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Chapter 2

Vector spaces

In this chapter we introduce the notion of a vector space, which is fundamen-
tal for the approximation methods that we will later develop, in particular
in the form of an orthogonal projection onto a subspace representing the
best possible approximation in that subspace.

Any vector in an vector space can be expressed in terms of a set of basis
vectors, and we here introduce the process of constructing an orthonormal
basis from an arbitrary basis, which provides the foundation for a range of
matrix factorization methods we will use to solve systems of linear equations
and eigenvalue problems.

We use the Euclidian space Rn as an illustrative example, but the con-
cept of a vector space is much more general than that, forming the basis
for the theory of function approximation and partial di↵erential equations.

2.1 Vector spaces

Vector space

We denote the elements of R, the real numbers, as scalars, and a vector
space, or linear space, is then defined by a set V which is closed under two
basic operations on V , vector addition and scalar multiplication,

(i) x, y 2 V ) x+ y 2 V,

(ii) x 2 V,↵ 2 R ) ↵x 2 V ,

satisfying the expected algebraic rules for addition and multiplication. A
vector space defined over R is a real vector space. More generally, we can
define vector spaces over the complex numbers C, or any algebraic field F.
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12 CHAPTER 2. VECTOR SPACES

The Euclidian space Rn

The Euclidian space Rn is a vector space consisting of the set of column
vectors

x = (x1, ..., xn

)T =

2

64
x1
...
x
n

3

75 , (2.1)

where (x1, ..., xn

) is a row vector with x
j

2 R, and where vT denotes
the transpose of the vector v. In Rn the basic operations are defined by
component-wise addition and multiplication, such that,

(i) x+ y = (x1 + y1, ..., xn

+ y
n

)T ,

(ii) ↵x = (↵x1, ...,↵xn

)T .

A geometrical interpretation of a vector space will prove to be useful.
For example, the vector space R2 can be interpreted as the vector arrows
in the Euclidian plane, defined by: (i) a direction with respect to a fixed
point (origo), and (ii) a magnitude (the Euclidian length).

x = (x1,x2)T
 

origo = (0,0)T
 

αx = (αx1,αx2)T
 

x 

y 

x+y 

Figure 2.1: Geometrical interpretation of a vector x = (x1, x2)T in the
Euclidian plane R2 (left), scalar multiplication ↵x with ↵ = 0.5 (center),
and vector addition x+ y (right).

Vector subspace

A subspace of a vector space V is a subset S ⇢ V , such that S together
with the basic operations in V defines a vector space in its own right. For
example, the planes

S1 = {x 2 R3 : x3 = 0}, (2.2)
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S2 = {x 2 R3 : ax1 + bx2 + cx3 = 0 : a, b, c 2 R}, (2.3)

are both subspaces of R3, see Figure 2.2.

x3 

x2 

x1 

S1 

S2 

R3
 

e1 

e2 

e3 

Figure 2.2: Illustration of the Euclidian space R3 with the three coordinate
axes in the directions of the standard basis vectors e1, e2, e3, and two sub-
spaces S1 and S2, where S1 is the x1x2-plane and S2 a generic plane in R3

that includes origo, with the indicated planes extending to infinity.

Basis

For a set of vectors {v
i

}n
i=1 in V , we refer to the sum

P
n

i=1 ↵i

v
i

, with
↵
i

2 R, as a linear combination of the set of vectors v
i

. All possible linear
combinations of the set of vectors v

i

define a subspace,

S = {v 2 V : v =
nX

i=1

↵
i

v
i

, ↵
i

2 R}, (2.4)

and we say that the vector space S is spanned by the set of vectors {v
i

}n
i=1,

denoted by S = span{v
i

}n
i=1 = hv1, ..., vni.

We say that the set {v
i

}n
i=1 is linearly independent, if

nX

i=1

↵
i

v
i

= 0 ) ↵
i

= 0, 8i = 1, ..., n. (2.5)
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A linearly independent set {v
i

}n
i=1 is a basis for the vector space V , if all

v 2 V can be expressed as a linear combination of the vectors in the basis,

v =
nX

i=1

↵
i

v
i

, (2.6)

where ↵
i

2 R are the coordinates of v with respect to the basis {v
i

}n
i=1. The

dimension of V , dim(V ), is the number of vectors in any basis for V , and
any basis of V has the same dimension.

The standard basis {e1, ..., en} = {(1, 0, ..., 0)T , ..., (0, ..., 0, 1)T} spans
Rn, such that any x 2 Rn can be expressed as

x =
nX

i=1

x
i

e
i

, (2.7)

where dimRn = n, and we refer to the coordinates x
i

2 R in the standard
basis as Cartesian coordinates.

Norm

To measure the size of vectors we introduce the norm k · k of a vector in
the vector space V . A norm must satisfy the following conditions:

(i) kxk � 0, 8x 2 V, and kxk = 0 , x = 0,

(ii) k↵xk = |↵|kxk, 8x 2 V,↵ 2 R,

(iii) kx+ yk  kxk+ kyk, 8x, y 2 V ,

where (iii) is the triangle inequality.
A normed vector space is a vector space on which a norm is defined. For

example, Rn is a normed vector space on which the l2-norm is defined,

kxk2 =
 

nX

i=1

x2
i

!1/2

= (x2
1 + ...+ x2

n

)1/2, (2.8)

which corresponds to the Euclidian length of the vector x.

Inner product

A function (·, ·) : V ⇥ V ! R on the vector space V is an inner product if

(i) (↵x+ �y, z) = ↵(x, z) + �(y, z),
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(ii) (x,↵y + �z) = ↵(x, y) + �(x, z),

(iii) (x, y) = (y, x),

(iv) (x, x) � 0, 8x 2 V, and (x, x) = 0 , x = 0,

for all x, y, z 2 V and ↵, � 2 R.
An inner product space is a vector space on which an inner product is

defined, and each inner product induces an associated norm by

kxk = (x, x)1/2, (2.9)

and thus an inner product space is also a normed space. An inner product
and its associated norm satisfies the Cauchy-Schwarz inequality.

Theorem 1 (Cauchy-Schwarz inequality). For k · k the associated norm of
the inner product (·, ·) in the vector space V , we have that

|(x, y)|  kxkkyk, 8x, y 2 V. (2.10)

Proof. Let s 2 R so that

0  kx+ syk2 = (x+ sy, x+ sy) = kxk2 + 2s(x, y) + s2kyk2,
and then choose s as the minimizer of the right hand side of the inequality,
that is, s = �(x, y)/kyk2, which proves the theorem.

The Euclidian space Rn is an inner product space with the Euclidian
inner product, also referred to as scalar product or dot product, defined by

(x, y)2 = x · y = x1y1 + ...+ x
n

y
n

, (2.11)

which induces the l2-norm kxk2 = (x, x)1/22 . In Rn we often drop the sub-
script for the Euclidian inner product and norm, with the understanding
that (x, y) = (x, y)2 and kxk = kxk2.

We can also define general l
p

-norms as

kxk
p

=

 
nX

i=1

|x
i

|p
!1/p

, (2.12)

for 1  p < 1. In Figure 2.3 we illustrate the l1-norm,

kxk1 = |x1|+ ...+ |x
n

|, (2.13)

and the l1-norm, defined by

kxk1 = max
1pn

|x
i

|. (2.14)

In fact, the Cauchy-Schwarz inequality is a special case of the Hölder
inequality for general l

p

-norms in Rn.
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IIxII1=1	 IIxII2=1	 IIxII∞=1	

Figure 2.3: Illustration of l
p

-norms in Rn through the unit circles kxk
p

= 1,
for p = 1, 2,1 (from left to right).

Theorem 2 (Hölder inequality). For 1  p, q  1 and 1/p+ 1/q = 1,

|(x, y)|  kxk
p

kyk
q

, 8x, y 2 Rn. (2.15)

In particular, we have that

|(x, y)|  kxk1kyk1, 8x, y 2 Rn. (2.16)

2.2 Orthogonal projections

Orthogonality

An inner product space provides a means to generalize the concept of mea-
suring angles between vectors, from the Euclidian plane to general vector
spaces, where in particular two vectors x and y are orthogonal if (x, y) = 0.

If a vector v 2 V is orthogonal to all vectors s in a subspace S ⇢ V ,
that is

(v, s) = 0, 8s 2 S,

then v is said to be orthogonal to S. For example, the vector (0, 0, 1)T 2 R3

is orthogonal to the subspace spanned in R3 by the vectors (1, 0, 0)T and
(0, 1, 0)T .

We denote by S? the orthogonal complement of S in V , defined as

S? = {v 2 V : (v, s) = 0, 8s 2 S}. (2.17)

The only vector in V that is an element of both S and S? is the zero vector,
and any vector v 2 V can be decomposed into two orthogonal components
s1 2 S and s2 2 S?, such that v = s1 + s2, where the dimension of S? is
equal to the codimension of the subspace S in V , that is

dim(S?) = dim(V )� dim(S). (2.18)
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Orthogonal projection

x 

y 

βy 

x-βy 

Figure 2.4: Illustration in the Euclidian plane R2 of �y, the projection of
the vector x in the direction of the vector y, with x� �y orthogonal to y.

The orthogonal projection of a vector x in the direction of another vector
y, is the vector �y with � = (x, y)/kyk2, such that the di↵erence between
the two vectors is orthogonal to y, that is

(x� �y, y) = 0. (2.19)

Further, the orthogonal projection of a vector v 2 V onto the subspace
S ⇢ V , is a vector v

s

2 S such that

(v � v
s

, s) = 0, 8s 2 S, (2.20)

where v
s

represents the best approximation of v in the subspace S ⇢ V ,
with respect to the norm induced by the inner product of V .

Theorem 3 (Best approximation property).

kv � v
s

k  kv � sk, 8s 2 S (2.21)

Proof. For any vector s 2 S we have that

kv�v
s

k2 = (v�v
s

, v�v
s

) = (v�v
s

, v�s)+(v�v
s

, s�v
s

) = (v�v
s

, v�s),
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since (v� v
s

, s� v
s

) = 0, by (2.20) and the fact that s� v
s

2 S. The result
then follows from Cauchy-Schwarz inequality and division of both sides by
kv � v

s

k,

(v � v
s

, v � s)  kv � v
s

kkv � sk ) kv � v
s

k  kv � sk.

To emphasize the geometric properties of a inner product space V , it is
sometimes useful to visualize a subspace S as a plane in R3, see Figure 2.5.

v 

vs 

S 

s 

V 

v-vs 

vs-s 

v-s 

Figure 2.5: The orthogonal projection v
s

2 S is the best approximation of
v 2 V in the subspace S ⇢ V .

Orthonormal basis

We refer to a set of non-zero vectors {v
i

}n
i=1 in the inner product space V

as an orthogonal set, if all vectors v
i

are pairwise orthogonal, that is if

(v
i

, v
j

) = 0, 8i 6= j. (2.22)
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If {v
i

}n
i=1 is an orthogonal set in the subspace S ⇢ V , and dim(S) = n,

then {v
i

}n
i=1 is a basis for S, that is all v

s

2 S can be expressed as

v
s

= ↵1v1 + ...+ ↵
n

v
n

=
nX

i=1

↵
i

v
i

, (2.23)

with the coordinate ↵
i

= (v
s

, v
i

)/kv
i

k2 being the projection of v
s

in the
direction of the basis vector v

i

.
If Q = {q

i

}n
i=1 is an orthogonal set, and kq

i

k = 1 for all i, we say that
Q is an orthonormal set. Let Q be an orthonormal basis for S, then

v
s

= (v
s

, q1)q1 + ...+ (v
s

, q
n

)q
n

=
nX

i=1

(v
s

, q
i

)q
i

, 8v
s

2 S, (2.24)

where the coordinate (v
s

, q
i

) is the projection of the vector v
s

onto the basis
vector q

i

. An arbitrary vector v 2 V can be expressed as

v = r +
nX

i=1

(v, q
i

)q
i

, (2.25)

where the vector r = v�Pn

i=1(v, qi)qi is orthogonal to S, that is r 2 S?, a
fact that we will use repeatedly.

Thus the vector r 2 V satisfies the orthogonality condition

(r, s) = 0, 8s 2 S, (2.26)

and from (2.21) we know that r is the vector in V that corresponds to the
minimal projection error of the vector v onto S with respect to the norm
in V . We will refer to the vector r as the residual.

2.3 Excercises

Problem 1. Prove that the plane S1 is a subspace of R3, where S1 =
{x 2 R3 : x3 = 0}. Under what condition is the plane S2 = {x 2 R3 :
ax1 + bx2 + cx3 + d = 0 : a, b, c, d 2 R} a subspace of R3?

Problem 2. Prove that the standard basis in Rn is linearly independent.

Problem 3. Prove that the Euclidian l2-norm k · k2 is a norm.

Problem 4. Prove that the scalar product (·, ·)2 is an inner product.

Problem 5. Prove that k · k2 is induced by the inner product (·, ·)2.
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Problem 6. Prove that |(x, y)|  kxk1kyk1, 8x, y 2 Rn.

Problem 7. Prove that the vector (0, 0, 1)T 2 R3 is orthogonal to the sub-
space spanned in R3 by the vectors (1, 0, 0)T and (0, 1, 0)T .

Problem 8. Let {q
i

}n
i=1 be an orthonormal basis for the subspace S ⇢ V ,

prove that r 2 S?, with r = v �Pn

i=1(v, qi)qi.

Problem 9. Let {w
i

}n
i=1 be a basis for the subspace S ⇢ V , so that all

s 2 S can be expressed as s =
P

n

i=1 ↵i

w
i

.

(a) Prove that (2.20) is equivalent to finding the vector v
s

2 S that satisfies
the n equations of the form

(v � v
s

, w
i

) = 0, i = 1, ..., n.

(b) Since v
s

2 S, we have that v
s

=
P

n

j=1 �j

w
j

. Prove that (2.20) is
equivalent to finding the set of coordinates �

i

that satisfies

nX

j=1

�
j

(w
j

, w
i

) = (v, w
i

), i = 1, ..., n.

(c) Let {q
i

}n
i=1 be an orthonormal basis for the subspace S ⇢ V , so that we

can express v
s

=
P

n

j=1 �j

q
j

. Use the result in (b) to prove that (2.20) is
equivalent to the condition that the coordinates are given as �

j

= (v, q
j

).



Chapter 3

Linear transformations and
matrices

Linear transformations, or linear maps, between vector spaces represent an
important class of functions, in their own right, but also as approximations
of more general nonlinear transformations.

A linear transformation acting on a Euclidian vector can be represented
by a matrix. Many of the concepts we introduce in this chapter generalize
to linear transformations acting on functions in infinite dimensional spaces,
for example integral and di↵erential operators, which are fundamental for
the study of di↵erential equations.

3.1 Matrix algebra

Linear transformation as a matrix

A function f : Rn ! Rm defines a linear transformation, if

(i) f(x+ z) = f(x) + f(z),

(ii) f(↵x) = ↵f(x),

for all x, z 2 Rn and ↵ 2 R. In the standard basis {e1, ..., en} we can express
the ith component of the vector y = f(x) 2 Rm as

y
i

= f
i

(x) = f
i

(
nX

j=1

x
j

e
j

) =
nX

j=1

x
j

f
i

(e
j

),

21
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where f
i

: Rn ! R for all i = 1, ...,m. In component form, we write this as

y1 = a11x1 + ...+ a1nxn

...
y
m

= a
m1x1 + ...+ a

mn

x
n

(3.1)

with a
ij

= f
i

(e
j

). That is y = Ax, where A is an m⇥ n matrix,

A =

2

64
a11 · · · a1n
...

. . .
...

a
m1 · · · a

mn

3

75 . (3.2)

The set of real valued m ⇥ n matrices defines a vector space Rm⇥n,
by the basic operations of (i) component-wise matrix addition, and (ii)
component-wise scalar multiplication, that is

A+B =

2

64
a11 + b11 · · · a1n + b1n

...
. . .

...
a
m1 + b

m1 · · · a
mn

+ b
mn

3

75 , ↵A =

2

64
↵a11 · · · ↵a1n
...

. . .
...

↵a
m1 · · · ↵a

mn

3

75 ,

with A,B 2 Rm⇥n and ↵ 2 R.

