kept at default values.
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4.3 Analysis of results

Due to the limited scope of this paper both in respect to data resources and time, the
analysis of the results does not consist of statistical hypothesis testing, which naturally
limits the conclusions that can be drawn. The analyses of results are therefore based on
trends in the results, in the meaning that differences of a few percentages in two results will
be rather irrelevant, and instead a big picture must be used by observing trends between
and within the different subjects. As stated in our objective (section 2) we are interested in
two different trends: the training effect on the human user and that more data generally
means better generalization in classification.

The training effect should create a trend in our results where training on the middle session
(session B) should generally get better results while testing on the last session (session C)
compared to training on the earliest session (session A). This would reflect that the users
gets better at creating thoughts that are easy for the classifier to correctly classify as time
goes by.

The effect of more data increasing the generalization ability for classification should create
a trend in our results so that when training on session A and B together spawns better

results than training on just one of these sessions alone, when testing on session C.

We are interested to see if there is any general trend showing that any of these effects are
stronger and therefore have implications on how training data should be chosen.
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5. Results

In this section results are displayed as comparisons of CA between the three different
choices of training data (session A, session B, or both session A and B). results are also
displayed separately for the two types of classifiers used: SVMs and LDA. First the
average results for each classification method is presented (see section 5.1) and
thereafter the results for each one of the four subjects (see section 5.2 and 5.3).

5.1 Average classification accuracy (CA) for LDA and SVM ensembles

Table 1: Comparison of average CA for the four subject on session C, displayed
separately for the two classifiers: LDA and SVM, when either training on session A, B or
both of these sessions together.

LDA SVM
Average CA on Average CA on
Training data session C Training data session C
A 62% A 62%
B 58% B 58%
A&B 61% A&B 61%

The aggregated results for LDA and SVM in table 1 show no big difference in CA for the
different choices of training data. The results thereby do not support the hypothesis i.e., that
choosing the session closest in time to the the test session (session B), would give better
performance than choosing session A as training data.

Further the two methods used for classification, LDA and SVM, achieved equal average
results, as can be seen in table 1.

5.2 Classification Accuracy (CA) for each subject using ensemble of LDA
classifiers

This section shows the resulting CA using an ensemble of LDA classifiers, separated into
one table for each subject (I - IV), using training data from session A and B. For each set of
training data CA is shown when testing on already seen data (the training data itself) and
on the test session C. With session A as training data CA is also shown when testing on
session B.
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Table 2: CA for subject | using an ensemble of LDA classifiers trained on data from

session A, B and both A and B together. Tests on already seen data is colored light blue

and test on never before seen data from the other sessions are colored dark blue.

Trained on Accuracy on Accuracy on Accuracy on Accuracy on
session session A session B session A & B session C
A 69% 57% - 63%

B - 62% - 57%

A&B - - 67% 64%

Table 3: CA for subject Il using an ensemble of LDA classifiers trained on data from

session A, B and both A and B together. Tests on already seen data is colored light blue

and test on never before seen data from the other sessions are colored dark blue.

Trained on Accuracy on Accuracy on Accuracy on Accuracy on
session session A session B session A & B session C
A 78% 76% - 53%

B - 84% - 53%

A&B - - 79% 53%

Table 4: CA for subject Il using an ensemble of LDA classifiers trained on data from

session A, B and both A and B together. Tests on already seen data is colored light blue

and test on never before seen data from the other sessions are colored dark blue.

Trained on Accuracy on Accuracy on Accuracy on Accuracy on
session session A session B session A & B session C
A 68% 55% - 64%

B - 69% - 63%

A&B - - 64% 63%

Table 5: CA for subject IV using an ensemble of LDA classifiers trained on data from

session A, B and both A and B together. Tests on already seen data is colored light blue

and test on never before seen data from the other sessions are colored dark blue.

Trained on Accuracy on Accuracy on Accuracy on Accuracy on
session session A session B session A & B session C
A 70% 67% - 68%

B - 74% - 60%

A&B - - 71% 65%

5.2 Classification Accuracy (CA) for each subject using ensemble of SVM

classifiers

This section shows the resulting CA using an ensemble of SVM classifiers, separated into
one table for each subject (I - V), using training data from session A and B. For each set of
training data CA is shown when testing on already seen data (the training data itself) and
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on the test session C. With session A as training data CA is also shown when testing on
session B.

Table 6: CA for subject | using an ensemble of SVM classifiers trained on data from
session A, B and both A and B together. Tests on already seen data is colored light blue

and test on never before seen data from the other sessions are colored dark blue.

Trained on Accuracy on Accuracy on Accuracy on Accuracy on
session session A session B session A & B session C
A 69% 57% - 62%

B - 63% - 58%

A&B - - 66% 65%

Table 7: CA for subject Il using an ensemble of SVM classifiers trained on data from

session A, B and both A and B together. Tests on already seen data is colored light blue
and test on never before seen data from the other sessions are colored dark blue.

Trained on Accuracy on Accuracy on Accuracy on Accuracy on
session session A session B session A & B session C
A 79% 77% - 54%

B - 84% - 51%

A&B - - 80% 51%

Table 8: CA for subject Ill using an ensemble of SVM classifiers trained on data from

session A, B and both A and B together. Tests on already seen data is colored light blue
and test on never before seen data from the other sessions are colored dark blue.

Trained on Accuracy on Accuracy on Accuracy on Accuracy on
session session A session B session A & B session C
A 67% 54% - 63%

B - 69% - 63%

A&B - - 65% 63%
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Table 9: CA for subject IV using an ensemble of SVM classifiers trained on data from

session A, B and both A and B together. Tests on already seen data is colored light blue
and test on never before seen data from the other sessions are colored dark blue.

