
Chapter 7

Iterative methods for linear
systems

In this chapter we revisit the problem of solving linear systems of equations,
but now in the context of large sparse systems. The price to pay for the
direct methods based on matrix factorization is that the factors of a sparse
matrix may not be sparse, so that for large sparse systems the memory cost
make direct methods too expensive, in memory and in execution time.

Instead we introduce iterative methods, for which matrix sparsity is
exploited to develop fast algorithms with a low memory footprint.

7.1 Sparse matrix algebra

Large sparse matrices

We say that the matrix A 2 Rn is large if n is large, and that A is sparse
if most of the elements are zero. If a matrix is not sparse, we say that
the matrix is dense. Whereas for a dense matrix the number of nonzero
elements is O(n2), for a sparse matrix it is only O(n), which has obvious
implications for the memory footprint and e�ciency for algorithms that
exploit the sparsity of a matrix.

A diagonal matrix is a sparse matrix A = (a
ij

), for which a
ij

= 0 for
all i 6= j, and a diagonal matrix can be generalized to a banded matrix,
for which there exists a number p, the bandwidth, such that a

ij

= 0 for all
i < j � p or i > j + p. A tridiagonal matrix is a banded matrix A with

59

60 CHAPTER 7. ITERATIVE METHODS FOR LINEAR SYSTEMS

p = 1,

A =

2

6666664

x x 0 0 0 0
x x x 0 0 0
0 x x x 0 0
0 0 x x x 0
0 0 0 x x x
0 0 0 0 x x

3

7777775
, (7.1)

where x represents a nonzero element.

Compressed row storage

The compressed row storage (CRS) format is a data structure for e�cient
represention of a sparse matrix by three arrays, containing the nonzero
values, the extents of the rows, and the respective column indices.

For example, the following sparse matrix

A =

2

6666664

3 2 0 0 0 0
0 2 1 2 0 0
0 2 1 0 0 0
0 0 3 2 4 0
0 0 0 4 1 0
0 0 0 0 2 3

3

7777775
, (7.2)

is represented as

val = [3 2 2 1 2 2 1 3 2 4 4 1 2 3]

col idx = [1 2 2 3 4 2 3 3 4 5 4 5 5 6]

row ptr = [1 3 6 8 11 13]

where val contains the nonzero matrix elements, col idx their column in-
dices, and row ptr the indices in the other two arrays corresponding to the
start of each row.

Sparse matrix-vector product

At the heart of iterative methods is the matrix-vector product b = Ax.
For a sparse matrix A, algorithms can be constructed for e�cient matrix-
vector product, exploiting the sparsity of A by avoiding multiplications by
the zero elements of A. For example, the CRS data structure implies an
e�cient algorithm for sparse matrix-vector multiplication.

In the following we keep in mind that for sparse matrices there are
e�cient algorithms available for matrix-vector product, for which both the

7.2. STATIONARY ITERATIVE METHODS 61

Algorithm 7: Sparse matrix-vector multiplication

for i = 1 : n do
b
i

= 0
for j = row ptr(i) : row ptr(i)� 1 do

b
i

= b
i

+ val(j)x(col idx(j))
end

end

memory footprint and the number of floating point operations are of the
order O(n), rather than O(n2) as in the case of dense matrices.

7.2 Stationary iterative methods

Iterative methods

For a given nonsingular matrix A 2 Rn⇥n and vector b 2 Rn, we consider
the problem of finding a vector x 2 Rn, such that

Ax = b, (7.3)

where the system is large, and the matrix A is sparse.
We do not seek to construct the exact solution x = A�1b, but instead we

will develop iterative methods based on algorithms that generate a sequence
of approximations {x(k)}

k�0 that converges towards x, with

e(k) = x� x(k), (7.4)

the error at iteration k.
The error is not directly computable since the exact solution is unknown,

but the error can be expressed in terms of the residual r(k) = b� Ax(k), as

r(k) = b� Ax(k) = Ax� Ax(k) = Ae(k), (7.5)

so that for k · k = k · k2, we have that

ke(k)k = kA�1r(k)k  kA�1kkr(k)k, (7.6)

and similarly
kr(0)k = kAe(0)k  kAkke(0)k. (7.7)

The condition number of A relative to the norm k · k is defined as

(A) = kAkkA�1k, (7.8)

62 CHAPTER 7. ITERATIVE METHODS FOR LINEAR SYSTEMS

which together with (7.6) and (7.7) provides an estimate of the relative
error in terms of the relative residual.