Matrix-vector product

A matrix A 2 Rm⇥n defines a linear map x 7! Ax, by the operations of
matrix-vector product and component-wise scalar multiplication,

A(x+ y) = Ax+ Ay, x, y 2 Rn,

A(↵x) = ↵Ax, x 2 Rn,↵ 2 R.

In index notation we write a vector b = (b
i

), and a matrix A = (a
ij

),
with i the row index and j is the column index. For an m ⇥ n matrix A,
and x an n-dimensional column vector, we define the matrix-vector product
b = Ax to be the m-dimensional column vector b = (b

i

), such that

b
i

=
nX

j=1

a
ij

x
j

, i = 1, ...,m. (3.3)

With a
j

the jth column of A, an m-dimensional column vector, we can
express the matrix-vector product as a linear combination of the set of
column vectors {a

j

}n
j=1,

b = Ax =
nX

j=1

x
j

a
j

, (3.4)
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or in matrix form
2

66664
b

3

77775
=

2

66664
a1 a2 · · · a

n

3

77775

2

6664

x1

x2
...
x
n

3

7775
= x1

2

66664
a1

3

77775
+ x2

2

66664
a2

3

77775
+ ...+ x

n

2

66664
a
n

3

77775
.

The vector space spanned by {a
j

}n
j=1 is the column space, or range, of

the matrix A, so that range(A) = span{a
j

}n
j=1. The null space, or kernel,

of an m ⇥ n matrix A is the set of vectors x 2 Rn such that Ax = 0, with
0 the zero vector in Rm, that is null(A) = {x 2 Rn : Ax = 0}.

The dimension of the column space is the column rank of the matrix A,
rank(A). We note that the column rank is equal to the row rank, corre-
sponding to the space spanned by the row vectors of A, and the maximal
rank of an m⇥ n matrix is min(m,n), which we refer to as full rank.

Matrix-matrix product

The matrix-matrix product B = AC is a matrix in Rl⇥n, defined for two
matrices A 2 Rl⇥m and C 2 Rm⇥n, as

b
ij

=
mX

k=1

a
ik

c
kj

, (3.5)

with B = (b
ij

), A = (a
ik

) and C = (c
kj

).
We sometimes omit the summation sign and use the Einstein convention,

where repeated indices imply summation over those same indices, so that
we express the matrix-matrix product (3.5) simply as b

ij

= a
ik

c
kj

.
Similarly as for the matrix-vector product, we may interpret the columns

b
j

of the matrix-matrix product B as a linear combination of the columns
a
k

with coe�cients c
kj

b
j

= Ac
j

=
mX

k=1

c
kj

a
k

, (3.6)

or in matrix form
2

66664
b1 b2 · · · b

n

3

77775
=

2

66664
a1 a2 · · · a

m

3

77775

2

4 c1 c2 · · · c
n

3

5 .
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The composition f � g(x) = f(g(x)), of two linear transformations f :
Rn ! Rm and g : Rm ! Rl, with associated matrices A 2 Rm⇥n and
C 2 Rl⇥w, corresponds to the matrix-matrix product AC acting on x 2 Rn.

Matrix transpose and the inner and outer products

The transpose (or adjoint) of an m ⇥ n matrix A = (a
ij

) is defined as the
matrix AT = (a

ji

), with the column and row indices reversed.
Using the matrix transpose, the inner product of two vectors v, w 2 Rn

can be expressed in terms of a matrix-matrix product vTw, as

(v, w) = vTw =
⇥
v1 · · · v

n

⇤

2

666664

w1

...

w
m

3

777775
= v1w1 + ...+ v

n

w
n

. (3.7)

Similarly, the outer product, or tensor product, of two vectors v, w 2 Rn,
denoted by v ⌦ w, is defined as the m ⇥ n matrix corresponding to the
matrix-matrix product vwT , that is

v ⌦ w = vwT =

2

666664

v1

...

v
m

3

777775

⇥
w1 · · · w

n

⇤
=

2

666664

v1w1 · · · v1wn

...
...

v
m

v1 v
m

w
n

3

777775
.

In tensor notation we can express the inner and the outer products as
(v, w) = v

i

w
i

and v ⌦ w = v
i

w
j

, respectively.
The transpose has the property that (AB)T = BTAT , and thus satisfies

the equation (Ax, y) = (x,ATy), for any x 2 Rn, y 2 Rm and A 2 Rm⇥n,
which follows from the definition of the inner product in Euclidian vector
spaces, since

(Ax, y) = (Ax)Ty = xTATy = (x,ATy). (3.8)

A square matrix A 2 Rn⇥n is said to be symmetric (or self-adjoint)
if A = AT , so that (Ax, y) = (x,Ay). If in addition (Ax, x) > 0 for all
non-zero x 2 Rn, we say that A is a symmetric positive definite matrix. A
square matrix is said to be normal if ATA = AAT .
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Matrix norms

To measure the size of a matrix, we first introduce the Frobenius norm,
corresponding to the l2-norm of the matrix A interpreted as an mn-vector,
that is

kAk
F

=

 
mX

i=1

nX

j=1

|a
ij

|2
!1/2

. (3.9)

The Frobenius norm is induced by the following inner product over the
space Rm⇥n,

(A,B) = tr(ATB), (3.10)

with the trace of a square n⇥ n matrix C = (c
ij

) defined by

tr(C) =
nX

i=1

c
ii

. (3.11)

Figure 3.1: Illustration of the map x 7! Ax; of the unit circle kxk2 = 1
(left) to the ellipse Ax (right), corresponding to the matrix A in (3.13).

Matrix norms for A 2 Rm⇥n are also induced by the respective l
p

-norms
on Rm and Rn, in the form

kAk
p

= sup
x2Rn

x 6=0

kAxk
p

kxk
p

= sup
x2Rn

kxkp=1

kAxk
p

. (3.12)

The last equality follows from the definition of a norm, and shows that
the induced matrix norm can be defined in terms of its map of unit vectors,
which we illustrate in Figure 3.1 for the matrix

A =


1 2
0 2

�
. (3.13)
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We further have the following inequality,

kAxk
p

 kAk
p

kxk
p

, (3.14)

which follows from (3.12).

Determinant

The determinant of a square matrix A is denoted det(A) or |A|. For a 2⇥2
matrix we have the explicit formula

det(A) =

����
a b
c d

���� = ad� bc. (3.15)

For example, the determinant of the matrix A in (3.13) is computed as
det(A) = 1 · 2� 2 · 0 = 2.

The formula for the determinant is extended to a 3⇥ 3 matrix by

det(A) =

������

a b c
d e f
g h i

������
= a

����
e f
h i

����� b

����
d f
g i

����+ c

����
d e
g h

����

= a(ei� fh)� b(di� fg) + c(dh� eg), (3.16)

and by recursion this formula can be generalized to any square matrix.
For a 2 ⇥ 2 matrix the absolute value of the determinant is equal to

the area of the parallelogram that represents the image of the unit square
under the map x 7! Ax, and similarly for a 3 ⇥ 3 matrix the volume of
the parallelepiped representing the mapped unit cube. More generally, the
absolute value of the determinant det(A) represents a scale factor of the
linear transformation A.

Matrix inverse

If the column vectors {a
j

}n
j=1 of a square n ⇥ n matrix A form a basis for

Rn, then all vectors b 2 Rn can be expressed as b = Ax, where the vector
x 2 Rn holds the coordinates of b in the basis {a

j

}n
j=1.

In particular, all x 2 Rn can be expressed as x = Ix, where I is the
square n ⇥ n identity matrix in Rn, taking the standard basis as column
vectors,

x = Ix =

2

66664
e1 e2 · · · e

n

3

77775

2

6664

x1

x2
...
x
n

3

7775
=

2

6664

1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 0 1

3

7775

2

6664

x1

x2
...
x
n

3

7775
,
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(1,0)	

(0,1)	

(1,0)	

(0,1)	

(2,2)	 (3,2)	

Figure 3.2: The map x 7! Ax (right) of the unit square (left), for the matrix
A in (3.13), with the corresponding area given as | det(A)| = 2.

with the vector entries x
i

corresponding to the Cartesian coordinates of the
vector x.

A square matrix A 2 Rn⇥n is invertible, or non-singular, if there exists
an inverse matrix A�1 2 Rn⇥n, such that

A�1A = AA�1 = I, (3.17)

which also means that (A�1)�1 = A. Further, for two n⇥n matrices A and
B, we have the property that (AB)�1 = B�1A�1.

Theorem 4 (Inverse matrix). For a square matrix A 2 Rn⇥n, the following
statements are equivalent:

(i) A has an inverse A�1,

(ii) det(A) 6= 0,

(iii) rank(A) = n,

(iv) range(A) = Rn

(v) null(A) = {0}.

The matrix inverse is unique. To see this, assume that there exist two
matrices B1 and B2 such that AB1 = AB2 = I; which by linearity gives
that A(B1 � B2) = 0, but since null(A) = {0} we have that B1 = B2.
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3.2 Orthogonal projectors

Orthogonal matrix

A square matrix Q 2 Rn⇥n is ortogonal, or unitary, if QT = Q�1. With q
j

the columns of Q we thus have that QTQ = I, or in matrix form,

2

6664

q1
q2
...
q
n

3

7775

2

66664
q1 q2 · · · q

n

3

77775
=

2

6664

1
1

. . .
1

3

7775
,

so that the columns q
j

form an orthonormal basis for Rn.
Multiplication by an orthogonal matrix preserves the angle between two

vectors x, y 2 Rn, since

(Qx,Qy) = (Qx)TQy = xTQTQy = xTy = (x, y), (3.18)

and thus also the length of a vector,

kQxk = (Qx,Qx)1/2 = (x, x)1/2 = kxk. (3.19)

For example, counter-clockwise rotation by an angle ✓ in R2, takes the
form of multiplication by an orthogonal matrix,

Q
rot

=


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
, (3.20)

whereas reflection in the line with a slope given by the angle ✓, corresponds
to multiplication by the orthogonal matrix,

Q
ref

=


cos(2✓) sin(2✓)
sin(2✓) � cos(2✓)

�
, (3.21)

where we note the general fact that for a rotation det(Q
rot

) = 1, and for a
reflection det(Q

ref

) = �1.

Orthogonal projector

A projection matrix, or projector, is a square matrix P such that

P 2 = PP = P. (3.22)
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It follows that
Pv = v, (3.23)

for all vectors v 2 range(P ), since v is of the form v = Px for some x, and
thus Pv = P 2x = Px = v. For v /2 range(P ) we have that P (Pv � v) =
P 2v � Pv = 0, so that the projection error Pv � v 2 null(P ).

The matrix I�P is also a projector, the complementary projector to P ,
since (I � P )2 = I � 2P + P 2 = I � P . The range and null space of the
two projectors are related as

range(I � P ) = null(P ), (3.24)

and
range(P ) = null(I � P ), (3.25)

so that P and I � P separates Rn into the two subspaces S1 = range(P )
and S2 = range(I � P ), since the only v 2 range(P ) \ range(I � P ) is the
zero vector; v = v � Pv = (I � P )v = {0}.

x 

y 

Pyx 

P⊥yx 

Pr
yx 

H 

Figure 3.3: The projector P
y

x of a vector x in the direction of another
vector y, its orthogonal complement P?yx, and P r

y

x, the reflector of x in
the hyperplane H defined by y as a normal vector.

If the two subspaces S1 and S2 are orthogonal, we say that P is an
orthogonal projector. This is equivalent to the condition P = P T , since the
inner product between two vectors in S1 and S2 then vanish,

(Px, (I � P )y) = (Px)T (I � P )y = xTP T (I � P )y = xT (P � P 2)y = 0,
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and if P is an orthogonal projector, so is I � P .
For example, the orthogonal projection of one vector x in the direc-

tion of another vector y, expressed in (2.19), corresponds to an orthogonal
projector P

y

, by

(x, y)y

kyk2 =
y(y, x)

kyk2 =
y(yTx)

kyk2 =
yyT

kyk2x = P
y

x. (3.26)

Similarly we can define the orthogonal complement P?yx, and P r

y

x, the
reflection of x in the hyperplane H defined by y as a normal vector, so that

P
y

=
yyT

kyk2 , P?y = I � yyT

kyk2 , P r

y

= I � 2
yyT

kyk2 , (3.27)

defines orthogonal projectors, where we note that a hyperplane is a subspace
in V of codimension 1.

3.3 Exercises

Problem 10. Formulate the algorithms for matrix-vector and matrix-matrix
products in pseudo code.

Problem 11. Prove the equivalence of the definitions of the induced matrix
norm, defined by

kAk
p

= sup
x2Rn

x 6=0

kAxk
p

kxk
p

= sup
x2Rn

kxkp=1

kAxk
p

. (3.28)

Problem 12. For A 2 Rm⇥l, B 2 Rl⇥n, prove that (AB)T = BTAT .

Problem 13. For A,B 2 Rn⇥n, prove that (AB)�1 = B�1A�1.

Problem 14. Prove the inequality (3.14).

Problem 15. Prove that an orthogonal matrix is normal.

Problem 16. Show that the matrices A and B are orthogonal and com-
pute their determinants. Which matrix represents a rotation and reflection,
respectively?

A =


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
B =


cos(✓) sin(✓)
sin(✓) � cos(✓)

�
(3.29)
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Problem 17. For P a projector, prove that range(I � P ) = null(P ), and
that range(P ) = null(I � P ).

Problem 18. For the vector y = (1, 0)T , compute the action of the projec-
tors P

y

, P?y, P r

y

on a general vector x = (x1, x2)T .





Chapter 4

Linear operators in Rn

In this chapter we give some examples of linear operators in the vector
space Rn, used extensively in various fields, including computer graphics,
robotics, computer vision, image processing, and computer aided design.

We also meet di↵erential equations for the first time, in the form of
matrix operators acting on discrete approximations of functions, defined by
their values at the nodes of a grid.

4.1 Di↵erential and integral operators

Di↵erence and summation matrices

Subdivide the interval [0, 1] into a structured grid T h with n intervals and
n+ 1 nodes x

i

, such that 0 = x0 < x1 < x2 < ... < x
n

= 1, with a constant
interval length, or grid size, h = x

i

� x
i�1 for all i, so that x

i

= x0 + ih.

For each x = x
i

, we may approximate the primitive function F (x) of a
function f(x), expressed here as a definite integral with f(0) = 0, by

F (x
i

) =

Z
xi

0

f(s)ds ⇡
iX

k=1

f(x
k

)h ⌘ F
h

(x
i

), (4.1)

which defines a function F
h

(x
i

) ⇡ F (x
i

) for all nodes x
i

in the subdivision,
based on Riemann sums.

The function F
h

defines a linear transformation L
h

of the vector of
sampled function values at the nodes y = (f(x1), ..., f(xn

))T , which can

33
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be expressed by the following matrix equation,

L
h

y =

2

6664

h 0 · · · 0
h h · · · 0
...

. . .
...

h h · · · h

3

7775

2

6664

f(x1)
f(x2)

...
f(x

n

)

3

7775
=

2

6664

f(x1)h
f(x1)h+ f(x2)h

...P
n

k=1 f(xk

)h

3

7775
, (4.2)

where L
h

is a summation matrix, with an associated inverse L�1
h

,

L
h

= h

2

6664

1 0 · · · 0
1 1 · · · 0
...

. . .
...

1 1 · · · 1

3

7775
) L�1

h

= h�1

2

6664

1 0 · · · 0
�1 1 · · · 0
...

. . .
...

0 · · · �1 1

3

7775
. (4.3)

The inverse matrix L�1
h

corresponds to a di↵erence matrix over the same
subdivision T h, approximating the slope (derivative) of the function f(x).
To see this, multiply the matrix L�1

h

to y = (f(x
i

)),

L�1
h

y = h�1

2

6664

1 0 · · · 0
�1 1 · · · 0
...

. . .
...

