Algorithms and Complexity
2017
Maistarprovl: Algorithms

Maéstarprov 1 should be solved individually in written form and presented orally.
No collaboration is allowed.

Written solutions should be handed in latest on Wednesday, February 22
17.00, to Johan or Jonas in written or printed form personally or in physical
mailbox (CSC expedition). Be sure to save a copy of your solutions. Méstarprov
1 is a mandatory and rated part of the course. The test consists of four tasks.
The test is roughly graded as follows: Two task correctly solved give an E. Three
tasks correctly solved give a C and all tasks correctly solved give an A. You can
read more about the grading criteria and the final grade on the course web page.
The report should be written in English.

In all problems you should give an analysis of the time complexity of your
algorithm and you should be able to argue for its correctness.

1. Improved Dijkstra

You analyze a graph that represents a project. The nodes represent different
stages in the project and an arrow from i to j tells you that you can go from
stage ¢ directly to stage j. There is a positive weight w(¢, j) on the arrow that
tells you the textitcost (whatever that is) of going from i to j. For stages that
are not neighbors you define the cost of going between the stages as the length
of the shortest path (sum of weights) between the stages. In this way you have
a regular shortest path problem and you realize that you could use Dijkstra’s
algorithm for finding costs as distances. But then you notice one thing. The costs
are integers in the set {1,2,3,....,17}.You remember that Dijkstra’s algorithm
(in it’s simplest form) has time complexity O(|V|? + |E|). You also realize that
your graph is rather sparse so that |E| < 5|V| (but |V] can still be large). If you
run normal Dijkstra you would still get O(|V|?) as time complexity. But maybe
you could use the previous observation about the range of the costs and modify
Dijkstra’s algorithm and get a lower time complexity?

Your task is to modify Dijkstra’s algorithm and use the fact that the costs
(distances) are integers in [1,17] so you get a time complexity O(|V]). You must
argue for the correctness of your algorithm.



2. Flat seqeuences

We will study sequences of postitive numbers 1, zo, ..., z, of a special type. We
will (just in this problem) call a sequence flat if | for all k, s such that 1 < k <mn
and 1 < s < k, we have 0 < #="= < 1. We want to find long consecutive
subsequences that are flat. In order to do so, we use dynamic programming and
define F'L(k) as the length of the longest consecutive flat sequence ending in x.

(For instance, if FL(k) = 4, then this sequence is x_3, x—_2, Tx—1, Tx which
is assumed to be flat. This sequence can, of course, be the initial part of a longer
flat sequence end in zj,,, say.)

Your task is to find a recursion formula for F'L(k) as a function of FL(k —
1) and perhaps some of the previous z;:s. You will probably have to consider
separate cases and some base case. When you have stated your algorithm, write
a program that solves the problem in dynamic programming-style (bottom-
up). The program should take the number sequence and an integer k such that
1 < k < n as input and return FL(k). You must argue for the correctness of
your algorithm.

3. Maximum Flow?

Let us assume that we have a computer network with connections in form of a
directed graph G. On all edges e we have capacities ¢(e). The communication
between the computers can then be considered to be a network flow (as in the
lectures) from a sorce s to a sink ¢. . We can monitor the actual flow on the
edges and we suspect that the network us fully used in the sense that we have a
maximum flow. But how do we know for sure? We can first find the flow from s,
let us say it is Fy. We can then use the Flow algorithm to find a maximum flow
in G ans see if it is F{y or not. This algorithm has a time complexity O(|V||E|?).
But we claim that since we already have a given flow, we can check in much
shorter time if this flow is maximal. But how?

Your task is to give an algorithm which takes a graph G (directed, with
s and t and capacities) and a flow F (given by f(e) for all e € E) as input
and decides if F' is maximal in G or not. Find the time complexity of your
algorithm. It should be no worse than O(|E|). (Yes, that low.) You must argue
for the correctness of your algorithm.



4. Bad railroad

In this problem we have a railroad which we can represent as a real line with
n + 1 points zq, z1, 9, ..., T, corresponding to stations sy = start position,

$1, S2, ..., S, = end postion. We have a passenger train going from sq to s,,. There
are m passengers boarding the train at sy and they want to go to different
stations along the line. Normally, the train would stop at all n stations, sg
excluded. But on a particular day, for some reasons the train can just stop at
k < n stations between sy and s,,. The staff on the train must decide at which
stations the stops should be, guided by the demands of the passengers. They
collect information on the form ¢, g, ..., g» Where g; is the index of the station
passenger i wants to go to. The staff should find a set hg, h1, ha, ..., by of indices
of the stations the train will stop at and 0 = hg < by < ho < ... < hy < n. We
can see that passengers with g; = n do not cause any problems. The staff now
employs the policy that if for any passenger, say j, the train doesn’t stop at gj,
the passenger is asked to get of the train at the largest h; such that h; < g;.
(This includes the possibility that the passenger "get off” the train at hg, i.e.,
does not border the train at all.)

Of course, this will make some passengers very angry. How angry? The
mathematically inclined driver of the train makes the following estimate. The
anger anger(j) of passenger j will be 0 if the train stops at station number
gj. Otherwise, if the passenger is forced to get of at h; we have the estimate
anger(j) = A+ B,/x,, — xp,, where A and B are some positive constants.

The staff wants to find hg, k1, ho, ..., b such that Ej anger(j) is minimal. Find
an algorithm that solves this problem. The algorithm must be polynomial in
n, m, k. You must argue for the correctness of your algorithm.