Theorem 10 (Error estimate). For {x(k)}
k�0 a sequence of approximate

solutions to the linear system of equations Ax = b, the relative error can be
estimated as

ke(k)k
ke(0)k  (A)

kr(k)k
kr(0)k . (7.9)

The error estimate (7.9) may be used as a stopping criterion for when
to terminate an iterative algorithm,

kr(k)k
kr(0)k < TOL, (7.10)

with TOL > 0 the chosen tolerance.
Although, to use the relative error with respect to the initial approxima-

tion can be problematic, since the choice of x(0) may be completely arbitrary
and not of significance for the problem at hand. Instead it is more suitable
to formulate a stopping criterion based on the following condition,

kr(k)k
kbk < TOL, (7.11)

corresponding to x(0) = 0.

Stationary iterative methods

Stationary iterative methods are formulated as a linear fixed point iteration
of the form

x(k+1) = Mx(k) + c, (7.12)

with M 2 Rn⇥n the iteration matrix, {x(k)}
k�0 ⇢ Rn a sequence of approx-

imations, and c 2 Rn a vector.

Theorem 11 (Banach fixed point theorem for matrices). If kMk < 1,
the fixed point iteration (7.12) converges to the solution of the equation
x = Mx+ c.

Proof. For any k > 1, we have that

kx(k+1) � x(k)k = kMx(k) �Mx(k�1)k = kM(x(k) � x(k�1))k
 kMkkx(k) � x(k�1)k  kMkkkx(1) � x(0)k.

7.2. STATIONARY ITERATIVE METHODS 63

Further, for m > n,

kx(m) � x(n)k = kx(m) � x(m�1)k+ ...+ kx(n+1) � x(n)k
 (kMkm�1 + ...+ kMkn) kx(1) � x(0)k,

so that with kMk < 1. We thus have that

lim
n!1

kx(m) � x(n)k = 0, (7.13)

that is {x(n)}1
n=1 is a Cauchy sequence, and since the vector space Rn is

complete, all Cauchy sequences converge, so there exists an x 2 Rn such
that

x = lim
n!1

x(n). (7.14)

By taking the limit of both sides of (7.12) we find that x satisfies the
equation x = Mx+ c.

Further, an equivalent condition for convergence is that the spectral
radius ⇢(M) < 1, with

⇢(A) = max
�2⇤(A)

|�|. (7.15)

In particular, for a real symmetric matrix A, the spectral radius is identical
to the induced 2-norm, that is ⇢(A) = kAk2.

Richardson iteration

The linear system Ax = b can be formulated as a fixed point iteration
through the Richardson iteration, with an iteration matrix M = I � A,

x(k+1) = (I � A)x(k) + b, (7.16)

which will converge if kI�Ak < 1, or ⇢(A) < 1. We note that for an initial
approximation x(0) = 0, we obtain for k = 0,

x(1) = (I � A)x(0) + b = b

for k = 1,

x(2) = (I � A)x(1) + b = (I � A)b+ b = 2b� Ab,

for k = 2,

x(3) = (I � A)x(2) + b = (I � A)(2b� Ab) + b = 3b� 3Ab+ A2b,

64 CHAPTER 7. ITERATIVE METHODS FOR LINEAR SYSTEMS

and more generally, that the iterate x(k) is a linear combination of powers
of the matrix A acting on b, that is

x(k) =
k�1X

i=0

↵
i

Aib, (7.17)

with ↵
i

2 R.

Preconditioned Richardson iteration

To improve convergence of Richardson iteration we can precondition the
system Ax = b by multiplication of both sides of the equation by a matrix
B, so that we get the new system

BAx = Bb, (7.18)

for which Richardson iteration will converge if kI�BAk < 1, or equivalently
⇢(BA) < 1, and we then refer to B as an approximate inverse of A. The
preconditioned Richardson iteration takes the form

x(k+1) = (I � BA)x(k) +Bb, (7.19)

and the preconditioned residual Bb�BAx(k) is used as basis for a stopping
criterion.