0 · · · �1 1

3

7775

2

6664

f(x1)
f(x2)

...
f(x

n

)

3

7775
=

2

6664

(f(x1)� f(x0))/h
(f(x2)� f(x1))/h

...
(f(x

n

)� f(x
n�1))/h

3

7775
,

where we recall that f(x0) = f(0) = 0.

f(x)	

x1	 x2	 x3	 x4	x0=0	 xn=1	 x	 x	

f(x)	

x1	 x2	 x3	 x4	 xn=1	x0=0	

Figure 4.1: Approximation of the integral of a function f(x) in the form of
Riemann sums (left), and approximation of the derivative of f(x) by slopes
computed from function values in the nodes x

i

(right), on a subdivision of
[0, 1] with interval length h.
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As the interval length h ! 0, the summation and di↵erence matrices
converge to integral and di↵erential operators, such that for each x 2 (0, 1),

L
h

y !
Z

x

0

f(s)ds, L�1
h

y ! f 0(x). (4.4)

Further, we have for the product of the two matrices that

y = L
h

L�1
h

y ! f(x) =

Z
x

a

f 0(s)ds, (4.5)

as h ! 0, which corresponds to the Fundamental theorem of Calculus.

Di↵erence operators

The matrix L�1
h

in (4.3) corresponds to a backward di↵erence operator D�
h

,
and similarly we can define a forward di↵erence operator D+

h

, by

D�
h

= h�1

2

666664

1 0 0 · · · 0
�1 1 0 · · · 0
...

. . .
...

0 · · · �1 1 0
0 · · · 0 �1 1

3

777775
, D+

h

= h�1

2

666664

�1 1 0 · · · 0
0 �1 1 · · · 0
...

. . .
...

0 · · · 0 �1 1
0 · · · 0 0 �1

3

777775
.

The matrix-matrix product D+
h

D�
h

takes the form,

D+
h

D�
h

= h�2

2

666664

�1 1 0 · · · 0
1 �2 1 · · · 0
...

. . .
...

0 · · · 1 �2 1
0 · · · 0 1 �2

3

777775
, (4.6)

which corresponds to an approximation of a second order di↵erential oper-
ator. The matrix A = �D+

h

D�
h

is diagonally dominant, that is

|a
ii

| �
X

j 6=i

|a
ij

|, (4.7)

and symmetric positive definite, since

xTAx = ...+ x
i

(�x
i�1 + 2x

i

� x
i+1) + ...+ x

n

(�x
n�1 + 2x

n

)

= ...� x
i

x
i�1 + 2x2

i

� x
i

x
i+1 � x

i+1xi

+ ...� x
n�1xn

+ 2x2
n

= ...+ (x
i

� x
i�1)

2 + (x
i+1 � x

i

)2 + ...+ x2
n

> 0,

for any non-zero vector x.
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The finite di↵erence method

For a vector y = (u(x
i

)), the ith row of the matrix D+
h

D�
h

corresponds to a
finite di↵erence stencil, with u(x

i

) function values sampled at the nodes x
i

of the structured grid representing the subdivision of the interval I = (0, 1),

[(D+
h

D�
h

)y]
i

=
u(x

i+1)� 2u(x
i

) + u(x
i�1)

h2

=

u(x
i+1)� u(x

i

)

h
� u(x

i

)� u(x
i�1)

h
h

.

Similarly, the di↵erence operatorsD�
h

andD+
h

correspond to finite di↵erence
stencils over the grid, and we have that for x 2 I,

(D+
h

D�
h

)y ! u00(x), (D�
h

)y ! u0(x), (D+
h

)y ! u0(x), (4.8)

as the grid size h ! 0.

-1	 2	 -1	

-1	 -1	

-1	

-1	

6	
-1	

-1	
-1	

-1	

-1	-1	 4	

Figure 4.2: Examples of finite di↵erence stencils corresponding to the di↵er-
ence operator �(D+

h

D�
h

) over structured grids in R (lower left), R2 (right)
and R3 (upper left).

The finite di↵erence method for solving di↵erential equations is based
on approximation of di↵erential operators by such di↵erence stencils over a
grid. We can thus, for example, approximate the di↵erential equation

�u00(x) + u(x) = f(x), (4.9)

by the matrix equation

�(D+
h

D�
h

)y + (D�
h

)y = b, (4.10)

with b
i

= (f(x
i

)). The finite di↵erence method extends to multiple dimen-
sions, where the di↵erence stencils are defined over structured (Cartesian)
grids in R2 or R3, see Figure 4.2.
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Solution of di↵erential equations

Since the second order di↵erence matrix A = �(D+
h

D�
h

) is symmetric posi-
tive definite, there exists a unique inverse A�1. For example, in the case of
n = 5 and the di↵erence matrix A below, we have that

A = 1/h2

2

66664

2 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 2

3

77775
) A�1 = h2/6

2

66664

5 4 3 2 1
4 8 6 4 2
3 6 9 6 3
2 4 6 8 4
1 2 3 4 5

3

77775
.

The matrix A�1 corresponds to a symmetric integral (summation) oper-
ator, where the matrix elements decay with the distance from the diagonal.
The integral operator has the property that when multiplied to a vector
y = (y

i

), each element y
i

is transformed into an average of all the vector
elements of y, with most weight given to the elements close to y

i

.
Further, for y = (u(x

i

)) and b = (f(x
i

)), the solution to the di↵erential
equation

�u00(x) = f(x) (4.11)

can be approximated by
y = A�1b. (4.12)

We can thus compute approximate solutions for any function f(x) on
the right hand side of the equation (4.11). Although, we note that while
the n ⇥ n matrix A is sparse, with only few non-zero elements near the
diagonal, the inverse A�1 is a dense matrix without zero elements.

In general the dense matrix A�1 has a much larger memory footprint
than the sparse matrix A. Therefore, for large matrices, it may be impos-
sible to hold the matrix A�1 in memory, so that instead iterative solution
methods must be used without the explicit construction of the matrix A�1.

4.2 Projective geometry

A�ne transformations

An a�ne transformation, or a�ne map, is a linear transformation composed
with a translation, corresponding to a multiplication by a matrixA, followed
by addition of a position vector b, that is

x 7! Ax+ b. (4.13)
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For example, an object defined by a set of vectors in R2 can be scaled
by a diagonal matrix, or rotated by a Givens rotation matrix,

A
rot

=


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
, (4.14)

with ✓ a counter-clockwise rotation angle.
Any triangle in the Euclidian plane R2 is related to each other through

an invertible a�ne map. There also exists a�ne maps from R2 to a surface
(manifold) in R3, although such a map is not invertible, see Figure 4.4.

(1,0)	

(0,1)	
Ax+b	

R2	
x2	

x1	
(1,0,0)	

(0,1,0)	

Ax+b	

R3	

x2	

x1	

x3	

Figure 4.3: A�ne maps x 7! Ax+ b of the reference triangle, with corners
in (0, 0), (1, 0), (0, 1); in R2 (left); to a surface (manifold) in R3 (right).

Homogeneous coordinates

By using homogeneous coordinates, or projective coordinates, we can ex-
press any a�ne transformation as one single matrix multiplication, includ-
ing translation. The underlying definition is that the representation of a
geometric object x is homogeneous if �x = x, for all real numbers � 6= 0.

An R2 vector x = (x1, x2)T in standard Cartesian coordinates is repre-
sented as x = (x1, x2, 1)T in homogeneous coordinates, from which follows
that any object u = (u1, u2, u3) in homogeneous coordinates can be ex-
pressed in Cartesian coordinates, by

2

4
u1

u2

u3

3

5 =

2

4
u1/u3

u2/u3

1

3

5 )

x1

x2

�
=


u1/u3

u2/u3

�
. (4.15)
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u3 

u1 

u2 

x1 

x2 

1 

Figure 4.4: The relation of homogeneous (projective) coordinates and
Cartesian coordinates.

It follows that in homogeneous coordinates, rotation by an angle ✓ and
translation by a vector (t1, t2), both can be expressed as matrices,

A
rot

=

2

4
cos(✓) � sin(✓) 0
sin(✓) cos(✓) 0
0 0 1

3

5 , A
trans

=

2

4
1 0 t1
0 1 t2
0 0 1

3

5 . (4.16)

An advantage of homogenous coordinates is also the ability to apply
combinations of transformations by multiplying the respective matrices,
which is used extensively e.g. in robotics, computer vision, and computer
graphics. For example, an a�ne transformation can be expressed by the
matrix-matrix product A

trans

A
rot

.

4.3 Computer graphics

Vector graphics

Vector graphics is based the representation of primitive geometric objects
defined by a set of parameters, such as a circle in R2 defined by its center
and radius, or a cube in R3 defined by its corner points. Lines and polygones
are other common objects, and for special purposes more advances objects
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are used, such as NURBS (Non-uniform rational B-splines) for computer
aided design (CAD), and PostScript fonts for digital type setting.

These objects my be characterized by their parameter values in the form
of vectors in Rn, and operations on such objects can be defined by a�ne
transformations acting on the vectors of parameters.

Raster graphics

Whereas vector graphics describes an image in terms of geometric objects
such as lines and curves, raster graphics represent an image as an array of
color values positioned in a grid pattern. In 2D each square cell in the grid
is called a pixel (from picture element), and in 3D each cube cell is known
as a voxel (volumetric pixel).

In 2D image processing, the operation of a convolution, or filter, is the
multiplication of each pixel and its neighbours by a convolution matrix,
or kernel, to produce a new image where each pixel is determined by the
kernel, similar to the stencil operators in the finite di↵erence method.

Common kernels include the Sharpen and Gaussian blur filters,

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5 ,
1

16

2

4
1 2 1
2 4 2
1 2 1

3

5 , (4.17)

where we note the similarity to the finite di↵erence stencil of the second
order derivative (Laplacian) and its inverse.

Figure 4.5: Raster image (left), transformed by a Sharpen (middle) and a
blur (right) filters.
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Algebraic equations
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Chapter 5

Linear system of equations

In this chapter we study methods for solving linear systems of equations.
That is, we seek a solution in terms of a vector x that satisfies a set of linear
equations that can be formulated as a matrix equation Ax = b.

For a square non-singular matrix A, we can construct direct solution
methods based on factorization of the matrix A into a product of matrices
that are easy to invert. In the case of a rectangular matrix A we formulate a
least squares problem, where we seek a solution x that minimizes the norm
of the residual b� Ax.

5.1 Linear system of equations

A linear system of equations can be expressed as the matrix equation

Ax = b, (5.1)

with A a given matrix and b a given vector, for which x is the unknown
solution vector. Given our previous discussion, b can be interpreted as the
image of x under the linear transformation A, or alternatively, x can be
interpreted as the coe�cients of b expressed in the column space of A.

For a square non-singular matrix A the solution x can be expressed in
terms of the inverse matrix as

x = A�1b. (5.2)

For some matrices the inverse matrix A�1 is easy to construct, such as in
the case of a diagonal matrix D = (d

ij

), for which d
ij

= 0 for all i 6= j. Here
the inverse is directly given as D�1 = (d�1

ij

). Similarly, for an orthogonal
matrix Q the inverse is given by the transpose Q�1 = QT . On the contrary,

43
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for a general matrix A, computation of the inverse is not straight forward.
Instead we seek to transform the general matrix into a product of matrices
that are easy to invert.

We will introduce two factorizations that can be used for solving Ax = b,
in the case of A being a general square non-singular matrix; QR factor-
ization and LU factorization. Factorization followed by inversion of the
factored matrix is an example of a direct method for solving Ax = b. We
note that to solve the equation we do not have to construct the inverse
matrix explicitly, instead we only need to compute the action of matrices
on a vector, which is important in terms of the memory footprint of the
algorithms.

Triangular matrices

Apart from diagonal and orthogonal matrices, triangular matrices are easy
to invert. We distinguish between two classes of triangular matrices: a
lower triangular matrix L = (l

ij

), with l
ij

= 0 for i < j, and an upper
triangular matrix U = (u

ij

), with u
ij

= 0 for i > j. The product of lower
triangular matrices is lower triangular, and the product of upper triangular
matrices is upper triangular. Similarly, the inverse of a lower triangular
matrix is lower triangular, and the inverse of an upper triangular matrix is
upper triangular.

The equations Lx = b and Ux = b, take the form

2

6664

l11 0 · · · 0
l12 l22 · · · 0
...

. . .
...

l1n l2n · · · l
nn

3

7775

2

6664

x1

x2
...
x
n

3

7775
=

2

6664

b1
b2
...
b
n

3

7775
,

2

6664

u11 u12 · · · u1n

0 u22 · · · u2n
...

. . .
...

0 0 · · · u
nn

3

7775

2

6664

x1

x2
...
x
n

3

7775
=

2

6664

b1
b2
...
b
n

3

7775
,

solved by forward substitution and backward substitution, respectively,

x1 =
b1
l11

x
n

=
b
n

u
nn

x2 =
b2 � l21x1

l22
x
n�1 =

b
n�1 � u

n�1nxn

u
n�1n�1· · · · · ·

x
n

=
b
n

�Pn�1
i=1 l

ni

x
i

l
nn

x1 =
b1 �

P
n

i=2 u1ixi

u11

where both algorithms correspond to O(n2) operations.
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5.2 QR factorization

Classical Gram-Schmidt orthogonalization

For a square matrix A 2 Rn⇥n we denote the successive vector spaces
spanned by its column vectors a

j

as

ha1i ✓ ha1, a2i ✓ ha1, a2, a3i ✓ ... ✓ ha1, ..., ami. (5.3)

Assuming that A has full rank, for each such vector space we now construct
an orthonormal basis q

j

, such that hq1, ..., qji = ha1, ..., aji, for all j  n.
Given a

j

, we can successively construct vectors v
j

that are orthogonal
to the spaces hq1, ..., qj�1i, since by (2.25) we have that

v
j

= a
j

�
j�1X

i=1

(a
j

, q
i

)q
i

, (5.4)

for all j = 1, ..., n, where each vector is then normalized to get q
j

= v
j

/kv
j

k.
This is the classical Gram-Schmidt iteration.

Modified Gram-Schmidt orthogonalization

If we let Q̂
j�1 be an n ⇥ (j � 1) matrix with the column vectors q

i

, for
i  j � 1, we can rewrite (5.4) in terms of an orthogonal projector P

j

,

v
j

= a
j

�
j�1X

i=1

(a
j

, q
i

)q
i

= a
j

�
j�1X

i=1

q
i

qT
i

a
j

= (I � Q̂
j�1Q̂

T

j�1)aj = P
j

a
j

,

with Q̂
j�1Q̂T

j�1 an orthogonal projector onto range(Q̂
j�1), the column space

of Q̂
j�1. The matrix P

j

= I � Q̂
j�1Q̂T

j�1 is thus an orthogonal projector

onto the space orthogonal to range(Q̂
j�1), with P1 = I. The Gram-Schmidt

iteration can therefore be expressed in terms of the projector P
j

as

q
j

= P
j

a
j

/kP
j

a
j

k, (5.5)

for j = 1, ..., n.
Alternatively, P

j

can be constructed by successive multiplication of pro-
jectors P?qi = I � q

i

qT
i

, orthogonal to each individual vector q
i

, such that

P
j

= P?qj�1 · · ·P?q2P?q1 . (5.6)

The modified Gram-Schmidt iteration corresponds to instead using this
formula to construct P

j

, which leads to a more robust algorithm than the
classical Gram-Schmidt iteration.
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Algorithm 1: Modified Gram-Schmidt iteration

for i = 1 to n do
v
i

= a
i

end
for i = 1 to n do

r
ii

= kv
i

k
q
i

= v
i

/r
ii

for j = 1 to i+ 1 do
r
ij

= qT
i

v
j

v
j

= v
j

� r
ij

q
i

end
end

QR factorization

By introducing the notation r
ij

= (a
j

, q
i

) and r
ii

= ka
j

�Pj�1
i=1 (aj, qi)qik,

we can rewrite the classical Gram-Schmidt iteration (5.4) as

a1 = r11q1
a2 = r12q1 + r22q2 (5.7)

...

a
n

= r1nq1 + ...+ r2nqn

which corresponds to the QR factorization A = QR, with a
j

the column
vectors of the matrix A, Q an orthogonal matrix and R an upper triangular
matrix, that is

2

66664
a1 a2 · · · a

n

3

77775
=

2

66664
q1 q2 · · · q

n

3

77775

2

6664

r11 r12 · · · r1n
r22

. . .
...

r
nn

3

7775
.

Existence and uniqueness of the QR factorization of a non-singular matrix
A follows by construction from Algorithm 1.