Trained on Accuracy on Accuracy on Accuracy on Accuracy on
session session A session B session A & B session C
A 70% 68% - 68%

B - 74% - 60%

A&B - - 71% 64%
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6. Discussion

Classifying the users thoughts is a central and hard task in all BCl systems. This is known
to be even more difficult on early training sessions where the user have little experience of
performing the task to generate the control signal, i.e the thoughts the BCI system is trained
to respond to (Wolpaw, McFarland & Vaughan 2000;Grosse-Wentrup & Schoélkopf, 2013).
In this study we wanted to use data from early training sessions to examine how the CA on
data from an unseen session was affected by the choice of training data for the
classification algorithm. In a previous study by Herman et.al (2008) a clear trend was
observable where training data recorded closer in time to the test data gave better
generalization capacity than training data from earlier sessions. Herman et.al (2008)
results showed a clear gap in CA between using the latest session as training data or
using earlier sessions. However, in their study they only compared the results of using a
single session as training data but in general classification algorithms perform better the
more training data they get, as long as data can be considered to come from the same
distribution as the test data (see section 3.4 above).

We intended to investigate which of these effect that was stronger, to see if using

the closest in time session or using more sessions as training data gave the best CAon a
unseen session. As data we had a small sample of the data from the study by Herman et.
al (2008), our hypothesis therefore was that we would see the same effect of using training
data closest in time to test data i.e. using the latest session as training data would give
better CA than using a single earlier session.

The unexpected result we got was that we could not see any positive effect of using the
latest session as training data. In fact for the four subject we had there was no one for
which using the closest session was better than using a single earlier session. Using the
earlier one could for one subject even improve the CA on the last session with 8%
compared to using the last session (see table 5). It is hard to give any reasons based in
theory, for the conclusion that choosing a single earlier session as training data would give
systematically better results than choosing one that is closer in time when the user has
more experience. A more reasonable conclusion is that the sample of data we had was
too small to see the training effect that was clearly observable in Herman et. al (2008). In
their study they used data from 8 subjects and a larger number of sessions for each
person. In our study we had just one observation of interest for each of the subjects and for
subject Il which initially had the highest generalization capacity proved in the testing phase
to achieve results equal to that of chance ( close to 50%, see table 3 and 7). This led to a
situation with practically only three observations of interest. As we discussed in section
3.32 there are numerous factors creating session to session variance in brain activity
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patterns and it is plausible that these factors in our samples overpowered the effect of user
training.

Regarding the effect of using more sessions as training data we could observe that there
was a slightly positive effect for one subject when compared to using a single session (see
table 2 and 6). When there was a bigger gap in performance between the two classifiers
using different single sessions as training data, the classifier that used both sessions
produced a result in between. From this it is seems to be a reasonably good choice to use
the two latest session as training data especially as our result have shown that it is not
always the case that the latest session performs better than the earlier ones. Still more
studies are needed to validate this conclusion.

6.1 Method discussion

The method of using an ensemble of classifiers, one for each time sample can be seen as

a rather unconventional choice of how to classify BCI data. Therefor it could be speculated
that this choice could be the reason to our rather unexpected results, but there are reasons
to argue that this is not the case.

The strongest argument for using an ensemble was that we got results that is similar to
earlier studies of this data, which points out that the expected CA lies around 60% to 70%,
which also is achieved by our ensembles of classifiers. This indicates that our method is
stable compared to other classification process on this data set, and not results created by
chance.

Further both the ensemble of linear SVMs and LDA have matching results. That these
independent but both linear methods produce equal results could be seen as a quality
assurance i.e. if they instead had produced contradictory results it would have given reason
to expect errors in the implementation. The equality in performance between the two
methods was seen already in the initial tests which motivated us to utilize ensembles to
investigate our objectives.

However there are also objections that could be raised against using an ensemble of
classifiers working on each time sample. One objection is that the ensemble uses the
advantage of having the whole trial available when classifying as this is not realistic in an
online situation. Further this offline method made it possible to use low dimensional data
which is quite uncommon in a BCI context (Lotte,Congedo, Lécuyer, Lamarche & Arnaldi,
2007).This is a problem because our results are therefore less applicable for situations
with high dimensionality on indata. It could for example been the case that there would be a
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stronger positive effect of using both earlier sessions as training data. This is based on the
reasoning that the higher dimensionality you have the more training data you need (see
section 3.4.1.2 about the curse of dimensionality).

Another objection that could be made is how normalization is done. Using the mean and
standard derivation from the whole session for normalizing before classification is of
course not possible in an online situation but there are similar approaches that are. For
example some data could be collected in start of each session to decide which mean and
which standard derivation that should be used for normalization in this specific session.

The methods of choice also has the limitation that we used only linear classifiers which
further restrains the scope of this study, as the use of nonlinear classifiers could have given
different results. But as linear methods stands for a majority of the classification algorithms
used in BCI today (Hwang et al., 2013) we argued that this limitation is reasonable. As
mentioned above the comparison of the two independent linear methods achieved results
could also be seen as a quality assurance.

6.2 Conclusion

In summary it is hard to draw any clear conclusion from such a small data sample, but from
our results we can see that is not always the case that training data recorded closer in time
to the test data generate higher CA. Therefore from our result it seems to be a safer choice
to use more than the latest session as training data. Still more studies are needed to
confirm that using more session for training really is better also on data where the training
effect is strong.
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