Iterative methods based on matrix splitting

An alternative to Richardson iteration is matrix splitting, where stationary
iterative methods are formulated based on splitting the matrix into a sum

A = A1 + A2, (7.20)

where A1 is chosen as a nonsingular matrix easy to invert, such as a diagonal
matrix D, a (strict) lower triangular matrix L or (strict) upper triangular
matrix U , where L and U have zeros on the diagonal.

Jacobi iteration

Jacobi iteration is based on the splitting

A1 = D, A2 = R = A�D, (7.21)

7.3. KRYLOV METHODS 65

which gives the iteration matrix M
J

= �D�1R and c = D�1b, or in terms
of the elements of A = (a

ij

),

x(k+1)
i

= a�1
ii

(b�
X

j 6=i

a
ij

x(k)
j

), (7.22)

where the diagonal matrix D is trivial to invert. To use Jacobi iteration as
a preconditioner, we choose B = D�1.

Gauss-Seidel iteration

Gauss-Seidel iteration is based on the splitting

A1 = L, A2 = R = A� L, (7.23)

which gives the iteration matrix M
GS

= �L�1R and c = L�1b, or

x(k+1)
i

= a�1
ii

(b�
X

j<i

a
ij

x(k+1)
j

�
X

j>i

a
ij

x(k)
j

), (7.24)

where the lower triangular matrix L is inverted by forward substitution.
Gauss-Seidel iteration as a preconditioner leads to the choice of B = L�1,
where the inversion corresponds to a forward substitution.

7.3 Krylov methods

Krylov subspace

A Krylov method is an iterative method for the solution of the system Ax =
b based on, for each iteration, finding an approximation x(k) ⇡ x = A�1b in
a Krylov subspace K

k

, spanned by the vectors b, Ab, ..., Ak�1b, that is

K
k

= hb, Ab, ..., Ak�1bi. (7.25)

The basis for Krylov methods is that, by the Cayley-Hamilton theorem,
the inverse of a matrix A�1 is a linear combination of its powers Ak, which
is also expressed in (7.17).

GMRES

The idea of GMRES (generalized minimal residuals) is that, at each step k
of the iteration, find the vector x(k) 2 K

k

that minimizes the norm of the
residual r(k) = b� Ax(k), which corresponds to the least squares problem

min
x

(k)2Kk

kb� Ax(k)k. (7.26)

66 CHAPTER 7. ITERATIVE METHODS FOR LINEAR SYSTEMS

But instead of expressing the approximation x(k) as a linear combination
of the Krylov vectors b, Ab, ..., Ak�1b, which leads to an unstable algorithm,
we construct an orthonormal basis {q

j

}k
j=1 for K

k

, such that

K
k

= hq1, q2, ..., qki, (7.27)

with Q
k

the n⇥ k matrix with the basis vectors q
j

as columns.
Thus we can express the approximation as x(k) = Q

k

y, with y 2 Rk a
vector with the coordinates of x(k), so that the least squares problem take
the form

min
y2Rk

kb� AQ
k

yk. (7.28)

Algorithm 8: Arnoldi iteration

q1 = b/kbk
for k = 1, 2, 3, ... do

v = Aq
k

for j = 1 : k do
h
jk

= qT
j

v
v = v � h

jk

q
j

end
h
n+1n = kvk

q
n+1 = v/h

n+1n

end

The Arnoldi iteration is just the modified Gram-Schmidt iteration (Al-
gorithm 1) that constructs a partial similarity transformation of A into an
Hessenberg matrix H̃

k

2 Rk+1⇥k,

AQ
k

= Q
k+1H̃k

, (7.29)

that is
2

6664

a11 · · · a1n
...

. . .
...

...
. . .

