
Chapter 9

Initial value problems

9.1 The scalar initial value problem

We consider the following ordinary di↵erential equation (ODE) for a scalar
function u : R+ ! R, with derivative u̇ = du/dt,

u̇(t) = f(u(t), t), 0 < t  T, (9.1)

u(0) = u0,

which we refer to as a scalar initial value problem, defined on the interval
I = [0, T ] by the function f : R ⇥ R+ ! R, and the initial condition
u(0) = u0.

Only in simple special cases can analytical solutions be found. Instead,
in the general case, numerical methods must be used to compute approxi-
mate solutions to (9.1).

9.2 Time stepping methods

The variable t 2 [0, T ] is often interpreted as time, and many numerical
methods for in (9.1) are based on the idea of time stepping, where successive
approximations U(t

n

) are computed on a partition T
k

: 0 = t0 < t1 < ... <
t
N

= T , starting from U(t0) = u0, with a suitable interpolation of U(t) on
each subinterval I

n

= (t
n�1, tn) with length k

n

= t
n

� t
n�1.

Forward Euler method

For t
n

2 T
k

, we may approximate the derivative u̇(t
n

) by

u̇(t
n�1) ⇡ u(t

n

)� u(t
n�1)

k
n

, (9.2)

77



78 CHAPTER 9. INITIAL VALUE PROBLEMS

t1	 t2	 t3	 t4	t0=0	
t	

tN=T	

Τk:	0	=	t0	<	t1	<	…	<	tN	=	T		

In	=	(tn-1,tn)	

kn	=	tn	-	tn-1	

Figure 9.1: Partition of interval I = [0, T ], T
k

: 0 = t0 < t1 < ... < t
N

= T .

so that

u(t
n

) ⇡ u(t
n�1) + k

n

u̇(t
n�1) = u(t

n�1) + k
n

f(u(t
n�1), tn�1), (9.3)

which motivates the forward Euler method for successive computational
approximation of U

n

= U(t
n

).

Algorithm 14: Forward Euler method
U0 = u0

for n = 1, 2, ..., N � 1 do
U
n

= U
n�1 + k

n

f(U
n�1, tn�1)

end

We note that the forward Euler method is explicit, meaning that U
n+1

is directly computable from the previous solution U
n

in the time stepping
algorithm. The method is thus also referred to as the explicit Euler method.



9.2. TIME STEPPING METHODS 79

Backward Euler method

Alternatively, we may approximate the derivative u̇(t
n+1) by

u̇(t
n

) ⇡ u(t
n

)� u(t
n�1)

k
n

, (9.4)

so that

u(t
n

) ⇡ u(t
n�1) + k

n

u̇(t
n

) = u(t
n�1) + k

n

f(u(t
n

), t
n

), (9.5)

which motivates the backward Euler method for successive computational
approximation of U

n

= U(t
n

).

Algorithm 15: Backward Euler method
U0 = u0

for n = 1, 2, ..., N � 1 do
U
n

= U
n�1 + k

n

f(U
n

, t
n

)
end

Contrary to the forward Euler method, the backward Euler method is
implicit, thus also referred to as the implicit Euler method, meaning that
U
n+1 is not directly computable from U

n

, but is obtained from the solution
of an algebraic (possibly nonlinear) equation,

x = U
n�1 + k

n

f(x, t
n

), (9.6)

for example, through the fixed point iteration,

x(k+1) = U
n�1 + k

n

f(x(k), t
n

). (9.7)

We note that the fixed point iteration (9.7) converges if k
n

L
f

< 1, with
L
f

the Lipschitz constant of the function f(·, t
n

), thus if the time step k
n

is small enough.

Time stepping as quadrature

There is a strong connection between time stepping methods and numerical
approximation of integrals, which we refer to as quadrature. For example,
assume that the initial condition is zero and that the function f in (9.1)
does not depend on the solution u, but the time t only, that is f = f(t). The
solution u(t) is then the primitive function of f(t) that satisfies u(0) = 0,



80 CHAPTER 9. INITIAL VALUE PROBLEMS

corresponding to the area under the graph of the function f(t) over the
interval [0, t].

We can approximate this primitive function by left and right rectangular
rule quadrature, or Riemann sums, which we illustrate in Figure 9.3. The
two approximations of the area under the graph then corresponds to the
forward and backward Euler approximations to the initial value problem
(9.1) with u0 = 0 and f = f(t).

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

Figure 9.2: Left (left) and right (right) rectangular rule quadrature, or
Riemann sums, approximating the primitive function of f(t), corresponding
to the area under the graph.

More generally, by the Fundamental Theorem of Calculus we have, for
each subinterval I

n

= (t
n�1, tn), that

u(t
n

) = u(t
n�1) +

Z
tn

tn�1

f(u(t), t) dt, (9.8)

from which we can derive suitable time stepping methods corresponding to
di↵erent quadrature rules used to evaluate the integral in (9.8).

