Chapter 11

The boundary value problem

The boundary value problem in one variable is an ordinary differential equa-
tion, for which an initial condition is not enough, instead we need to specify
boundary conditions at each end of the interval. Contrary to the initial
value problem, the dependent variable does not represent time, but should
rather we thought of as a spatial coordinate.

11.1 The boundary value problem

The boundary value problem

We consider the following boundary wvalue problem, for which we seek a
function u(z) € C*(0, 1), such that
—u'(z) = f(z), 2€(0,1), (11.1)
u(0) =u(1) =0, (11.2)
given a source term f(x), and boundary conditions at the endpoints of the
interval I = [0, 1].
We want to find an approximate solution to the boundary value problem

in the form of a continuous piecewise polynomial that satisfies the boundary
conditions (11.2), that is we seek

UeV,={veV?: v0)=0(1)=0}, (11.3)

such that the error e = u — U is small in some suitable norm || - ||.
The residual of the equation is defined as

R(w) =w" + f, (11.4)
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with R(u) = 0, for u = u(x) the solution of the boundary value problem.
Our strategy is now to find an approximate solution U € V;, C C%(0, 1) such
that R(U) =~ 0.

We have two natural methods to find a solution U € V}, with a minimal
residual: (i) the least squares method, where we seek the solution with the
minimal residual measured in the Ls-norm,

min [[R(U)]], (11.5)

UeVvy,

and (ii) Galerkin’s method, where we seek the solution for which the residual
is orthogonal the subspace V},

(R(U),v) =0, YveV,. (11.6)

With an approximation space consisting of piecewise polynomials, we
refer to the methods as a least squares finite element method, and a Galerkin
finite element method. With a trigonometric approximation space we refer
to Galerkin’s method as a spectral method.

Galerkin finite element method

The finite element method (FEM) based on (11.6) takes the form: find
U €V}, such that

/ U (a dx—/ fa (11.7)

for all test functions v € Vj,. For (11.12) to be well defined, we need to be
able to represent the second order derivative U”, which is not obvious for
low order polynomials, such as linear polynomials, or piecewise constants.
To reduce this constraint, we can use partial integration to move one
derivative from the approximation U to the test function v, so that

/01 U e = | U (@) do - [0 @) - / U (@) do,

since v € V},, and thus satisfies the boundary conditions. The finite element
method now reads: find U € V},, such that,

/U’ dx—/ flz (11.8)

for all v € V,.
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The discrete problem

We now let V}, be the space of continuous piecewise linear functions, that
satisfies the boundary conditions (11.2), that is,

UeV,={veV": v0)=0v(1)=0} (11.9)

so that we can write any function v € V}, as

n

v(r) = Zvi¢i($)7 (11.10)

i=1
over a mesh 7, with n internal nodes x;, and v; = v(x;) since {¢;}-, is a

nodal basis.
We thus search for an approximate solution

= ZU@]-(J;), (11.11)

with U; = U(x;). If we insert (11.10) and (11.11) into (11.12), we get

n 1
Uy | ¢(a)gi(x)de= [ flx)gi(x =1,..,n, (11.12)
> A 2))(x) di = / i=1,.m

which corresponds to the matrix equation
Sx =0, (11.13)

with si; = (¢, ¢;), x5 = Uj, and b; = (f, ¢;). The matrix S is sparse, since
s;j = 0 for |i — j| > 1, and for large n we need to use an iterative method
to solve (11.13).

We compute the entries of the matrix .S, referred to as a stiffness matriz,
from the definition of the basis functions (10.31), starting with the diagonal
entries,

5u=<%@=A@wmm=£ﬂ&num+lwwﬂmmm

i

T 1 2 Tit1 1 2 1 1
= — ] d dr = —
/"Ei—l (hl) v /a:z (hi+1) v h; hiiq ’

and similarly we compute the off-diagonal entries,

Y ! / ’ Tkt 11 1
Siit1 = (¢, ¢¢+1) = ¢i($)¢i+1($) dr = dr = — )
0 xT;

hi—i—l hi—i—l hi—i—l

and

1
Si1 = (6, 0y) = /0 ()61 (x) do = .. =~
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The variational problem

Galerkin’s method is based on the variational formulation, or weak form, of
the boundary value problem, where we search for solution in a vector space
V', for which the variational form is well defined: find w € V', such that

/Olu'(x)v'(a:) dr = /01 f(2)v(z) de, (11.14)

forall v e V.

To construct an appropriate vector space V' for (11.1) to be well defined,
we need to extend L? spaces to include also derivatives, which we refer to
as Sobolev spaces. We introduce the vector space H'(0,1), defined by,

HY0,1) = {v € L*(0,1) : v' € L*(0,1)}, (11.15)
and the vector space that also satisfies the boundary conditions (11.2),
Hy(0,1) = {v e H'(0,1) : v(0) = v(1) = 0}. (11.16)

The variational form (11.1) is now well defined for V = H;(0, 1), since
1
/ o (@) (2) dx < |/]|[[0]] < oo (11.17)
0
by Cauchy-Schwarz inequality, and

/0 f@)v(z) de < || fllllv]] < oo, (11.18)

for f € L*(0,1).

Optimality of Galerkin’s method

Galerkin’s method (11.12) corresponds to searching for an approximate so-
lution in a finite dimensional subspace V}, C V, for which (11.1) is satisfied
for all test functions v € V.

The Galerkin solution U is the best possible approximation in V},, in the

sense that,
|lu—=Ullg < |lu—v|g, Yvée&V, (11.19)

with the energy norm defined by

e = ( | 1 /(o) " (11.20)
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Thus U € V), represents a projection of u € V onto V},, with respect to
the inner product defined on V,

1
(v,w)g :/ V' (x)w'(z) de, (11.21)
0
with ||w||% = (w,w)g. The Galerkin orthogonality,
(u—U,v)p =0, Yve, (11.22)
expresses the optimality of the approximation U, as
lu—=Ullg < |lu—2v|g, YveW, (11.23)

which follows by

lu—Ul3 = (u—Uu—up)p=w—Uu—v)p+(u—Unv—uy)g

= (u=Uu—v)p <l|u=Ulglu -l

for any v € V},.