The modified Gram-Schmidt iteration of Algorithm 1 corresponds to
successive multiplication of upper triangular matrices R

k

on the right of
the matrix A, such that the resulting matrix Q is an orthogonal matrix,

AR1R2 · · ·Rn

= Q, (5.8)

and with the notation R�1 = R1R2 · · ·Rn

, the matrix R = (R�1)�1 is also
an upper triangular matrix.
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Householder QR factorization

Whereas Gram-Schmidt iteration amounts to triangular orthogonalization
of the matrix A, we may alternatively formulate an algorithm for orthogonal
triangularization, where entries below the diagonal of A are zeroed out by
successive application of orthogonal matrices Q

k

, so that

Q
n

...Q2Q1A = R, (5.9)

where we note that the matrix product Q = Q
n

...Q2Q1 is also orthogonal.
In the Householder algorithm, orthogonal matrices are chosen of the

form

Q
k

=


I 0
0 F

�
, (5.10)

with I the (k � 1)⇥ (k � 1) identity matrix, and with F an (n� k + 1)⇥
(n�k+1) orthogonal matrix. Q

k

is constructed to successively introducing
n � k zeros below the diagonal of the kth column of A, while leaving the
upper k � 1 rows untouched, thus taking the form

Q
k

Â
k�1 =


I 0
0 F

� 
Â11 Â12

0 Â22

�
=


Â11 Â12

0 FÂ22

�
, (5.11)

with Â
k�1 = Q

k�1 · · ·Q2Q1A, and with Â
ij

representing the sub-matrices,
or blocks, of Â

k�1 with corresponding block structure as Q
k

.
To obtain a triangular matrix, F should introduce zeros in all subdi-

agonal entries of the matrix. We want to construct F such that for x an
n� k + 1 column vector, we get

Fx =

2

6664

±kxk
0
...
0

3

7775
= ±kxke1, (5.12)

with e1 = (1, 0, ..., 0)T a standard basis vector.
Further, we need F to be an orthogonal matrix, which we achieve by

formulating F in the form of a reflector, so that Fx is the reflection of x in
a hyperplane orthogonal to the vector v = ±kxke1 � x, that is

F = I � 2
vvT

vTv
. (5.13)

We now formulate the full algorithm for QR factorization based on this
Householder reflector, where we use the notation A

i:j,k:l for a sub-matrix
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x 

+||x||e1-x 

+||x||e1 

H+
 H-

 

-||x||e1 

-||x||e1-x 

Figure 5.1: Householder reflectors across the two hyperplanes H+ and H�.

Algorithm 2: Householder QR factorization

for k = 1 to n do
x = A

k:n,k

v
k

= sign(x1)kxk2e1 + x
v
k

= v
k

/kv
k

k
A

k:n,k:n = A
k:n,k:n � 2v

k

(vT
k

A
k:n,k:n)

end

with a row index in the range i, ..., j, and column index in the range k, ..., l.

We note that Algorithm 2 does not explicitly construct the matrix Q,
although from the vectors v

k

we can compute the matrix-vector product
with Q = Q1Q2 · · ·Qn

or QT = Q
n

· · ·Q2Q1.

5.3 LU factorization

Similar to Householder triangulation, Gaussian elimination transforms a
square n ⇥ n matrix A into an upper triangular matrix U , by successively
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inserting zeros below the diagonal. In the case of Gaussian elimination, this
is done by adding multiples of each row to the other rows, which corresponds
to multiplication by a sequence of triangular matrices L

k

from the left, so
that

L
n�1 · · ·L2L1A = U. (5.14)

By setting L�1 = L
n�1 · · ·L2L1, we obtain the factorization A = LU ,

with L = L�1
1 L�1

2 · · ·L�1
n�1.

The kth step in the Gaussian elimination algorithm involves division
by the diagonal element u

kk

, and thus for stability of the algorithm in
finite precision arithmetics it is necessary to avoid a small number in that
position, which is achieved by reordering the rows, or pivoting. With a
permutation matrix P , the LU factorization with pivoting may be expressed
as PA = LU .

Algorithm 3: Gaussian elimination with pivoting
Starting from the matrices U = A, L = I, P = I
for k = 1 to n� 1 do

Select i � k to maximize |u
ik

|
Interchange the rows k and i in the matrices U,L, P
for j = k + 1 to n do

l
jk

= u
jk

/u
kk

u
j,k:n = u

j,k:n � l
jk

u
k,k:n

end
end

Cholesky factorization

For the case of a symmetric positive definite matrix, A can be decomposed
into a product of a lower triangular matrix L and its transpose LT , which
is referred to as the Cholesky factorization,

A = LLT . (5.15)

In the Cholesky factorization algorithm, symmetry is exploited to per-
form Gaussian elimination from both the left and right of the matrix A at
the same time, which results in an algorithm at half the computational cost
of LU factorization.
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5.4 Least squares problems

We now consider a system of linear of equations Ax = b, for which we have
n unknowns but m > n equations, that is x 2 Rn, A 2 Rm⇥n and b 2 Rm.

There exists no inverse matrix A�1, and if the vector b /2 range(A) we
say that the system is overdetermined, and thus no exact solution x exists
to the equation Ax = b. Instead we seek the solution x 2 Rn that minimizes
the l2-norm of the residual b � Ax 2 Rm, which is referred to as the least
squares problem

min
x2Rn

kb� Axk2. (5.16)

A geometric interpretation is that we seek the vector x 2 Rn such that
the Euclidian distance between Ax and b is minimal, which corresponds to

Ax = Pb, (5.17)

where P 2 Rm⇥m is the orthogonal projector onto range(A).

b 

Ax=Pb 

range(A) 

r=b-Ax 

Figure 5.2: Geometric interpretation of the least squares problem.

Thus the residual r = b�Ax is orthogonal to range(A), that is (Ay, r) =
(y, AT r) = 0, for all y 2 Rn, so that (5.16) is equivalent to

AT r = 0, (5.18)
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which corresponds to the n⇥ n system

ATAx = AT b, (5.19)

referred to as the normal equations.
The normal equations thus provide a way to solve them⇥n least squares

problem by solving instead a square n ⇥ n system. The square matrix
ATA is nonsingular if and only if A has full rank, for which the solution is
given as x = (ATA)�1AT b, where the matrix (ATA)�1AT is known as the
pseudoinverse of A.

5.5 Exercises

Problem 19. Prove that the product of lower triangular matrices is lower
triangular, and the product of upper triangular matrices is upper triangular.

Problem 20. Carry out the algorithms for QR and LU factorization for a
3⇥ 3 matrix A.

Problem 21. Implement the algorithms for QR and LU factorization, and
test the computer program for n⇥ n matrices with n large.

Problem 22. Derive the normal equations for the system

2

4
�2 3
�1 4
3 1

3

5

x1

x2

�
=

2

4
2
1
�3

3

5 . (5.20)





Chapter 6

The eigenvalue problem

An eigenvalue of a square matrix represents the linear transformation as a
scaling of the associated eigenvector, and the action of certain matrices on
general vectors can be represented as a scaling of the set of basis vectors
used to represent the vector.

If iterated some of these basis vectors will be amplified, whereas others
will decay, which can charaterize the stability of iterative algorithms, or
a physical system described by the matrix, and also implies algorithms
for computational approximation of eigenvalues and eigenvectors based on
power iteration. We also present the QR algorithm, based on constructing
a similarity transform of the matrix.

6.1 Eigenvalues and eigenvectors

Complex vector spaces

In this section we change the focus from real vector spaces to complex vector
spaces. We let z 2 C denote a complex scalar, of the form z = a+ ib, with
i2 = �1, and a, b 2 R the real and imaginary parts, for which we define the
complex conjugate as z̄ = a� ib.

The complex vector space Cn is defined by the basic operations of com-
ponentwise addition and scalar multiplication of complex numbers, and with
the transpose of a vector x 2 Cn replaced by the adjoint x⇤, corresponding
to the transpose of the vector with the entries replaced by their complex
conjugates. Similarly, the adjoint of a complex m ⇥ n matrix A = (a

ij

) is
the n⇥m matrix A⇤ = (ā

ji

). If A = A⇤ the matrix A is Hermitian, and if
AA⇤ = A⇤A it is normal.

53
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The inner product of x, y 2 Cn is defined by

(x, y) = x⇤y =
nX

i=i

x̄
i

y
i

, (6.1)

with the associated norm for x 2 Cn,

kxk = (x, x)1/2. (6.2)

Matrix spectrum and eigenspaces

We consider a square matrix A 2 Cn⇥n acting on a complex vector space
Cn. An eigenvector of A is a nonzero vector x 2 Cn, such that

Ax = �x, (6.3)

with � 2 C the corresponding eigenvalue. If A is a nonsingular matrix
then ��1 is an eigenvalue of the inverse matrix A�1, which is clear from
multiplication of (6.3) by A�1 from the left,

A�1Ax = A�1�x , x = A�1�x , ��1x = A�1x. (6.4)

The set of all eigenvalues is denoted the spectrum of A,

⇤(A) = {�
j

}n
j=1, (6.5)

and the spectral radius of A is defined as

⇢(A) = max
�j2⇤(A)

|�
j

|. (6.6)

The sum and the product of all eigenvalues are related to the trace and
the determinant of A as

det(A) =
nY

j=1

�
j

, tr(A) =
nX

j=1

�
j

. (6.7)

The subspace of Cn spanned by the eigenvectors corresponding to �,
together with the zero vector, is the eigenspace E

�

. The eigenspace E
�

is an invariant subspace under A, so that AE
�

✓ E
�

, and dim(E
�

) is the
number of linearly independent eigenvectors corresponding to the eigenvalue
�, known as the geometric multiplicity of �.

We have that the eigenspace E
�

= null(�I � A), since (�I � A)x = 0,
and thus for a nonempty eigenspace E

�

, the matrix �I � A is singular, so
that

det(�I � A) = 0. (6.8)
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Characteristic equation

The characteristic polynomial of the matrix A 2 Cn⇥n, is the degree n
polynomial

p
A

(z) = det(zI � A), (6.9)

with z 2 C. For � an eigenvalue of A, we thus have that

p
A

(�) = 0, (6.10)

which we refer to as the characteristic equation, and by the fundamental
theorem of algebra we can express p

A

(�) as

p
A

(�) = (z � �1)(z � �2) · · · (z � �
n

), (6.11)

where each �
j

is an eigenvalue of A, not necessary unique. The multiplicity
of each eigenvalue � as a root to the equation p

A

(�) = 0 is the algebraic
multiplicity of �, where an eigenvalue is said to be simple if its algebraic
multiplicity is 1. The algebraic multiplicity of an eigenvalue � is at least as
great as its geometric multiplicity.

Theorem 5 (Caley-Hamilton theorem). Every nonsingular matrix satisfies
its own characteristic equation, p

A

(A) = 0, that is,

An + c
n�1A

n�1 + ...+ c1A
1 + c0I = 0, (6.12)

for some constants c
i

, which gives that

A�1 =
1

c0
(An�1 + c

n�1A
n�2 + ...+ c1I), (6.13)

thus that the inverse matrix A�1 is equal to a sum of powers of A.

Eigenvalue decompositions

A defective matrix is a matrix which has one or more defective eigenval-
ues, where a defective eigenvalue is an eigenvalue for which its algebraic
multiplicity exceeds its geometric multiplicity.

Theorem 6 (Eigenvalue decomposition). Each nondefective matrix A 2
Cn⇥n has an eigenvalue decomposition

A = X⇤X�1, (6.14)

where X 2 Cn⇥n is a nonsingular matrix with the eigenvectors of A as
column vectors, and where ⇤ 2 Cn⇥n is diagonal matrix with the eigenvalues
of A on the diagonal.
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We also say that a nondefective matrix is diagonalizable. Given that the
factorization (6.14) exits, we have that

AX = X⇤, (6.15)

which expresses (6.3) as
Ax

j

= �
j

x
j

, (6.16)

with �
j

the jth diagonal entry of ⇤, and x
j

the jth column of X.
For some matrices eigenvectors can be chosen to be pairwise orthogonal,

so that a matrix A is unitary diagonalizable, that is

A = Q⇤Q⇤, (6.17)

with Q 2 Cn⇥n an orthogonal matrix with orthonormal eigenvectors of A
as column vectors, and ⇤ 2 Cn⇥n a diagonal matrix with the eigenvalues of
A on the diagonal.

Theorem 7. A matrix is unitary diagonalizable if and only if it is normal.

Hermitian matrices have real eigenvalues, and thus in the particular
case of a real symmetric matrix, no complex vector spaces are needed to
characterize the matrix spectrum and eigenspaces.

Theorem 8. An Hermitian matrix is unitary diagonalizable with real eigen-
values.

Irrespectively if the matrix is nondefective or Hermitian, any square
matrix always has a Schur factorization, with the diagonal matrix replaced
by an upper triangular matrix.

Theorem 9 (Schur factorization). For every square matrix A there exists
a Schur factorization

A = QTQ⇤, (6.18)

where Q is an orthogonal matrix, and T is an upper triangular matrix with
the eigenvalues of A on the diagonal.

More generally, if X 2 Cn⇥n is nonsingular, the map A 7! X�1AX is a
similarity transformation of A, and we say that two matrices A and B are
similar if there exists a similarity transformation such that B = X�1AX.

Theorem 10. Two similar matrices have the same eigenvalues with the
same algebraic and geometric multiplicity.



6.2. EIGENVALUE ALGORITHMS 57

6.2 Eigenvalue algorithms

QR algorithm

To compute the eigenvalues of a matrix A, one may seek the roots of the
characteristic polynomial. Although, for a large matrix polynomial root
finding is expensive and unstable. Instead the most e�cient algorithms are
based on computing eigenvalues and eigenvectors by constructing one of the
factorizations (6.14), (6.17) or (6.18).

We now present the QR algorithm, in which a Schur factorization (6.18)
of a matrix A is constructed from successive QR factorizations.

Algorithm 4: QR algorithm

A(0) = A
for k = 1, 2, ... do

Q(k)R(k) = A(k�1)

Ak = R(k)Q(k)

end

We note that for each iteration A(k) of the algorithm, we have that

A(k) = R(k)Q(k) = (Q(k))�1A(k�1)Q(k), (6.19)

so that A(k) and A(k�1) are similar, and thus have the same eigenvalues. Un-
der suitable assumptions A(k) will converge to an upper triangular matrix,
or in the case of a Hermitian matrix a diagonal matrix, with the eigenvalues
on the diagonal.

The basic QR algorithm can be accelerated: (i) by Householder reflectors
to reduce the initial matrix A(0) to Hessenberg form, that is a matrix with
zeros below the first subdiagonal (or in the case of an Hermitian matrix
a tridiagonal form), (ii) by introducing a shift to instead of A(k) factorize
the matrix A(k)�µ(k)I, which has identical eigenvectors, and where µ(k) an
eigenvalue estimate, and (iii) if any o↵-diagonal element is close to zero, all
o↵-diagonal elements on the row are zeroed out to deflate the matrix A(k)

into submatrices on which the QR algorithm is then applied.

Rayleigh quotient

To simplify the presentation, in the rest of this section we restrict attention
to matrices that are real and symmetric, for which all eigenvalues �

j

are
real and the corresponding eigenvectors q

j

are orthonormal.
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We now consider the question: given a vector x 2 Rn, what is the real
number ↵ 2 R that best approximate an eigenvalue of A in the sense that
kAx� ↵xk is minimized?

If x = q
j

is an eigenvector of A, then ↵ = �
j

is the corresponding
eigenvalue. If not, ↵ is the solution to the n⇥ 1 least squares problem

min
↵2R

kAx� ↵xk, (6.20)

for which the normal equations are given as

xTAx = xT↵x. (6.21)

With ↵ = r(x), we define the Rayleigh quotient as

r(x) =
xTAx

xTx
, (6.22)

where r(x) is an approximation of an eigenvalue �
j

, if x is close to the
eigenvector q

j

. In fact, r(x) converges quadratically to r(q
j

) = �
j

, that is

r(x)� r(q
j

) = O(kx� q
j

k2), (6.23)

as x ! q
j

.