Quadrature as interpolation

Quadrature as an approximate integral of an exact function, can alterna-
tively be expressed as exact integration of an approximate function. For
example, the rectangular quadrature rule corresponds to exact integration
of a piecewise (over each subinterval I

n

) constant approximation of the
function f(t), with its value determined by the function value at the left or
right endpoint of the interval, f(t

n�1) or f(tn).
From this perspective, one may ask if such a piecewise constant ap-

proximation can be chosen in a more clever way to reduce the error in the



9.2. TIME STEPPING METHODS 81

approximation of the integral, which naturally leads to the midpoint rule
where the piecewise constant function is chosen based on the function value
at the midpoint of the subinterval, that is (f(t

n�1) + f
n

)/2.
Further, we may seek to approximate the function by a higher order

polynomial. By linear interpolation over the partition T
k

, corresponding
approximation of the function by a continuous piecewise linear polynomial
which is exact at each node t

n

, exact integration corresponds to the trape-
zoidal rule.

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

Figure 9.3: Midpoint (left) and trapezoidal (right) quadrature rules, cor-
responding to interpolation by a piecewise constant and piecewise linear
function respectively.

Interpolation as time stepping

By (9.8), the midpoint and trapezoidal rules can also be formulated as
time stepping methods. Although, in the case of a time stepping method,
interpolation cannot be directly based on the function f(u(t), t) since u(t) is
unknown. Instead we seek an approximate solution U(t) to the initial value
problem (9.1) as a piecewise polynomial of a certain order, determined by
f(U

n

, t
n

) through the successive approximations U
n

.

Algorithm 16: Trapezoidal time stepping method
U0 = u0

for n = 1, 2, ..., N � 1 do

U
n

= U
n�1 +

k
n

2
(f(U

n

, t
n

) + f(U
n�1, tn�1))

end



82 CHAPTER 9. INITIAL VALUE PROBLEMS

Both the midpoint method and the trapezoidal method are implicit, and
thus require the solution of an equation, possibly nonlinear, at each time
step.

To seek approximate solutions to di↵erential equations as piecewise poly-
nomials is a powerful idea that we will meet many times. Any piecewise
polynomial function can be expressed as a linear combination of basis func-
tions, for which the coordinates can be determined, for example, based on
minimization or orthogonality conditions on the residual of the di↵erential
equation.

U1	

t1	 t2	 t3	 t4	t0=0	
t	t5	

U2	

U3	
U4	

U5	 U0	

t1	 t2	 t3	 t4	t0=0	
t	t5	

U2	

U3	
U4	

U5	

U1	

Figure 9.4: Examples of a discontinuous piecewise constant polynomial
determined by its value at the right endpoint of the subinterval (left), and
a continuous piecewise linear polynomial determined by its value in the
nodes of the partition (right).

The ✓-method

We can formulate the forward and backward Euler methods, and the trape-
zoidal method, as one single method with a parameter ✓, the ✓-method.
For ✓ = 1, we get the explicit Euler method, for ✓ = 0 the implicit Euler
method, and ✓ = 0.5 corresponds to the trapezoidal rule.

Algorithm 17: The ✓-method for initial value problems
U0 = u0

for n = 1, 2, ..., N � 1 do
U
n

= U
n�1 + k

n

((1� ✓)f(U
n

, t
n

) + ✓f(U
n�1, tn�1))

end



9.3. SYSTEMS OF INITIAL VALUE PROBLEMS 83

Theorem 14 (Local error estimate for the ✓-method). For the ✓-method
over one subinterval I

n

= (t
n�1, tn) of length k

n

= t
n

� t
n�1, with U

n�1 =
u(t

n�1), we have the following local error estimate,

|u(t
n

)� U
n

| = O(k3
n

), (9.9)

for ✓ = 0.5, and

|u(t
n

)� U
n

| = O(k2
n

), (9.10)

if ✓ 6= 0.5.

9.3 Systems of initial value problems

We now consider systems of initial value problems for a vector valued func-
tion u : R+ ! Rn defined on the interval I = [0, T ], with derivative u̇ =
du/dt = (du1/dt, ..., dun

/dt)T defined by the function f : Rn ⇥ R+ ! Rn,
such that

u̇(t) = f(u(t), t), 0 < t  T, (9.11)

u(0) = u0.

Time stepping methods for (9.11) are analogous to the scalar case (9.1),
including the ✓-method of Algorithm 17, with the di↵erence that for implicit
methods a system of (possibly nonlinear) equations needs to be solved.

Particle models

Newton’s laws of motion for a particle can be formulated as an initial value
problem of the form (9.11), with

u =


v
x

�
, f =


F/m
v

�
, (9.12)

with x = x(t) position, v = v(t) the velocity, andm the mass of the particle,
and with F = F (t) the force applied.

For example, the force F = mg models gravitation, with g the gravi-
tation constant, and the force F = �kx models an elastic spring (Hooke’s
law) with spring constant k.



84 CHAPTER 9. INITIAL VALUE PROBLEMS

Solar system

Newton’s gravitational law models pairwise force interactions, such that the
force F

ij

acting on particle p
i

by p
j

is given by,

F
ij

= G
m

i

m
j

kx
i

� x
j

k2 , (9.13)

where m
i

2 R and x
i

2 Rn denotes the mass and position of particle p
i

.

Mass-spring model

The forces in a mass-spring model represent pairwise interactions between
particles connected via springs, such that the force F

ij

acting on particle p
i

by p
j

is given by,
F
ij

= �k
ij

(x
i

� x
j

), (9.14)

with k
ij

= k
ji

the relevant spring constant.


