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Project II - Mobile Computation Offloading

1 Introduction

Queuing theory provides us a very useful mathematic tool that can be used
to analytically evaluate the performance of different applications in the area of
telecommunications, computing, traffic engineering, etc.

Computationally intensive applications, including augmented reality, natural
language processing, face, gesture and object recognition, and various forms of
user profiling for recommendations are increasingly used on mobile handsets.
Many of these applications consume a significant amount of energy, which can
be detrimental to battery life. Moreover, due to the limited computational
power of the mobile handset the response time may be too long for good user
experience.

Mobile cloud computing is a promising approach to extend the battery life-
time of mobile handsets and to ensure short response times. Mobile cloud
computing allows to offload the computations through a wireless access point
to a cloud infrastructure that has significant computational power. The com-
putations are then performed in the cloud and the results are sent back to the
mobile handset.

2 System Description - Mobile Computation
Offloading
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Figure 1: An example of the cloud computing system that consists of five MUs,
one cloud and one AP.
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2.1 System Definition

We consider a mobile cloud computing system as shown on Figure 1, consisting
of mobile users (MUs) using mobile handsets, connected to a wireless access
point (AP). MUs generate computationally intensive tasks, that can be executed
locally at the MU, or can be offloaded to a cloud computing system. The cloud
computing systems receives tasks from all the MUs, and processes them in
arrival order. Once the computation is completed, the cloud sends back a short
answer to the MU.

2.2 System Model

The cloud computing system consists of a set K={1, 2, ...,K} of mobile users
(MU) using mobile handsets and a cloud service.

Each MU generates computationally intensive tasks to perform. Tasks are
characterized by the size Di of the input data (e.g., in bytes), and by the num-
ber Li of CPU cycles required to perform the computation. Furthermore, each
MU is characterized by deterministic computational capability Fi and the com-
putational capability of the cloud is also known and is denoted by F , where
F > Fi.

If the MU decides to offload the computation to the cloud server, it has to
transmit Di amount of data pertaining to its task to the cloud server through
the AP. The uplink rate Ri at which MU i transmits the input data of the task
to the AP is given for each MU i. We assume that the AP and the cloud are
connected by a high speed link and we do not model the time that is needed to
transmit the data from the AP to the cloud. Moreover, results are transmitted
back to the MUs with negligible delay.

We assume that the input data size Di is exponentially distributed with
mean 1/µD

i . Similarly, the number Li of CPU cycles required to perform the
computation is exponentially distributed with mean 1/µL

i . Note that the time
required to perform a computation is given by the ratio of the required CPU
cycles and the available computational capability.

We consider a homogeneous cloud computing system, in which all MUs are
characterized by the same parameters (they have equal computational capability
Fi = F , equal uplink rate Ri = R, equal mean data size 1/µD

i = 1/µD and
mean task complexity 1/µL

i = 1/µL). Furthermore, we assume that the tasks
are generated at each MU i ∈ K according to a Poisson process with rate λi = λ.

Each MU i ∈ K performs a task locally with probability pli = pl, or offloads
it to the cloud with probability p0i = 1− pli. Again, we consider pli = pl. This is
the parameter that the system can tune to optimize the performance.

We consider two different models of the cloud computing system: Cloud-
Offloading Model 1 and Cloud-Offloading Model 2.

2.3 Cloud-Offloading Model 1

To model the execution of the task, we consider that each MU i has one server
that has a computational capability Fi, and infinite buffer with tasks served
in FIFO order. The cloud has m servers, and each of the servers has a com-
putational capability F0/m. There is a single buffer at the cloud to store all
incoming tasks, the buffer has infinite capacity and implements FIFO service
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order. Furthermore, to simplify the model we assume that the time needed to
transmit the input data to the cloud is negligible compared to the task execution
time. Figure 2 shows resulting queuing model for Cloud-Offloading Model 1.

F1

Figure 2: An example of Cloud-Offloading Model 1.

2.4 Cloud-Offloading Model 2

We model the execution of the tasks in the same way as in the case of Cloud-
Offloading Model 1, but we also model the transmission of the input data to
the cloud. We consider that each MU i has one transmitter that transmits data
to the AP at a rate Ri, and we assume that the transmission buffer is infinite.
Figure 3 shows the resulting queuing model for Cloud-Offloading Model 2.

Figure 3: An example of Cloud-Offloading Model 2.
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3 Performance Analysis

3.1 Theoretic Analysis

First you will need to derive analytic expressions that describe the performance
of the cloud computing system, according to the two different models. We
summarize the system parameters in Table 1.

Number of MUs K
Task arrival rate λi = λ, ∀i ∈ K
Iput data size ∼ exp(µD

i ), µD
i = µD, ∀i ∈ K

Task complexity ∼ exp(µL
i ), µ

L
i = µL, ∀i ∈ K

MU computational capability Fi = F , deterministic for ∀i ∈ K
Cloud computational capability F0, deterministic
Number of servers in the cloud m
Uplink rate Ri = R, deterministic for ∀i ∈ K
Probability to perform the computation locally pli = pl, ∀i ∈ K
Probability to offload the task to the cloud p0i = p0 = 1− pl, ∀i ∈ K

Table 1: List of parameters

3.1.1 Theoretic Analysis - Cloud-Offloading Model 1

Consider the queuing model for Cloud-Offloading Model 1 shown in Fig. 2. Give
the Kendall notation for the task execution at the MU and at the cloud.