Power iteration

For a real symmetric n ⇥ n matrix A, the eigenvectors {q
j

}n
j=1 form an

orthonormal basis for Rn so that we can express any vector v 2 Rn in terms
of the eigenvectors,

v =
nX

j=1

↵
j

q
j

, (6.24)

with the coordinates ↵
j

= (v, q
j

). Further, we can express the map v 7! Av
in terms of the corresponding eigenvalues �

j

, as

Av =
nX

j=1

↵
j

Aq
j

=
nX

j=1

↵
j

�
j

q
j

, (6.25)

and thus the map amounts to a scaling of each eigenvector q
j

by �
j

. If
iterated, this map gives

Akv =
nX

j=1

↵
j

Akq
j

=
nX

j=1

↵
j

�k

j

q
j

, (6.26)
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so that each eigenvector �k

j

q
j

of Ak converges to zero if |�
j

| < 1, or infinity
if |�

j

| > 1.
Now assume that ↵1 = (v, q1) 6= 0, and that the eigenvalues of A are

ordered such that
|�1| > |�2| > · · · > |�

n

|, (6.27)

where we say that �1 is the dominant eigenvalue, and q1 the dominant
eigenvector. Thus |�

j

/�1| < 1 for all j, which implies that

(�
j

/�1)
k ! 0, (6.28)

as k ! 1. We can write

Akv = �k

1(↵1q1 +
nX

j=2

↵
j

(�
j

/�1)
kq

j

), (6.29)

and thus the approximation

Akv ⇡ �k

1↵1q1, (6.30)

improves as k increases. That is, Akv approaches a multiple of the eigen-
vector q

j

, which can be obtained by normalizating, so that

v(k) ⌘ Akv/kAkvk ⇡ q
j

, (6.31)

from which an approximation of the corresponding eigenvalue can be ob-
tained by the Rayleigh quotient, which leads us to power iteration.

Algorithm 5: Power iteration

v(0) such that kv(0)k = 1
for k = 1, 2, ... do

w = Av(k�1) . apply A
v(k) = w/kwk . normalize

�(k) = (v(k))TAv(k) . Raylegh quotient

end

Inverse iteration

The convergence of the Power iteration to the dominant eigenvector is linear
by a constant factor |�2/�1|, whereas the convergence to the dominant
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eigenvalue is quadratic in the same factor, due to the convergence of the
Rayleigh quotient.

E�ciency of the algorithm thus depends on the size of the factor |�2/�1|.
The idea of inverse iteration, is to apply power iteration to the matrix
(A� µI)�1, with eigenvalues {(�

j

� µ)�1} and with the same eigenvectors
as A, since

Av = �v , (A� µI)v = (�� µ)v , (�� µ)�1v = (A� µI)�1v. (6.32)

With µ an approximation of �
j

, the eigenvalue (�
j

�µ)�1 can be expected
to be dominant and much larger than the other eigenvalues, which results
in an accelerated convergence of power iteration.

Rayleigh quotient iteration is inverse iteration where µ is updated to
the eigenvalue approximation of the previous step of the iteration, and the
convergence to an eigenvalue/eigenvector pair is cubic.

Algorithm 6: Rayleigh quotient iteration

v(0) such that kv(0)k = 1
�(0) = (v(0))TAv(0)

for k = 1, 2, ... do
Solve (A� �(k�1))w = v(k�1) for w . apply (A� �(k�1)I)�1

v(k) = w/kwk . normalize

�(k) = (v(k))TAv(k) . Raylegh quotient

end

The QR algorithm as a power iteration

We now revisit the QR algorithm. Let Q(k) and R(k) be the matrices gen-
erated from the (unshifted) QR algorithm, then the matrix products

Q(k) = Q(1)Q(2) · · ·Q(k), (6.33)

and
R(k) = R(k)R(k�1) · · ·R(1), (6.34)

correspond to a QR factorization of the kth power of A,

Ak = Q(k)R(k), (6.35)

which can be proven by induction.
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That is, the QR algorithm constructs successive orthonormal bases for
the powers Ak, thus functioning like a power iteration that simultaneously
iterates on the whole set of approximate eigenvectors.

Further, the diagonal elements of the kth iterate A(k) are the Rayleigh
quotients of A corresponding to the column vectors of Q(k),

A(k) = (Q(k))TAQ(k), (6.36)

and thus the diagonal elements of A(k) converges (quadratically) to the
eigenvalues of A.

With the accelerations (i)-(iii) the QR algorithm exhibit cubic converge
rate in both eigenvalues and eigenvectors.

6.3 Exercises

Problem 23. Prove that the eigenspace E
�

, with � an eigenvalue of the
matrix A, is invariant under A.





Chapter 7

Iterative methods for large
sparse systems

In this chapter we revisit the problem of solving linear systems of equations,
but now in the context of large sparse systems. The price to pay for the
direct methods based on matrix factorization is that the factors of a sparse
matrix may not be sparse, so that for large sparse systems the memory cost
make direct methods too expensive, in memory and in execution time.

Instead we introduce iterative methods, for which matrix sparsity is
exploited to develop fast algorithms with a low memory footprint.

7.1 Sparse matrix algebra

Large sparse matrices

We say that the matrix A 2 Rn is large if n is large, and that A is sparse
if most of the elements are zero. If a matrix is not sparse, we say that
the matrix is dense. Whereas for a dense matrix the number of nonzero
elements is O(n2), for a sparse matrix it is only O(n), which has obvious
implications for the memory footprint and e�ciency for algorithms that
exploit the sparsity of a matrix.

A diagonal matrix is a sparse matrix A = (a
ij

), for which a
ij

= 0 for
all i 6= j, and a diagonal matrix can be generalized to a banded matrix,
for which there exists a number p, the bandwidth, such that a

ij

= 0 for all
i < j � p or i > j + p. For example, a tridiagonal matrix A is a banded
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matrix with p = 1,

A =

2

6666664

x x 0 0 0 0
x x x 0 0 0
0 x x x 0 0
0 0 x x x 0
0 0 0 x x x
0 0 0 0 x x

3

7777775
, (7.1)

where x represents a nonzero element.

Compressed row storage

The compressed row storage (CRS) format is a data structure for e�cient
represention of a sparse matrix by three arrays, containing the nonzero
values, the respective column indices, and the extents of the rows.

For example, the following sparse matrix

A =

2

6666664

3 2 0 0 0 0
0 2 1 0 0 2
0 2 1 0 0 0
0 0 3 2 4 0
0 4 0 0 1 0
0 0 0 0 2 3

3

7777775
, (7.2)

is represented as

val = [3 2 2 1 2 2 1 3 2 4 4 1 2 3]

col idx = [1 2 2 3 6 2 3 3 4 5 2 5 5 6]

row ptr = [1 3 6 8 11 13]

where val contains the nonzero matrix elements, col idx their column in-
dices, and row ptr the indices in the other two arrays corresponding to the
start of each row.

Sparse matrix-vector product

For a sparse matrix A, algorithms can be constructed for e�cient matrix-
vector multiplication b = Ax, exploiting the sparsity of A by avoiding mul-
tiplications by the zero elements of A.

For example, the CRS data structure implies an e�cient algorithm for
sparse matrix-vector multiplication, for which both the memory footprint
and the number of floating point operations are of the order O(n), rather
than O(n2) as in the case of a dense matrix.
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Algorithm 7: Sparse matrix-vector multiplication

for i = 1 : n do
b
i

= 0
for j = row ptr(i) : row ptr(i+ 1)� 1 do

b
i

= b
i

+ val(j)x(col idx(j))
end

end

7.2 Iterative methods

Iterative methods for large sparse linear systems

For a given nonsingular matrix A 2 Rn⇥n and vector b 2 Rn, we consider
the problem of finding a vector x 2 Rn, such that

Ax = b, (7.3)

where n is large, and the matrix A is sparse.
Now, in contrast to direct methods, we do not seek to construct the

exact solution x = A�1b by matrix factorization, which is too expensive.
Instead we develop iterative methods based on multiplication by a (sparse)
iteration matrix, which generates a sequence of approximations {x(k)}

k�0

that converges towards x, with the error at iteration k given as

e(k) = x� x(k). (7.4)

Error estimation and stopping criterion

Since the exact solution is unknown, the error is not directly computable,
but can be expressed in terms of a computable residual,

r(k) = b� Ax(k) = Ax� Ax(k) = Ae(k). (7.5)

The relative error can be estimated in terms of the relative residual and the
condition number of A with respect to the norm k · k, defined as

(A) = kAkkA�1k. (7.6)

Theorem 11 (Error estimate). For {x(k)}
k�0 a sequence of approximate

solutions to the linear system of equations Ax = b, the relative error can be
estimated as

ke(k)k
ke(0)k  (A)

kr(k)k
kr(0)k . (7.7)
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Proof. By (7.5), we have that

ke(k)k = kA�1r(k)k  kA�1kkr(k)k, (7.8)

and similarly
kr(0)k = kAe(0)k  kAkke(0)k, (7.9)

from which the result follows by the definition of the condition number.

The error estimate (7.7) may be used as a stopping criterion for the
iterative algorithm, since we know that the relative error is bounded by the
computable residual. That is, we terminate the iterative algorithm if the
following condition is satisfied,

kr(k)k
kr(0)k < TOL, (7.10)

with TOL > 0 the chosen tolerance.
Although, to use the relative error with respect to the initial approx-

imation is problematic, since the choice of x(0) may be arbitrary, without
significance for the problem at hand. It is often more suitable to formulate
a stopping criterion based on the following condition,

kr(k)k
kbk < TOL, (7.11)

corresponding to x(0) = 0.

Convergence of iterative methods

The iterative methods that we will develop are all based on the idea of fixed
point iteration,

x(k+1) = g(x(k)), (7.12)

where the map x 7! g(x) may be a linear transformation in the form of a
matrix, or a general nonlinear function. By Banach fixed point theorem, if
the map satisfies certain stability conditions, the fixed point iteration (7.12)
generates a Cauchy sequence, that is, a sequence for which the approxima-
tions x(k) become closer and closer as k increases.

A Cauchy sequence in a normed vector space X is defined as a sequence
{x(k)}1

k=1, for which
lim
n!1

kx(m) � x(n)k = 0, (7.13)
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with m > n. If all Cauchy sequences in X converges to an element x 2 X,
that is,

lim
n!1

kx� x(n)k = 0, x 2 X, (7.14)

we refer to X as a Banach space.
The vector spaces Rn and Cn are both Banach spaces, whereas, for

example, the vector space of rational numbers Q is not. To see this, recall
that

p
2 is a real number that is the limit of a Cauchy sequence of rational

numbers constructed by iterated bisection of the interval [1, 2].
Further, a Banach space that is also an inner product space is referred

to as a Hilbert space, which is central for the theory of di↵erential equations.

Rate of convergence

We are not only interested in if an iterative method converges, but also how
fast, that is the rate of convergence. We say that a sequence of approximate
solutions {x(k)}1

k=1 converges with order p to the exact solution x, if

lim
k!1

|x� x(k+1)|
|x� x(k)|p = C, C > 0, (7.15)

where p = 1 corresponds to a linear order of convergence, and p = 2 a
quadratic order of convergence.

We can approximate the rate of convergence by extrapolation,

p ⇡
log

|x(k+1) � x(k)|
|x(k) � x(k�1)|

log
|x(k) � x(k�1)|
|x(k�1) � x(k�2)|

, (7.16)

which is useful in practice when the exact solution is not available.

7.3 Stationary iterative methods

Stationary iterative methods

Stationary iterative methods are formulated as a linear fixed point iteration
of the form

x(k+1) = Mx(k) + c, (7.17)

with M 2 Rn⇥n the iteration matrix, {x(k)}
k�0 ⇢ Rn a sequence of approx-

imations, and c 2 Rn a vector.
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Theorem 12 (Banach fixed point theorem for matrices). If kMk < 1,
the fixed point iteration (7.17) converges to the solution of the equation
x = Mx+ c.

Proof. For any k > 1, we have that

kx(k+1) � x(k)k = kMx(k) �Mx(k�1)k = kM(x(k) � x(k�1))k
 kMkkx(k) � x(k�1)k  kMkkkx(1) � x(0)k.

Further, for m > n,

kx(m) � x(n)k = kx(m) � x(m�1)k+ ...+ kx(n+1) � x(n)k
 (kMkm�1 + ...+ kMkn) kx(1) � x(0)k,

so that with kMk < 1. We thus have that

lim
n!1

kx(m) � x(n)k = 0, (7.18)

that is {x(n)}1
n=1 is a Cauchy sequence, and since the vector space Rn is

complete, all Cauchy sequences converge, so there exists an x 2 Rn such
that

x = lim
n!1

x(n). (7.19)

By taking the limit of both sides of (7.17) we find that x satisfies the
equation x = Mx+ c.

An equivalent condition for convergence of (7.17) is that the spectral
radius ⇢(M) < 1. In particular, for a real symmetric matrix A, the spectral
radius is identical to the induced 2-norm, that is ⇢(A) = kAk.

Richardson iteration

The linear system Ax = b can be formulated as a fixed point iteration
through the Richardson iteration, with an iteration matrix M = I � A,

x(k+1) = (I � A)x(k) + b, (7.20)

which will converge if kI�Ak < 1, or ⇢(A) < 1. We note that for an initial
approximation x(0) = 0, we obtain for k = 0,

x(1) = (I � A)x(0) + b = b

for k = 1,

x(2) = (I � A)x(1) + b = (I � A)b+ b = 2b� Ab,
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for k = 2,

x(3) = (I � A)x(2) + b = (I � A)(2b� Ab) + b = 3b� 3Ab+ A2b,

and more generally, that the iterate x(k) is a linear combination of powers
of the matrix A acting on b, that is

x(k) =
k�1X

i=0

↵
i

Aib, (7.21)

with ↵
i

2 R.

Preconditioned Richardson iteration

To improve convergence of Richardson iteration we can precondition the
system Ax = b by multiplication of both sides of the equation by a matrix
B, so that we get the new system

BAx = Bb, (7.22)

for which Richardson iteration will converge if kI�BAk < 1, or equivalently
⇢(BA) < 1, and we then refer to B as an approximate inverse of A. The
preconditioned Richardson iteration takes the form

x(k+1) = (I � BA)x(k) +Bb, (7.23)

and the preconditioned residual Bb�BAx(k) is used as basis for a stopping
criterion.

Iterative methods based on matrix splitting

An alternative to Richardson iteration is matrix splitting, where stationary
iterative methods are formulated based on splitting the matrix into a sum

A = A1 + A2, (7.24)

where A1 is chosen as a nonsingular matrix easy to invert, such as a diagonal
matrix D, a lower triangular matrix L or upper triangular matrix U .

Jacobi iteration

Jacobi iteration is based on the splitting

A1 = D, A2 = R = A�D, (7.25)
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which gives the iteration matrix M
J

= �D�1R and c = D�1b, or in terms
of the elements of A = (a

ij

),

x(k+1)
i

= a�1
ii

 
b�

X

j 6=i

a
ij

x(k)
j

!
, (7.26)

where the diagonal matrix D is trivial to invert. To use Jacobi iteration as
a preconditioner, we choose B = D�1.

Gauss-Seidel iteration

Gauss-Seidel iteration is based on the splitting

A1 = L, A2 = R = A� L, (7.27)

which gives the iteration matrix M
GS

= �L�1R and c = L�1b, or

x(k+1)
i

= a�1
ii

 
b�

X

j<i

a
ij

x(k+1)
j

�
X

j>i

a
ij

x(k)
j

!
, (7.28)

where the lower triangular matrix L is inverted by forward substitution.
Gauss-Seidel iteration as a preconditioner leads to the choice of B = L�1,
where the inversion corresponds to a forward substitution.

