Chapter 12

Partial differential equations

12.1 Differential operators in R"

Differential operators

We recall the definition of the gradient of a scalar function as
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acting on the function f = f(z), with z € Q C R™. With this interpretation
we express two second order differential operators, the Laplacian Af,
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and the Hessian H f,
o .. 9
0zx10z1 0z10zn
Hf =VVTf= : , ; (12.4)
orf ... _Of
Oxn0z1 0xn0Tn

For a vector valued function f : R® — R™, we define the Jacobian
matrix by
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and for m = n, we define the divergence by
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(12.6)

Partial integration in R”

For the scalar function f : R" — R, and the vector valued function g :
R™ — R", we have the following generalization of partial integration over
Q) C R", referred to as Green’s theorem,

(vfag):_<f7v'g)+(fag'n)Fa (127)

where we use the notation,

(v,w)r = (v, w)r2ry = / vw ds, (12.8)
Q

for the boundary integral, with L?*(T") the Lebesgue space defined over the
boundary I'.

Sobolev spaces

The L? space for 2 C R, is defined by

L*(Q) = {v: / [v|? dx < oo}, (12.9)
Q
where in the case of a vector valued function v : R — R", we let
[v]? = ||Jv||5 = vi + ... + v (12.10)

To construct appropriate vector spaces for the variational formulation
of partial differential equations, we need to extend L? spaces to include also
derivatives. The Sobolev space H'(f2) is defined by,

HY(Q) = {ve L*N): % € L*(Q),Vi,j=1,..,n}, (12.11)
Ly
and we define
Hy(Q) ={ve H(Q) :v(x) =0,z € T}, (12.12)

to be the space with functions that are zero on the boundary I'.
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12.2 Poisson’s equation

The Poisson equation

We now consider the Poisson equation for a function u € C*(),
—Au=f, z€Q, (12.13)

with Q@ C R”, and f € C(Q2). For the equation to have a unique solution we
need to specify boundary conditions. We may prescribe Dirichlet boundary
conditions,

u=gp, x€l, (12.14)

Neumann boundary conditions,
Vu-n=gy, z€l, (12.15)

with n = n(z) the outward unit normal on I'y, or a linear combination of
the two, which we refer to as a Robin boundary condition.

Homogeneous Dirichlet boundary conditions

We now state the variational formulation of Poisson equation with homo-
geneous Dirichlet boundary conditions,

Au=f zeQ, (12.16)
u=0, zel, (12.17)

which we obtain by multiplication by a test function v € V = Hj () and
integration over €2, using Green’s theorem, which gives,

(Vu, Vo) = (f,v), (12.18)

since the boundary term vanishes as the test function is an element of the
vector space Hj ().

Homogeneous Neumann boundary conditions

We now state the variational formulation of Poisson equation with homo-
geneous Neumann boundary conditions,

—Au = f, x € €, (12.19)
Vu-n=0, zel, (12.20)
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which we obtain by multiplication by a test function v € V = H*(Q2) and
integration over €2, using Green’s theorem, which gives,

(Vu, Vo) = (f,v), (12.21)

since the boundary term vanishes by the Neumann boundary condition.
Thus the variational forms (12.18) and (12.21) are similar, with the only
difference being the choice of test and trial spaces.

However, it turns out that the variational problem (12.21) has no unique
solution, since for any solution v € V, also v 4+ C' is a solution, with C a
constant. To ensure a unique solution, we need an extra condition for the
solution, for example, we may change the approximation space to

V={ve HQ): / v(x) dz = 0}. (12.22)

Non homogeneous boundary conditions

We now state the variational formulation of Poisson equation with non
homogeneous boundary conditions,

—Au = f, x €, (12.23)
u(z) = gp, x € I'p, (12.24)
Vu-n=gy, x€Tly, (12.25)

with I' = I'p U 'y, which we obtain by multiplication by a test function
v €V, with
V={ve H(Q):v(x)=gp(z), x €Tp}, (12.26)

and integration over (), using Green’s theorem, which gives,
(Vu, Vo) = (f,v) + (g5, V)ry- (12.27)

The Dirichlet boundary condition is enforced through the trial space,
and is thus referred to as an essential boundary condition, whereas the
Neumann boundary condition is enforced through the variational form, thus
referred to as a natural boundary condition.

The finite element method

To compute approximate solutions to the Poisson equation, we can formu-
late a finite element method based on the variational formulation of the



12.3. LINEAR PARTIAL DIFFERENTIAL EQUATIONS 113

equation, replacing the Sobolev space V' with a polynomial space V},, con-
structed by a set of basis functions {¢;}},, over a mesh Ty, defined as a
collection of elements {K;}Y, and nodes {N;},.

For the Poisson equation with homogeneous Dirichlet boundary condi-
tions, the finite element method takes the form: Find U € V},, such that,

(VU,Vv) = (f,v), v €& V, (12.28)
with V), C H&(Q)
The variational form (12.28) corresponds to a linear system of equations

Ax = b, with a;; = (¢4, ¢:), x; = U(N;), and b; = (f, ¢;), with ¢;(x) the
basis function associated with the node ;.

12.3 Linear partial differential equations
The abstract problem
We express a linear partial differential equation as the abstract problem,
Lu=f, x€(, (12.29)
with boundary conditions,
Bu=g, =zel, (12.30)
for which we can derive a variational formulation: find v € V' such that,
a(u,v) = L(v), wveV, (12.31)

with a : V x V — R a bilinear form, that is a function which is linear in
both arguments, and L : V — R a linear form.
In a Galerkin method we seek an approximation U € V}, such that

a(U,v) = L(v), v €V, (12.32)

with V, € V a finite dimensional subspace, which in the case of a finite
element method is a polynomial space.

Energy error estimation

A bilinear form a(-,-) on the Hilbert space V' is symmetric, if

a(v,w) = a(w,v), v,w eV, (12.33)
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and coercive, or elliptic, if
a(v,v) > ¢c|jvl|, vevV, (12.34)

with ¢ > 0. A symmetric and elliptic bilinear form defines an inner product
on V', which induces a norm which we refer to as the energy norm,

|w|e = a(w,w)"?. (12.35)

The Galerkin approximation is optimal in the norm, since by Galerkin

orthogonality,
alu—Uv)=0, veEV, (12.36)

we have that

lu—Ull%x = alu—Uu—uy) =alu—Uu—v)+alu—Uv—u)
= a(u—-Uu—v) <lu=Ulglu—-v|g,

so that
lu—Ullg <l|lu—2|g, v€EV. (12.37)