Please derive:

• the mean task execution time at MU i and at the cloud server,

• the stability conditions for MU i and for the cloud, and the stability
condition for the entire system,

• the mean number of tasks N̄i in the system (at the MU or in the cloud)
that have been generated by MU i,

• the mean time T̄i that tasks generated by MU i spend in the system.

3.1.2 Theoretic Analysis - Cloud-Offloading Model 2

Consider the queuing model for Cloud-Offloading Model 2 shown in Fig. 3. Give
the Kendall notation for the task execution and for the data transmission at the
MU and for the task execution in the cloud.

Please derive:

• the mean task execution time at MU i and at the cloud server, and the
mean input data transmission time to the AP,

• the stability conditions for MU i and for the cloud, and the stability
condition for the entire system,

• the mean number of tasks N̄i in the system that are generated by MU i,

• the mean time T̄i that tasks generated by MU i spend in the system.
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3.2 Numerical Evaluation

Consider a homogeneous computing system that consists of K = 10 MUs and
one cloud with computational capability F0 = 45 · 109 Cycles/s and m = 15
servers. The mean data sizes and the mean task complexities are the same for all
MUs and equal to 1/µD = 106 bits and 1/µL = 0.5 · 109 Cycles/s, respectively.
The computational capability of each MU is F = 0.6 · 109 Cycles/s and each
MU transmits the data to the AP at a rate R = 4 · 106 bit/s.

3.2.1 Stability region

Plot the maximum task arrival rate λmax(p
l) for the three queuing nodes (exe-

cution node at the MU, transmission node at the MU and execution node at the
cloud) that ensures the stability of the node, as the function of pl, for pl = [0, 1].
Plot the three curves in the same figure.

Next, for both system models, plot the maximum task arrival rate λmax(p
l)

that ensures the stability of the entire system, as the function of pl, for pl = [0, 1]
with a step 0.1.

Which queuing node determines the maximum task arrival rate λmax(p
l) of

the entire system as pl increases? Compare the two system models.

3.2.2 Mean performance metrics with respect to λ

Plot N̄i, the mean number of tasks in the system that have been generated by
MU i, as a function of the task arrival rate λ, where λ takes values from the
interval [0.1, 1.5] tasks/s with a step of 0.1. Plot the curves in the same figure
for two values of pl ∈ {0.2, 0.7} and for both system models (in total four curves
in the figure).

With the same set of parameters, plot T̄i , the mean time that the tasks
generated by MU i spend in the system. Plot the curves in the same figure for
two values of pl ∈ {0.2, 0.7} and for both system models (in total four curves in
the figure).

Compare the two system models. How do the mean number of tasks N̄i

and the mean system time T̄i change as λ increases? What happens when pl

increases? Give an intuitive explanation.

3.2.3 Mean performance metrics with respect to pl

Plot for λ = 1 task/s the mean time T̄i that the tasks generated by MU i
spend in the system, as a function of probability pl to perform the computation
locally, where pl takes the value from the interval [0, 1] with a step of 0.1. Plot
the curves in the same figure for three values of K ∈ {5, 15, 25} and for both
system models (in total six curves in the figure).

Compare the two system models. How does the mean system time T̄i change
as pl increases? Discuss the results for different values of K.
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4 Waiting Time Distribution - Extra Exercise
for the Best

Until now we were working with mean performance metrics. Now we will look at
the waiting time distribution experienced by the tasks in the cloud computing
system.

Please derive the distribution of the waiting time of the tasks generated by
MU i, that is, FW (t) in the case of Cloud-Offloading Model 1.

For the numerical analysis consider the same set of parameters as in Sec-
tion 3.2.

Plot for λ = 1 task/s the CDF FW (t) of the waiting time as a function
of t = [0.1s, 10.1s] with a step 1s for three different values of probability pl ∈
{0.2, 0.4, 0.7}. What is the probability that the waiting time W is less than
2.1 s for the different values of local computation probabilities? Based on the
results, discuss which queuing node impacts the most the waiting time.

Next, plot for pl = 0.4 the CDF FW (t) of the waiting time as a function
of t = [0.1s, 10.1s] with a step 1s for three different values of arrival intensity
λ ∈ {0.1, 0.8, 1.5}. What is the probability that the mean waiting time W is less
than 2.1 s for three different intensity values? How does the arrival intensity λ
impact the waiting time?

5 Submission Instructions and Grading

• The submission deadline is given on the course webpage. You need to
submit the project report through the course web, see Assignments (or
Inlämningsuppgifter in Swedish). If you can not do this (you do not have
kth e-mail), send the project report to vfodor at kth.se.

• You are allowed to solve the problem in groups, however, you have to
prepare a project report on your own. Reports including the same text
will be disqualified.

• You need to submit a report of a maximum of 4 printed pages. The report
needs to contain a description of the solution of the problems, including
detailed derivation of the formulas that used to calculate the results, and
discussions on the insight from your results.

• You need to use software tools to get the results, we propose Matlab, but
we accept all solutions, e.g., you can even program everything in C. You
should not include your codes in the report.

• Check the grammar of the report. There are good tools available to do
that. Make sure that performance graphs are possible to interpret. Give
the dimensions and units of the axes.

Grading: pass or fail. To pass the moment, you need to show that you
made a serious attempt to solve the problems. The best 20% of the submissions
receive 5 extra points on the exam. Extra points will not be considered at the
make-up exam or at later exams.

Would you have any questions, contact Viktoria at vfodor at kth.se.
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