7.4 Krylov methods

Krylov subspace

A Krylov method is an iterative method for the solution of the system Ax =
b based on, for each iteration, finding an approximation x(k) ⇡ x = A�1b in
a Krylov subspace K

k

, spanned by the vectors b, Ab, ..., Ak�1b, that is

K
k

= hb, Ab, ..., Ak�1bi. (7.29)

The basis for Krylov methods is that, by the Cayley-Hamilton theorem,
the inverse of a matrix A�1 is a linear combination of its powers Ak, which
is also expressed in (7.21).
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GMRES

The idea of GMRES (generalized minimal residuals) is that, at each step k
of the iteration, find the vector x(k) 2 K

k

that minimizes the norm of the
residual r(k) = b� Ax(k), which corresponds to the least squares problem

min
x

(k)2Kk

kb� Ax(k)k. (7.30)

But instead of expressing the approximation x(k) as a linear combination
of the Krylov vectors b, Ab, ..., Ak�1b, which leads to an unstable algorithm,
we construct an orthonormal basis {q

j

}k
j=1 for K

k

, such that

K
k

= hq1, q2, ..., qki, (7.31)

with Q
k

the n⇥ k matrix with the basis vectors q
j

as columns.
Thus we can express the approximation as x(k) = Q

k

y, with y 2 Rk a
vector with the coordinates of x(k), so that the least squares problem take
the form

min
y2Rk

kb� AQ
k

yk. (7.32)

Algorithm 8: Arnoldi iteration

q1 = b/kbk
for k = 1, 2, 3, ... do

v = Aq
k

for j = 1 : k do
h
jk

= qT
j

v
v = v � h

jk

q
j

end
h
n+1n = kvk

q
n+1 = v/h

n+1n

end

The Arnoldi iteration is just the modified Gram-Schmidt iteration (Al-
gorithm 1) that constructs a partial similarity transformation of A into an
Hessenberg matrix H̃

k

2 Rk+1⇥k,

AQ
k

= Q
k+1H̃k

, (7.33)

that is
2

6664

a11 · · · a1n
...

. . .
...

...
. . .

...
a
n1 · · · a

nn

3

7775

2

664
q1 · · · q

k

3

775 =

2

664
q1 · · · q

k+1

3

775

2

6664

h11 · · · h1k

h21 · · ·
. . .

...
h
k+1k

3

7775
.
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Multiplication of (7.32) by QT

k+1 does not change the norm, so that the
least squares problem takes the form,

min
y2Rk

kQT

k+1b� H̃
k

yk, (7.34)

where we note that since q1 = b/kbk, we have that QT

k+1b = kbke1 with
e1 = (1, 0, ..., 0)T the first vector in the standard basis in Rk+1, so that we
can write (7.34) as

min
y2Rk

kkbke1 � H̃
k

yk, (7.35)

which is a (k + 1) ⇥ k least squares problem that we solve for y 2 Rk at
each iteration k, to get x(k) = Q

k

y.

Algorithm 9: GMRES

q1 = b/kbk
while kr(k)k/kr(0)k � TOL do

Arnoldi iteration step k ! Q
k

, H̃
k

. orthogonalize

min
y2Rk

kkbke1 � H̃
k

yk . least squares problem

x(k) = Q
k

y . construct solution

end

Conjugate Gradient method

For a symmetric positive definite matrix A, we can define the A-norm of a
vector x 2 Rn, as

kxk
A

= (x,Ax)1/2, (7.36)

with (·, ·) the l2-norm. The Conjugate Gradient method (CG) is based on
minimization of the error e(k) = x� x(k) in the A-norm, or equivalently, by
(7.5), minimization of the residual r(k) = b� Ax(k) in the A�1-norm,

ke(k)k
A

= (e(k), Ae(k))1/2 = (e(k), r(k))1/2 = (A�1r(k), r(k))1/2 = kr(k)k
A

�1 ,

to compare to GMRES where the residual is minimized in the l2-norm.
Further, to solve the minimization problem in CG we do not solve a least

squares problem over the Krylov subspace K
k

, but instead we iteratively
construct a search direction p(k) and a step length ↵(k) to find the new
approximate solution x(k) from the previous iterate x(k�1). In particular,
this means that we do not have to store the full Krylov basis.
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Algorithm 10: Conjugate Gradient method

x(0) = 0, r(0) = b, p(k) = r(0)

while kr(k)k/kr(0)k � TOL do
↵(k) = kr(k�1)k/kp(k�1)k

A

. step length

x(k) = x(k�1) + ↵(k)p(k�1) . approximate solution

r(k) = r(k�1) � ↵(k)Ap(k�1) . residual

�(k) = kr(k)k/kr(k�1)k . improvement

p(k) = r(k) + �(k)p(k�1) . search direction

end

The key to the success of the CG method is that the residuals are mu-
tually orthogonal,

(r(k), r(j)) = 0, 8j < k, (7.37)

and that the search directions are A-conjugate,

(p(k), p(j))
A

= 0, 8j < k, (7.38)

where (·, ·)
A

is the weighted inner product, defined for symmetric positive
definite matrices as

(x, y)
A

= xTAy = (Ay)Tx = yTATx = yTAx = (y, x)
A

, (7.39)

where we note that (·, ·)
A

induces the A-norm,

kxk
A

= (x, x)1/2
A

, (7.40)

which is also referred to as the energy norm for the equation Ax = b.

Theorem 13 (CG characteristics). For the CG method applied to the equa-
tion Ax = b, with A an n ⇥ n symmetric positive definite matrix, the or-
thogonality relations (7.37) and (7.38) are true, and

K
k

= hb, Ab, ..., Ak�1bi = hx(1), x(2), ..., x(k)i
= hp(0), p(1), ..., p(k�1)i = hr(0), r(1), ..., r(k�1)i,

with the approximate solutions x(k), search directions p(k) and residuals r(k)

constructed from Algorithm 10. Further, x(k) is the unique point in K
k

that
minimizes ke(k)k

A

, and the convergence is monotonic, that is

ke(k)k
A

 ke(k�1)k
A

, (7.41)

with e(k) = 0 for some k  n.





Chapter 8

Nonlinear algebraic equations

We now turn to systems of nonlinear algebraic equations that cannot be ex-
pressed as matrix equations. The fundamental idea to solve such equations
is fixed point iteration, which we have met previously for linear systems of
equations, in the context of stationary iterative methods. Convergence of
fixed point iteration depends linearly on the degree to which the iteration
function is continuous.

In case we have access to a su�ciently good initial guess, we can formu-
late Newton’s method which exhibits quadratic rate of convergence.

8.1 Continuous functions

A continuous function can be roughly characterized as a function for which
small changes in input results in small changes in output. More formally,
a function f : I ! R, is said to be (uniformly) continuous on the interval
I = [a, b], if for each ✏ > 0 we can find a � > 0, such that

|x� y| < � ) |f(x)� f(y)| < ✏, 8x, y 2 I, (8.1)

and Lipschitz continuous on the interval I, if there exists a real number
L
f

> 0, the Lipschitz constant of f , such that

|f(x)� f(y)|  L
f

|x� y|, 8x, y 2 I. (8.2)

The vector space of real valued continuous functions on the interval I
is denoted by C0(I), or C(I), which is closed under the basic operations of
pointwise addition and scalar multiplication, defined by,

(f + g)(x) = f(x) + g(x), 8x 2 I, (8.3)

(↵f)(x) = ↵f(x), 8x 2 I, (8.4)
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for f, g 2 C(I) and ↵ 2 R. Similarly, we let Lip(I) denote the vector space
of Lipschitz continuous functions together with the same basic operations,
and we note that any Lipschitz continuous function is also continuous, that
is Lip(I) ⇢ C(I).

Further, we denote the vector space of continuous functions with also
continuous derivatives up to the order k by Ck(I), with C1(I) the vector
space of continuous functions with continuous derivatives of arbitrary order.

Local approximation of continuous functions

By Taylor’s theorem we can construct a local approximation of a function
f 2 Ck(I) near any point y 2 I, in terms of the function and its first k
derivatives evaluated at the point y. For example, we can approximate
f(x) by a linear function,

f(x) ⇡ f(y) + f 0(y)(x� y), (8.5)

corresponding to the tangent line of the function at x = y, with the approx-
imation error reduced quadratically when decreasing the distance |x� y|.
Theorem 14 (Tayor’s theorem). For f 2 C2(I), we have that

f(x) = f(y) + f 0(y)(x� y) +
1

2
f 00(⇠)(x� y)2, (8.6)

for y 2 I and ⇠ 2 [x, y].

f(x)	

y	 x	b	a	

f(y)+f'(y)(x-y)	

Figure 8.1: The tangent line f(y) + f 0(y)(x� y) at y 2 [a, b].
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8.2 Nonlinear scalar equations

Fixed point iteration

For a nonlinear function f : R ! R, we seek a solution x to the equation

f(x) = 0, (8.7)

for which we can formulate a fixed point iteration x(k+1) = g(x(k)), as

x(k+1) = g(x(k)) = x(k) + ↵f(x(k)), (8.8)

where ↵ is a parameter to be chosen. The fixed point iteration (8.8) con-
verges to a unique fixed point x = g(x) that satisfies equation (8.7), under
the condition that the function g 2 Lip(R) with L

g

< 1, which we can prove
by similar arguments as in the case of a linear system of equations (7.17).

For any k > 1, we have that

|x(k+1) � x(k)| = |g(x(k))� g(x(k�1))|  L
g

|x(k) � x(k�1)|  Lk

g

|x(1) � x(0)|,

so that for m > n,

|x(m) � x(n)| = |x(m) � x(m�1)|+ ...+ |x(n+1) � x(n)|
 (Lm�1

g

+ ...+ Ln

g

) |x(1) � x(0)|,

by the triangle inequality, and with L
g

< 1 we have that {x(n)}1
n=1 is a

Cauchy sequence,

lim
n!1

|x(m) � x(n)| = 0, (8.9)

which implies that there exists an x 2 R, such that

lim
n!1

|x� x(n)| = 0, (8.10)

since R is a Banach space.
Uniqueness of x follows from assuming that there exists another solution

y 2 R such that y = g(y), for which we have that

|x� y| = |g(x)� g(y)|  L
g

|x� y| ) (1� L
g

)|x� y|  0 ) |x� y| = 0,

and thus x = y is the unique solution to the equation x = g(x).
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Newton’s method

The analysis above suggests that the fixed point iteration (8.8) converges
linearly, since

|x� x(k+1)| = |g(x)� g(x(k))|  L
g

|x� x(k)|, (8.11)

so that for the error e(k) = x� x(k) we have that |e(k+1)|  L
g

|e(k)|.
Although, for the choice ↵ = �f 0(x(k))�1, which we refer to as Newton’s

method, the fixed point iteration (8.8) exhibits quadratic convergence. The
geometric interpretation of Newton’s method is that x(k+1) is determined
from the tangent line of the function f(x) at x(k).

Algorithm 11: Newton’s method

Given an initial approximation x(0) 2 R and f : R ! R
while |f(x(k))| � TOL do

Compute f 0(x(k))
x(k+1) = x(k) � f 0(x(k))�1f(x(k))

end

f(x)	

x(k)	x	

f(x(k))+f'(x(k))(x-x(k))	

x(k+1)	

Figure 8.2: Geometric interpretation of Newtons method with the approx-
imation x(k+1) obtained as the zero value of the tangent at x(k).

The quadratic convergence rate of Newton’s method follows from Tay-
lor’s theorem, evaluated at x(k),

0 = f(x) = f(x(k)) + f 0(x(k))(x� x(k)) +
1

2
f 00(⇠)(x� x(k))2, (8.12)
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with ⇠ 2 [x, x(k)]. We divide by f 0(x(k)) to get

x� (x(k) � f 0(x(k))�1f(x(k))) = �1

2
f 0(x(k))�1f 00(⇠)(x� x(k))2, (8.13)

so that, with x(k+1) = x(k) � f 0(x(k))�1f(x(k)), we get

|e(k+1)| = 1

2
|f 0(x(k))�1f 00(⇠)| |e(k)|2, (8.14)

which displays the quadratic convergence of the sequence x(k) close to x.

8.3 Systems of nonlinear equations

Continuous functions and derivatives in Rn

In the normed space Rn, a function f : Rn ! Rn is (uniformly) continuous,
denoted f 2 C(Rn), if for each ✏ > 0 we can find a � > 0, such that

kx� yk < � ) kf(x)� f(y)k < ✏, 8x, y 2 Rn, (8.15)

and Lipschitz continuous, denoted f 2 Lip(Rn), if there exists a real number
L
f

> 0, such that,

kf(x)� f(y)k  L
f

kx� yk, 8x, y 2 Rn. (8.16)

We define the partial derivative as

@f
i

@x
j

= lim
h!0

f
i

(x1, ..., xj

+ h, ..., x
n

)� f
i

(x1, ..., xj

, ..., x
n

)

h
, (8.17)

for i the index of the function component of f = (f1, ..., fn), and j the
index of the coordinate x = (x1, ..., xn

). The Jacobian matrix f 0 2 Rn⇥n, at
x 2 Rn, is defined as

f 0 =

2

64

@f1

@x1
· · · @f1

@xn
...

. . .
...

@fn

@x1
· · · @fn

@xn

3

75 =

2

64
(rf1)T

...
(rf

n

)T

3

75 , (8.18)

with the gradient rf
i

(x) 2 Rn, defined by

rf
i

=

✓
@f

i

@x1
, ...,

@f
i

@x
n

◆
T

, (8.19)

for i = 1, ..., n.
The vector space of continuous functions f : Rn ! Rn with also contin-

uous partial derivatives up to the order k is denoted by Ck(I), with C1(I)
the vector space of continuous functions with continuous derivatives of ar-
bitrary order.
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Fixed point iteration for nonlinear systems

Now consider a system of nonlinear equations: find x 2 Rn, such that

f(x) = 0, (8.20)

with f : Rn ! Rn, for which we can formulate a fixed point iteration
x(k+1) = g(x(k)), with g : Rn ! Rn, just as in the case of the scalar problem.

Algorithm 12: Fixed point iteration for solving the system f(x) = 0

Given initial approximation x(0) 2 Rn and f : Rn ! Rn

while kf(x(k))k � TOL do
x(k+1) = x(k) + ↵f(x(k))

end

Existence of a unique solution to the fixed point iteration follows by
Banach fixed point theorem.

Theorem 15 (Banach fixed point theorem in Rn). The fixed point iteration
of Algorithm 12 converges to a unique solution if L

g

< 1, with L
g

the
Lipschitz constant of the function g(x) = x+ ↵f(x).

Proof. For k > 1 we have that

kx(k+1) � x(k)k = kx(k) � x(k�1) + ↵(f(x(k))� f(x(k�1)))k
= kg(x(k))� g(x(k�1))k  Lk

g

kx(1) � x(0)k,
and for m > n,

kx(m) � x(n)k = kx(m) � x(m�1)k+ ...+ kx(n+1) � x(n)k
 (Lm�1

g

+ ...+ Ln

g

)kx(1) � x(0)k.

Since L
g

< 1, {x(n)}1
n=1 is a Cauchy sequence, which implies that there

exists an x 2 Rn such that

lim
n!1

kx� x(n)k = 0,

since Rn is a Banach space. Uniqueness follows from assuming that there
exists another solution y 2 Rn such that f(y) = 0, so that

kx� yk = kg(x)� g(y)k  L
g

kx� yk ) (1� L
g

)kx� yk  0,

and thus x = y is the unique solution to the equation f(x) = 0.
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Newton’s method for nonlinear systems

Newton’s method for a system in Rn is analogous to the method for scalar
equations, but with the inverse of the derivative replaced by the inverse of
the Jacobian matrix (f 0(x(k)))�1. The inverse is not constructed explicitly,
instead we solve a linear system of equations Ax = b, with A = f 0(x(k)),
x = �x(k+1) = x(k+1) � x(k) the increment, and b = f(x(k)) the residual.

Depending on how the Jacobian is computed, and the linear system
solved, we get di↵erent versions of Newton’s method. If the system is large
and sparse, we use iterative methods for solving the linear system Ax = b,
and if the Jacobian f 0(·) is not directly available we use an approximation,
obtained, for example, by a di↵erence approximation based on f(·).

Algorithm 13: Newton’s method for systems of nonlinear equations

Given initial approximation x(0) 2 Rn and f : Rn ! Rn

while kf(x(k))k � TOL do
Compute f 0(x(k)) . compute Jacobian

f 0(x(k))�x(k+1) = �f(x(k)) . solve for �x(k+1)

x(k+1) = x(k) +�x(k+1) . update by �x(k+1)

end

Quadratic convergence rate of Newton’s method for systems follows from
Taylor’s formula in Rn, which states that

f(x)� (f(x(k)) + f 0(x(k))(x� x(k))) = O(kx� x(k)k2).