...
a
n1 · · · a

nn

3

7775

2

664
q1 · · · q

k

3

775 =

2

664
q1 · · · q

k+1

3

775

2

6664

h11 · · · h1k

h21 · · ·
. . .

...
h
k+1k

3

7775
.

Multiplication of (7.28) by QT

k+1 does not change the norm, so that the
least squares problem takes the form,

min
y2Rk

kQT

k+1b� H̃
k

yk, (7.30)

7.3. KRYLOV METHODS 67

where we note that since q1 = b/kbk, we have that QT

k+1b = kbke1 with
e1 = (1, 0, ..., 0)T the first vector in the standard basis in Rk+1, so that we
can write (7.30) as

min
y2Rk

kkbke1 � H̃
k

yk, (7.31)

which is a (k + 1) ⇥ k least squares problem that we solve for y 2 Rk at
each iteration k, to get x(k) = Q

k

y.

Algorithm 9: GMRES

q1 = b/kbk
while kr(k)k/kr(0)k � TOL do

Arnoldi iteration step k ! Q
k

, H̃
k

. orthogonalize

min
y2Rk

kkbke1 � H̃
k

yk . least squares problem

x(k) = Q
k

y . construct solution

end

Conjugate Gradient method

For a symmetric positive definite matrix A, we can define the A-norm of a
vector x 2 Rn, as

kxk
A

= (x,Ax)1/2, (7.32)

with (·, ·) the l2-norm. The Conjugate Gradient method (CG) is based on
minimization of the error e(k) = x� x(k) in the A-norm, or equivalently, by
(7.5), minimization of the residual r(k) = b� Ax(k) in the A�1-norm,

ke(k)k
A

= (e(k), Ae(k))1/2 = (e(k), r(k))1/2 = (A�1r(k), r(k))1/2 = kr(k)k
A

�1 ,

to compare to GMRES where the residual is minimized in the l2-norm.
Further, to solve the minimization problem in CG we do not solve a least

squares problem over the Krylov subspace K
k

, but instead we iteratively
construct a search direction p(k) and a step length ↵(k) to find the new
approximate solution x(k) from the previous iterate x(k�1). In particular,
this means that we do not have to store the full Krylov basis.

The key to the success of the CG method is that the residuals are mu-
tually orthogonal,

(r(k), r(j)) = 0, 8j < k, (7.33)

and that the search directions are A-conjugate,

(p(k), p(j))
A

= 0, 8j < k, (7.34)

68 CHAPTER 7. ITERATIVE METHODS FOR LINEAR SYSTEMS

Algorithm 10: Conjugate Gradient method

x(0) = 0, r(0) = b, p(k) = r(0)

while kr(k)k/kr(0)k � TOL do
↵(k) = kr(k�1)k/kp(k�1)k

A

. step length

x(k) = x(k�1) + ↵(k)p(k�1) . approximate solution

r(k) = r(k�1) � ↵(k)Ap(k�1) . residual

�(k) = kr(k)k/kr(k�1)k . improvement

p(k) = r(k) + �(k)p(k�1) . search direction

end

where (·, ·)
A

is the weighted inner product, defined for symmetric positive
definite matrices as

(x, y)
A

= xTAy = (Ay)Tx = yTATx = yTAx = (y, x)
A

, (7.35)

where we note that (·, ·)
A

induces the A-norm,

kxk
A

= (x, x)1/2
A

, (7.36)

which is also referred to as the energy norm for the equation Ax = b.

Theorem 12 (CG characteristics). For the CG method applied to the equa-
tion Ax = b, with A an n ⇥ n symmetric positive definite matrix, the or-
thogonality relations (7.33) and (7.34) are true, and

K
k

= hb, Ab, ..., Ak�1bi = hx(1), x(2), ..., x(k)i
= hp(0), p(1), ..., p(k�1)i = hr(0), r(1), ..., r(k�1)i,

with the approximate solutions x(k), search directions p(k) and residuals r(k)

constructed from Algorithm 10. Further, x(k) is the unique point in K
k

that
minimizes ke(k)k

A

, and the convergence is monotonic, that is

ke(k)k
A

 ke(k�1)k
A

, (7.37)

with e(k) = 0 for some k  n.

