Chapter 8

Nonlinear algebraic equations

8.1 Nonlinear scalar equation

Fixed point iteration

We seek the solution x € I = [a,b] C R of the equation

f(z) =0, (8.1)

with f : I — R a nonlinear function, for which we can formulate the
following fixed point iteration:

e* ) = g(2®) = 28 o f () (8.2)

The fixed point iteration (8.2) converges to a unique solution x = g(x),

corresponding to f(x) = 0, if the function g : I — I is a contraction
mapping, meaning that there exits a constant L, < 1, such that

l9(x) = g(y)| < Lylz —yl, (8.3)

for all x,y € I, where L, is the Lipschitz constant of g(x), a Lipschitz
continuous function for z € I.

Convergence of the fixed point iteration (8.2) is proven similar to the
case of a linear system of equations (7.12). For any k& > 1, we have that

20 — 2] = Jg(a) - g )| < Lla - D] < L2 — 20,

and for m > n,

|x(m) — x(n)| — |$(m) — z(m—1)| 4ot |$(n+1) — x(n)|

< (L '+ 4 L)) |z — 2O,
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so that for L, < 1, we have that

lim |z™ — ™| =0, (8.4)

n—oo

which implies that there exists an x € R such that

= lim 2", (8.5)
n—oo
since {x(™}°° | is a Cauchy sequence in the complete space R.
Uniqueness follows from assuming that there exists another solution
y € R such that y = g(y), which leads to a contradiction, since

2 —yl = |g(x) — g(y)| < Lylz —y| < |z —yl. (8.6)

Thus z is the unique solution to the equation = = g(x).

Rate of convergence

We are not only interested in if an iterative method converges, but also how
fast, that is the rate of convergence. We say that a sequence of approximate
solutions {z(®}%° | converges with order p to the exact solution x, if

' |z — ak

lim ——=C, C>0 8.7
Jim o =G C>0 (87)
where p = 1 corresponds to a linear order of convergence, and p = 2 a
quadratic order of convergence. We can approximate the rate of convergence
by extrapolation, so that

|xk+1 . xk|
log
B |2k — k-1 (®.9)
p= |$k _ l,k—1| :

log |zE—1 — b2

which is useful in practice when the exact solution is not available.

Newton’s method

The analysis above suggests that (8.2) converges linearly with the Lipschitz
constant L, since

|z — x(k+1)| = lg(z) — g(x(k))| < Lglx — x(k)| (8.9)
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Algorithm 11: Newton’s method
Given initial approximation z(*)
while |f(2®)| > TOL do

| D) = &) (g Ry =1 f ()
end

so that the error e® = 2 — 2 decreases linearly as e Y| < L [e®)].

Although, by the choice a = — f/(z®))~!, the fixed point iteration (8.2)
exhibits quadratic converge for 2 close to z, the exact solution to the
equation f(x) = 0. This is Newton’s method.

The quadratic convergence of Newton’s method follows from Taylor’s
formula, with f(z) expanded around z®, with ¢ € I,

0= f(r) = f(&®) + @)~ 2®) + S€) @ —aBP. (310
We divide by f/'(z®) to get

v (@ = f@a®) " f(2W)) = —%f’(:v('“))lf”(ﬁ)(x —a2®)? (8.11)

so that for the error e®) =z — z(*)

4] = 21 ) () P, (8.12)

which displays the quadratic convergence for z(¥) close to .

8.2 Systems of nonlinear equations

Fixed point iteration for nonlinear systems

Now consider systems of nonlinear equations: find x = (x4, ...,z,) € R",
such that

f(x) =0, (8.13)
with f = (f1,..., fu)T : R* = R". We can formulate a fixed point iteration
r+ ) = g(x®)), with g : R” — R", just as in the case of the scalar problem.

Existence of a unique solution to the algorithm follows by the Banach
fixed point theorem.

Theorem 13 (Banach fixed point theorem). The fized point iteration of
Aglorithm 12 converges to a unique solution if ||1 4+ aL¢|| < 1, with Ly the
Lipschitz constant of the function f(x).
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Algorithm 12: Newton’s method for systems of nonlinear equations

Given initial approximation z()

while || f(z*®))|| > TOL do
20D — 509§ o (2 )

end

Proof. For k > 1 we have that
20 — s = o) — 2D 4 o f(o) - fa D))
< (L+aLpllz® —a® V) < (1 + aLp)*||lz® — 2,
and for m > n,
2 =2 = 2t = gD 4 o) — o)

< (A+alp)™ '+ .+ (1 +aL)™)|z® — 2.

For (1+aLf) < 1, {z™M}2, is a Cauchy sequence since [Jz™ — z(™| — 0,
for n — oo, which implies that there exists an x € R™ such that

z = lim 2™, (8.14)

n—oo

since R" is a complete vector space. Uniqueness follows from assuming that
there exists another solution y € R™ such that f(y) = 0, which leads to a
contradiction, since

lz =yl = llz =y +a(f(z) = FW)I < A+alp)lz -yl < llz—yl. (8.15)

Thus z is the unique solution to the equation f(z) = 0. ]

Newton’s method for nonlinear systems

The Jacobian matriz f'(x) is defined as

Oh ... Oh
ox1 Oxn
flle)y=1:+ -~ ], (8.16)
Ofn .. Ofn
o1 OTn

which we use to formulate Newton’s method for systems of equations.
The quadratic convergence of Newton’s method follows from Taylor’s
formula in R™, with f(z) expanded around z*),

0= f(x) = F) + f/(@)(x — o) + S — )T Q) — 2 ),
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Algorithm 13: Newton’s method for systems of nonlinear equations

Given initial approximation z(*)

while || f(z®)|| > TOL do

Solve f/'(z)Ax*+D) = — f(z(*)) > solve for Ax(+l
gkt = (k) 4 Ag(k+1) > update by Agzk+l
end

where f”(z® is the Hessian. We have that

— ) e — B ) o — o),

z— (% — ™)L fa®)) = :

with f/(x®))~1 the inverse of the Jacobian, so that,

1
€] = <17 ®) ) e, (8.17)

for the error e®) = 2 — ) which shows quadratic convergence for z*)

close to z.