For f(x) = 0, and assuming the Jacobian matrix f 0(x(k)) to be nonsingular,
we have that,

x� (x(k) � f 0(x(k))�1f(x(k))) = O(kx� x(k)k2),

and with x(k+1) = x(k) � f 0(x(k))�1f(x(k)), we get that

ke(k+1)k
ke(k)k2 = O(1), (8.21)

for the error e(k) = x � x(k). The quadratic convergence rate then follows
for x(k) close to x.





Part IV

Di↵erential equations
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Chapter 9

Initial value problems

Di↵erential equations are fundamental to model the laws of Nature, such as
Newton’s laws of motion, Einstein’s general relativity, Schrödinger’s equa-
tion of quantuum mechanics, and Maxwell’s equations of electromagnetics.

The case of one single independent variable, we refer to as ordinary
di↵erential equations, whereas partial di↵erential equations involve several
independent variables. We first consider the initial value problem, an ordi-
nary di↵erential equation where the independent variable naturally repre-
sents time, for which we develop solution methods based on time-stepping
algorithms.

9.1 The scalar initial value problem

We consider the following ordinary di↵erential equation (ODE) for a scalar
function u : R+ ! R, with derivative u̇ = du/dt,

u̇(t) = f(u(t), t), 0 < t  T, (9.1)

u(0) = u0,

which we refer to as a scalar initial value problem, defined on the interval
I = [0, T ] by the function f : R ⇥ R+ ! R, and the initial condition
u(0) = u0.

Only in simple special cases can analytical solutions be found. Instead,
in the general case, numerical methods must be used to compute approxi-
mate solutions to (9.1).

85



86 CHAPTER 9. INITIAL VALUE PROBLEMS

9.2 Time stepping methods

The variable t 2 [0, T ] is often interpreted as time, and numerical methods
to solve (9.1) can be based on the idea of time-stepping, where successive
approximations U(t

n

) are computed on a partition 0 = t0 < t1 < ... < t
N

=
T , starting from U(t0) = u0, with a suitable interpolation of U(t) on each
subinterval I

n

= (t
n�1, tn) of length k

n

= t
n

� t
n�1.

t1	 t2	 t3	 tN-1	t0=0	
t	

tN=T	

In	=	(tn-1,tn)	

kn	=	tn	-	tn-1	

tn-1	 tn	

Figure 9.1: Partition of the interval I = [0, T ], 0 = t0 < ... < t
N

= T .

Forward Euler method

For node t
n

, we may approximate the derivative u̇(t
n

) by

u̇(t
n�1) ⇡ u(t

n

)� u(t
n�1)

k
n

, (9.2)

so that

u(t
n

) ⇡ u(t
n�1) + k

n

u̇(t
n�1) = u(t

n�1) + k
n

f(u(t
n�1), tn�1), (9.3)
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which motivates the forward Euler method for successive computational
approximation of U

n

= U(t
n

).

Algorithm 14: Forward Euler method

U0 = u0 . initial approximation

for n = 1, 2, ..., N do
U
n

= U
n�1 + k

n

f(U
n�1, tn�1) . explicit update

end

We note that the forward Euler method is explicit, meaning that U
n+1

is directly computable from the previous solution U
n

in the time-stepping
algorithm. The method is thus also referred to as the explicit Euler method.

Backward Euler method

Alternatively, we may approximate the derivative u̇(t
n+1) by

u̇(t
n

) ⇡ u(t
n

)� u(t
n�1)

k
n

, (9.4)

so that

u(t
n

) ⇡ u(t
n�1) + k

n

u̇(t
n

) = u(t
n�1) + k

n

f(u(t
n

), t
n

), (9.5)

which motivates the backward Euler method for successive computational
approximation of U

n

= U(t
n

).

Algorithm 15: Backward Euler method

U0 = u0 . initial approximation

for n = 1, 2, ..., N do
U
n

= U
n�1 + k

n

f(U
n

, t
n

) . solve algebraic equation

end

Contrary to the forward Euler method, the backward Euler method is
implicit, thus also referred to as the implicit Euler method, meaning that
U
n+1 is not directly computable from U

n

, but is obtained from the solution
of an algebraic (possibly nonlinear) equation,

x = U
n�1 + k

n

f(x, t
n

), (9.6)

for example, by the fixed point iteration,

x(k+1) = U
n�1 + k

n

f(x(k), t
n

). (9.7)
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We note that the fixed point iteration (9.7) converges if k
n

L
f

< 1, with
L
f

the Lipschitz constant of the function f(·, t
n

), thus if the time step k
n

is small enough.

Time stepping as quadrature

There is a strong connection between time-stepping methods and numerical
approximation of integrals, referred to as quadrature. For example, assume
that the initial condition is zero and that the function f in (9.1) does not
depend on the solution u, but the time t only, that is f = f(t). The
solution u(t) is then the primitive function of f(t) that satisfies u(0) = 0,
corresponding to the area under the graph of the function f(t) over the
interval [0, t].

We can approximate this primitive function by left and right rectangular
rule quadrature, or Riemann sums, which we illustrate in Figure 9.2. The
two approximations of the area under the graph then corresponds to the
forward and backward Euler approximations to the initial value problem
(9.1) with u0 = 0 and f = f(t).

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

Figure 9.2: Left (left) and right (right) rectangular rule quadrature, or
Riemann sums, approximating the primitive function of f(t), corresponding
to the area under the graph.

More generally, by the Fundamental Theorem of Calculus we have, for
each subinterval I

n

= (t
n�1, tn), that

u(t
n

) = u(t
n�1) +

Z
tn

tn�1

f(u(t), t) dt, (9.8)

from which we can derive suitable time stepping methods corresponding to
di↵erent quadrature rules used to evaluate the integral in (9.8).



9.2. TIME STEPPING METHODS 89

Quadrature as interpolation

Quadrature as an approximate integral of an exact function, can alterna-
tively be expressed as exact integration of an approximate function. For
example, the rectangular quadrature rules in Figure 9.2, corresponds to
exact integration of a piecewise constant (over each subinterval I

n

) approx-
imation of the function f(t), with its value determined by the function value
at the left or right endpoint of the interval, f(t

n�1) or f(tn).
From this perspective, one may ask if such a piecewise constant ap-

proximation can be chosen in a more clever way to reduce the error in the
approximation of the integral, which naturally leads to the midpoint rule
where the piecewise constant function is chosen based on the function value
at the midpoint of the subinterval, that is (f(t

n�1) + f
n

)/2.
Further, we may seek to approximate the function by a higher order

polynomial. By linear interpolation over the partition T
k

, corresponding
approximation of the function by a continuous piecewise linear polynomial
which is exact at each node t

n

, exact integration corresponds to the trape-
zoidal rule.

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

Figure 9.3: Midpoint (left) and trapezoidal (right) quadrature rules, cor-
responding to interpolation by a piecewise constant and piecewise linear
function respectively.

Interpolation as time stepping

By (9.8), the midpoint and trapezoidal rules can also be formulated as
time stepping methods. Although, in the case of a time stepping method,
interpolation cannot be directly based on the function f(u(t), t) since u(t) is
unknown. Instead we seek an approximate solution U(t) to the initial value
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problem (9.1) as a piecewise polynomial of a certain order, determined by
f(U

n

, t
n

) through the successive approximations U
n

.

Algorithm 16: Trapezoidal time stepping method

U0 = u0 . initial approximation

for n = 1, 2, ..., N do

U
n

= U
n�1 +

k
n

2
(f(U

n

, t
n

) + f(U
n�1, tn�1)) . solve equation

end

Both the midpoint method and the trapezoidal method are implicit,
and thus require the solution of an algebraic equation, possibly nonlinear,
at each time step.

To seek approximate solutions to di↵erential equations as piecewise poly-
nomials is a powerful idea that we will meet many times. Any piecewise
polynomial function can be expressed as a linear combination of basis func-
tions, for which the coordinates are to be determined, for example, based on
minimization or orthogonality conditions on the residual of the di↵erential
equation.

U1	

t1	 t2	 t3	 t4	t0=0	
t	t5	

U2	

U3	
U4	

U5	 U0	

t1	 t2	 t3	 t4	t0=0	
t	t5	

U2	

U3	
U4	

U5	

U1	

Figure 9.4: Examples of a discontinuous piecewise constant polynomial
determined by its value at the right endpoint of the subinterval (left), and
a continuous piecewise linear polynomial determined by its value in the
nodes of the partition (right).

The residual of (9.1) is given by

R(U(t)) = f(U(t), t)� U̇(t), (9.9)

and in the case of a continuous piecewise linear approximation U(t), an
orthogonality condition enforces the integral of the residual to be zero over
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each time interval I
n

, that is

Z
tn

tn�1

R(U(t)) dt = 0, (9.10)

or equivalently,

U
n

= U
n�1 +

Z
tn

tn�1

f(U(t), t) dt,

which corresponds to (9.8). If f(·, ·) is a linear function, it follows that

U
n

= U
n�1 +

k
n

2
(f(U

n

, t
n

) + f(U
n�1, tn�1)), (9.11)

else we have to choose a quadrature rule to approximate the integral, with
(9.11) corresponding to a trapezoidal rule for a nonlinear function f(·, ·).

The ✓-method

We can formulate the forward and backward Euler methods, and the trape-
zoidal method, as one single method with a parameter ✓, the ✓-method.
For ✓ = 1, we get the explicit Euler method, for ✓ = 0 the implicit Euler
method, and ✓ = 0.5 corresponds to the trapezoidal rule.

Algorithm 17: The ✓-method for initial value problems

U0 = u0 . initial approximation

for n = 1, 2, ..., N � 1 do
U
n

= U
n�1 + k

n

((1� ✓)f(U
n

, t
n

) + ✓f(U
n�1, tn�1)) . update

end

Theorem 16 (Local error estimate for the ✓-method). For the ✓-method
over one subinterval I

n

= (t
n�1, tn) of length k

n

= t
n

� t
n�1, with U

n�1 =
u(t

n�1), we have the following local error estimate,

|u(t
n

)� U
n

| = O(k3
n

), (9.12)

for ✓ = 1/2, and if ✓ 6= 1/2,

|u(t
n

)� U
n

| = O(k2
n

). (9.13)
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Proof. With the notation f
n

= f(U
n

, t
n

), so that f
n�1 = u̇(t

n�1) and f
n

=
u̇(t

n

), and observing that U
n�1 = u(t

n�1), we have by Taylor’s formula that

|u(t
n

)� U
n

| = |u(t
n

)� (U
n�1 + k

n

((1� ✓)f
n

+ ✓f
n�1))|

= |u(t
n�1) + k

n

u̇(t
n�1) +

1

2
k2
n

ü(t
n�1) +O(k3

n

)

�(u(t
n�1) + k

n

((1� ✓)u̇(t
n

) + ✓u̇(t
n�1))|

= |k
n

u̇(t
n�1) +

1

2
k2
n

ü(t
n�1) +O(k3

n

)

�(k
n

((1� ✓)(u̇(t
n�1) + k

n

ü(t
n�1) +O(k2

n

)) + ✓u̇(t
n�1))|

= |✓ � 1

2
||ü(t

n�1)|k2
n

+O(k3
n

).

9.3 System of initial value problems

We now consider systems of initial value problems for a vector valued func-
tion u : R+ ! Rn defined on the interval I = [0, T ], with derivative u̇ =
du/dt = (du1/dt, ..., dun

/dt)T defined by the function f : Rn ⇥ R+ ! Rn,
such that

u̇(t) = f(u(t), t), 0 < t  T, (9.14)

u(0) = u0.

Time stepping methods for (9.14) are analogous to the scalar case (9.1),
including the ✓-method of Algorithm 17, with the di↵erence that for implicit
methods a system of (possibly nonlinear) equations needs to be solved.

Newton’s laws of motion

Newton’s laws of motion for a particle can be formulated as an initial value
problem (9.14), with Newton’s 2nd law expressing that force equals mass
times acceleration,

mẍ(t) = F (t), (9.15)

given by

u =


v
x

�
, f =


F/m
v

�
, (9.16)

for x = x(t) the particle position, v = v(t) = ẋ(t) the velocity, m the mass
of the particle, and F = F (t) the force applied.
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For example, the force F = mg models gravitation, with g the gravi-
tation constant, and the force F = �kx models an elastic spring (Hooke’s
law) with spring constant k. Newton’s first law that expresses that a parti-
cle remains in its state in the absence of a force, follows from (9.15) in the
case F = 0.

The N-body problem

Newton’s third law states that if one particle p
i

exerts a force F
ji

on another
particle p

j

, then p
j

exerts a force F
ij

= �F
ji

on p
i

, of the same magnitude
but in the opposite direction.

The N-body problem refers to the initial value problem (9.14) describing
Newton’s laws of motion for a system of N particles {p

i

}N
i=1, with the pair-

wise force interactions F
ij

given by the system under study, for example
gravitation in celestial mechanics, Coulomb interactions in electrostatics,
Hookean springs in elasticity theory, or interatomic potentials in molecular
dynamics simulations.

The N -body problem takes the form (9.14) in R2N ,

u =

2

66666664

v1
...
v
N

x1
...
x
N

3

77777775

, f =

2

66666664

F1/m1
...

F
N

/m
N

v1
...
v
N

3

77777775

(9.17)

with the resulting force on particle p
i

given by the sum of all pairwise
interactions,

F
i

=
NX

j 6=i

F
ij

. (9.18)

To solve (9.17) using a time-stepping is an O(N2) algorithm, which is
very expensive for N large. Optimized algorithms of order O(N) can be
developed based on the idea of clustering the force from multiple particles
at a distance.

Celestial mechanics

Newton’s gravitational law models pairwise gravitational force interactions,
which can be used to model the solar system for example. Every particle



94 CHAPTER 9. INITIAL VALUE PROBLEMS

p
i

is e↵ected by the sum of all other particles, and the force F
ij

acting on
particle p

i

by p
j

, is given by,

F
ij

= G
m

i

m
j

kx
i

� x
j

k2 , (9.19)

where m
i

2 R and x
i

2 Rn denotes the mass and position of particle p
i

.

Mass-spring model

The forces in a mass-spring model represent pairwise force interactions be-
tween adjacent particles in a lattice, connected via springs, such that the
force F

ij

acting on particle p
i

by p
j

is given by,

F
ij

= �k
ij

(x
i

� x
j

), (9.20)

with k
ij

= k
ji

the relevant spring constant.



Chapter 10

Function approximation

We have studied methods for computing solutions to algebraic equations
in the form of real numbers or finite dimensional vectors of real numbers.
In contrast, solutions to di↵erential equations are scalar or vector valued
functions, which only in simple special cases are analytical functions that
can be expressed by a closed mathematical formula.

Instead we use the idea to approximate general functions by linear com-
binations of a finite set of simple analytical functions, for example trigono-
metric functions, splines or polynomials, for which attractive features are
orthogonality and locality. We focus in particular on piecewise polynomi-
als defined by the finite set of nodes of a mesh, which exhibit both near
orthogonality and local support.

10.1 Function approximation

The Lebesgue space L2(I)

Inner product spaces provide tools for approximation based on orthogonal
projections on subspaces. We now introduce an inner product space for
functions on the interval I = [a, b], the Lebesgue space L2(I), defined as the
class of all square integrable functions f : I ! R,

L2(I) = {f :

Z
b

a

|f(x)|2 dx < 1}. (10.1)

The vector space L2(I) is closed under the basic operations of pointwise
addition and scalar multiplication, by the inequality,

(a+ b)2  2(a2 + b2), 8a, b � 0, (10.2)

which follows from Young’s inequality.
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Theorem 17 (Young’s inequality). For a, b � 0 and ✏ > 0,

ab  1

2✏
a2 +

✏

2
b2 (10.3)

Proof. 0  (a� ✏b)2 = a2 + ✏2b2 � 2ab✏.

The L2-inner product is defined by

(f, g) = (f, g)
L

2(I) =

Z
b

a

f(x)g(x) dx, (10.4)

with the associated L2 norm,

kfk = kfk
L

2(I) = (f, f)1/2 =

✓Z
b

a

|f(x)|2 dx
◆1/2

, (10.5)

for which the Cauchy-Schwarz inequality is satisfied,

|(f, g)|  kfkkgk. (10.6)

Approximation of functions in L2(I)

We seek to approximate a function f in a vector space V , by a linear
combination of functions {�

j

}n
j=1 ⇢ V , that is

f(x) ⇡ f
n

(x) =
nX

j=1

↵
j

�
j

(x), (10.7)

with ↵
j

2 R. If linearly independent, the set {�
j

}n
j=1 spans a finite dimen-

sional subspace S ⇢ V ,

S = {f
n

2 V : f
n

=
nX

j=1

↵
j

�
j

(x), ↵
j

2 R}, (10.8)

with the set {�
j

}n
j=1 a basis for S. For example, in a Fourier series the basis

functions �
j

are trigonometric functions, in a power series monomials.
The question is now how to determine the coordinates ↵

j

so that f
n

(x)
is a good approximation of f(x). One approach to the problem is to use
the techniques of orthogonal projections previously studied for vectors in
Rn, an alternative approach is interpolation, where ↵

j

are chosen such that
f
n

(x
i

) = f(x
i

), in a set of nodes x
i

, for i = 1, ..., n. If we cannot evaluate
the function f(x) in arbitrary points x, but only have access to a set of
sampled data points {(x

i

, f
i

)}m
i=1, with m � n, we can formulate a least

squares problem to determine the coordinates ↵
j

that minimize the error
f(x

i

)� f
i

, in a suitable norm.
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L2 projection

The L2 projection Pf , onto the subspace S ⇢ V , defined by (10.8), of a
function f 2 V , with V = L2(I), is the orthogonal projection of f on S,
that is,

(f � Pf, s) = 0, 8s 2 S, (10.9)

which corresponds to,

nX

j=1

↵
j

(�
i

,�
j

) = (f,�
i

), 8i = 1, ..., n. (10.10)

By solving the matrix equation Ax = b, with a
ij

= (�
i

,�
j

), x
j

= ↵
j

,
and b

i

= (f,�
i

), we obtain the L2 projection as

Pf(x) =
nX

j=1

↵
j

�
j

(x). (10.11)

We note that if �
i

(x) has local support, that is �
i

(x) 6= 0 only for a
subinterval of I, then the matrix A is sparse, and for {�

i

}n
i=1 an orthonormal

basis, A is the identity matrix with ↵
j

= (f,�
j

).

Interpolation

The interpolant ⇡f 2 S, is determined by the condition that ⇡f(x
i

) = f(x
i

),
for n nodes {x

i

}n
i=1. That is,

f(x
i

) = ⇡f(x
i

) =
nX

j=1

↵
j

�
j

(x
i

), i = 1, ..., n, (10.12)

which corresponds to the matrix equation Ax = b, with a
ij

= �
j

(x
i

), x
j

=
↵
j

, and b
i

= f(x
i

).
The matrix A is an identity matrix under the condition that �

j

(x
i

) = 1,
for i = j, and zero else. We then refer to {�

i

}n
i=1 as a nodal basis, for which

↵
j

= f(x
j

), and we can express the interpolant as

⇡f(x) =
nX

j=1

↵
j

�
j

(x) =
nX

j=1

f(x
j

)�
j

(x). (10.13)
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Regression

If we cannot evaluate the function f(x) in arbitrary points, but only have
access to a set of data points {(x

i

, f
i

)}m
i=1, with m � n, we can formulate

the least squares problem,

min
fn2S

kf
i

� f
n

(x
i

)k = min
{↵j}nj=1

kf
i

�
nX

j=1

↵
j

�
j

(x
i

)k, i = 1, ...,m, (10.14)

which corresponds to minimization of the residual b�Ax, with a
ij

= �
j

(x
i

),
b
i

= f
i

, and x
j

= ↵
j

, which we can solve, for example, by forming the normal
equations,

ATAx = AT b. (10.15)

10.2 Piecewise polynomial approximation

Polynomial spaces

We introduce the vector space Pq(I), defined by the set of polynomials

p(x) =
qX

i=0

c
i

xi, x 2 I, (10.16)

of at most order q on an interval I 2 R, with the basis functions xi and
coordinates c

i

, and the basic operations of pointwise addition and scalar
multiplication,

(p+ r)(x) = p(x) + r(x), (↵p)(x) = ↵p(x), (10.17)

for p, r 2 Pq(I) and ↵ 2 R. One basis for Pq(I) is the set of monomials
{xi}q

i=0, another is {(x� c)i}q
i=0, which gives the power series,

p(x) =
qX

i=0

a
i

(x� c)i = a0 + a1(x� c) + ...+ a
q

(x� c)q, (10.18)

for c 2 I, with a Taylor series being an example of a power series,

f(x) = f(y) + f 0(y)(x� y) +
1

2
f 00(y)(x� y)2 + ... (10.19)
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Langrange polynomials

For a set of nodes {x
i

}q
i=0, we define the Lagrange polynomials {�}q

i=0, by

�
i

(x) =
(x� x0) · · · (x� x

i�1)(x� x
i+1) · · · (x� x

q

)

(x
i

� x0) · · · (xi

� x
i�1)(xi

� x
i+1) · · · (xi

� x
q

)
=
Y

i 6=j

x� x
j

x
i

� x
j

,

that constitutes a basis for Pq(I), and we note that

�
i

(x
j

) = �
ij

, (10.20)

with the Dirac delta function defined as

�
ij

=

(
1, i = j

0, i 6= j
(10.21)

so that {�}q
i=0 is a nodal basis, which we refer to as the Lagrange basis. We

can express any p 2 Pq(I) as

p(x) =
qX

i=1

p(x
i

)�
i

(x), (10.22)

and by (10.13) we can define the polynomial interpolant ⇡
q

f 2 Pq(I),

⇡
q

f(x) =
qX

i=1

f(x
i

)�
i

(x), x 2 I, (10.23)

for a continuous function f 2 C(I).

Piecewise polynomial spaces

We now introduce piecewise polynomials defined over a partition of the
interval I = [a, b],

a = x0 < x1 < · · · < x
m+1 = b, (10.24)

for which we let the mesh T
h

= {I
i

} denote the set of subintervals I
j

=
(x

i�1, xi

) of length h
i

= x
i

� x
i�1, with the mesh function,

h(x) = h
i

, for x 2 I
i

. (10.25)

We define two vector spaces of piecewise polynomials, the discontinuous
piecewise polynomials on I, defined by

W (q)
h

= {v : v|
Ii 2 Pq(I

i

), i = 1, ...,m+ 1}, (10.26)



100 CHAPTER 10. FUNCTION APPROXIMATION

and the continuous piecewise polynomials on I, defined by

V (q)
h

= {v 2 W (q)
h

: v 2 C(I)}. (10.27)

The basis functions for W (q)
h

can be defined in terms of the Lagrange
basis, for example,

�
i,0(x) =

x
i

� x

x
i

� x
i�1

=
x
i

� x

h
i

(10.28)

�
i,1(x) =

x� x
i�1

x
i

� x
i�1

=
x� x

i�1

h
i

(10.29)

defining the basis functions for W (1)
h

, by

�
i,j

(x) =

(
0, x 6= [x

i�1, xi

],

�
i,j

, x 2 [x
i�1, xi

],
(10.30)

for i = 1, ...,m+ 1, and j = 0, 1. For V (q)
h

we need to construct continuous
basis functions, for example,

�
i

(x) =

8
><

>:

0, x 6= [x
i�1, xi+1],

�
i,1, x 2 [x

i�1, xi

],

�
i+1,0, x 2 [x

i

, x
i+1],

(10.31)

for V (1)
h

, which we also refer to as hat functions.

x1	 x2	 xi-1	 xm	x0=a	
x	

xm+1=b	xi	 xi+1	

φi,1(x)	

x1	 x2	 xi-1	 xm	x0=a	
x	

xm+1=b	xi	 xi+1	

φi(x)	

Figure 10.1: Illustration of a mesh T
h

= {I
i

}, with subintervals I
j

=

(x
i�1, xi

) of length h
i

= x
i

� x
i�1, and �

i,1(x) a basis function for W (1)
h

(left), and a basis function �
i

(x) for V (1)
h

(right).
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L2 projection in V (1)
h

The L2 projection of a function f 2 L2(I) onto the space of continuous

piecewise linear polynomials V (1)
h

, on a subdivision of the interval I with n
nodes, is given by

Pf(x) =
nX

j=1

↵
j

�
j

(x), (10.32)

with the coordinates ↵
j

determined by from the matrix equation

Mx = b, (10.33)

with m
ij

= (�
j

,�
i

), x
j

= ↵
j

, and b
i

= (f,�
i

). The matrix M is sparse, since
m

ij

= 0 for |i� j| > 1, and for large n we need to use an iterative method
to solve (10.33). We compute the entries of the matrix M , referred to as
a mass matrix, from the definition of the basis functions (10.31), starting
with the diagonal entries,

m
ii

= (�
i

,�
i

) =

Z 1

0

�2
i

(x) dx =

Z
xi

xi�1

�2
i,1(x) dx+

Z
xi+1

xi

�2
i+1,0(x) dx

=

Z
xi

xi�1

(x� x
i�1)2

h2
i

dx+

Z
xi+1

xi

(x
i+1 � x)2

h2
i+1

dx

=
1

h2
i


(x� x

i�1)3

3

�
xi

xi�1

+
1

h2
i+1

�(x
i+1 � x)3

3

�
xi+1

xi

=
h
i

3
+

h
i+1

3
,

and similarly we compute the o↵-diagonal entries,

m
ii+1 = (�

i

,�
i+1) =

Z 1

0

�
i

(x)�
i+1(x) dx =

Z
xi+1

xi

�
i+1,0(x)�i+1,1(x) dx

=

Z
xi+1

xi

(x
i+1 � x)

h
i+1

(x� x
i

)

h
i+1

dx

=
1

h2
i+1

Z
xi+1

xi

(x
i+1x� x

i+1xi

� x2 + xx
i

) dx

=
1

h2
i+1


x
i+1x2

2
� x

i+1xi

x� x3

3
+

x2x
i

2

�
xi+1

xi

=
1

6h2
i+1

(x3
i+1 � 3x2

i+1xi

+ 3x
i+1x

2
i

� x3
i

)

=
1

6h2
i+1

(x
i+1 � x

i

)3 =
h
i+1

6
,

and

m
ii�1 = (�

i

,�
i�1) =

Z 1

0

�
i

(x)�
i�1(x) dx = ... =

h
i

6
.
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10.3 Exercises

Problem 24. Prove that the sum of two functions f, g 2 L2(I) is a function
in L2(I).

Problem 25. Prove that the L2 projection Pf of a function f 2 L2(I),
onto the subspace S ⇢ L2(I), is the best approximation in S, in the sense
that

kf � Pfk  kf � sk, 8s 2 S. (10.34)



Chapter 11

The boundary value problem

The boundary value problem in one variable is an ordinary di↵erential equa-
tion, for which an initial condition is not enough, instead we need to specify
boundary conditions at each end of the interval. Contrary to the initial
value problem, the dependent variable does not represent time, but should
rather we thought of as a spatial coordinate.

11.1 The boundary value problem

The boundary value problem

We consider the following boundary value problem, for which we seek a
function u(x) 2 C2(0, 1), such that

�u00(x) = f(x), x 2 (0, 1), (11.1)

u(0) = u(1) = 0, (11.2)

given a source term f(x), and boundary conditions at the endpoints of the
interval I = [0, 1].

We want to find an approximate solution to the boundary value problem
in the form of a continuous piecewise polynomial that satisfies the boundary
conditions (11.2), that is we seek

U 2 V
h

= {v 2 V (q)
h

: v(0) = v(1) = 0}, (11.3)

such that the error e = u� U is small in some suitable norm k · k.
The residual of the equation is defined as

R(w) = w00 + f, (11.4)
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with R(u) = 0, for u = u(x) the solution of the boundary value problem.
Our strategy is now to find an approximate solution U 2 V

h

⇢ C2(0, 1) such
that R(U) ⇡ 0.

We have two natural methods to find a solution U 2 V
h

with a minimal
residual: (i) the least squares method, where we seek the solution with the
minimal residual measured in the L2-norm,

min
U2Vh

kR(U)k, (11.5)

and (ii) Galerkin’s method, where we seek the solution for which the residual
is orthogonal the subspace V

h

,

(R(U), v) = 0, 8v 2 V
h

. (11.6)

With an approximation space consisting of piecewise polynomials, we
refer to the methods as a least squares finite element method, and a Galerkin
finite element method. With a trigonometric approximation space we refer
to Galerkin’s method as a spectral method.

Galerkin finite element method

The finite element method (FEM) based on (11.6) takes the form: find
U 2 V

h

, such that

Z 1

0

�U 00(x)v(x) dx =

Z 1

0

f(x)v(x) dx, (11.7)

for all test functions v 2 V
h

. For (11.12) to be well defined, we need to be
able to represent the second order derivative U 00, which is not obvious for
low order polynomials, such as linear polynomials, or piecewise constants.

To reduce this constraint, we can use partial integration to move one
derivative from the approximation U to the test function v, so that

Z 1

0

�U 00(x)v(x) dx =

Z 1

0

U 0(x)v0(x) dx� [U 0(x)v(x)]10 =

Z 1

0

U 0(x)v0(x) dx,

since v 2 V
h

, and thus satisfies the boundary conditions. The finite element
method now reads: find U 2 V

h

, such that,

Z 1

0

U 0(x)v0(x) dx =

Z 1

0

f(x)v(x) dx, (11.8)

for all v 2 V
h

.
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The discrete problem

We now let V
h

be the space of continuous piecewise linear functions, that
satisfies the boundary conditions (11.2), that is,

U 2 V
h

= {v 2 V (1)
h

: v(0) = v(1) = 0}, (11.9)

so that we can write any function v 2 V
h

as

v(x) =
nX

i=1

v
i

�
i

(x), (11.10)

over a mesh T
h

with n internal nodes x
i

, and v
i

= v(x
i

) since {�
i

}n
i=1 is a

nodal basis.
We thus search for an approximate solution

U(x) =
nX

j=1

U
j

�
j

(x), (11.11)

with U
j

= U(x
j

). If we insert (11.10) and (11.11) into (11.12), we get
nX

j=1

U
j

Z 1

0

�0
j

(x)�0
i

(x) dx =

Z 1

0

f(x)�
i

(x) dx, i = 1, ..., n, (11.12)

which corresponds to the matrix equation

Sx = b, (11.13)

with s
ij

= (�0
j

,�0
i

), x
j

= U
j

, and b
i

= (f,�
i

). The matrix S is sparse, since
s
ij

= 0 for |i � j| > 1, and for large n we need to use an iterative method
to solve (11.13).

We compute the entries of the matrix S, referred to as a sti↵ness matrix,
from the definition of the basis functions (10.31), starting with the diagonal
entries,

s
ii

= (�0
i

,�0
i

) =

Z 1

0

(�0
i

)2(x) dx =

Z
xi

xi�1

(�0
i,1)

2(x) dx+

Z
xi+1

xi

(�0
i+1,0)

2(x) dx

=

Z
xi

xi�1

✓
1

h
i

◆2

dx+

Z
xi+1

xi

✓
1

h
i+1

◆2

dx =
1

h
i

+
1

h
i+1

,

and similarly we compute the o↵-diagonal entries,

s
ii+1 = (�0

i

,�0
i+1) =

Z 1

0

�0
i

(x)�0
i+1(x) dx =

Z
xi+1

xi

�1

h
i+1

1

h
i+1

dx = � 1

h
i+1

,

and

s
ii�1 = (�0

i

,�0
i�1) =

Z 1

0

�0
i

(x)�0
i�1(x) dx = ... = � 1

h
i

.
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The variational problem

Galerkin’s method is based on the variational formulation, or weak form, of
the boundary value problem, where we search for solution in a vector space
V , for which the variational form is well defined: find u 2 V , such that

Z 1

0

u0(x)v0(x) dx =

Z 1

0

f(x)v(x) dx, (11.14)

for all v 2 V .
To construct an appropriate vector space V for (11.1) to be well defined,

we need to extend L2 spaces to include also derivatives, which we refer to
as Sobolev spaces. We introduce the vector space H1(0, 1), defined by,

H1(0, 1) = {v 2 L2(0, 1) : v0 2 L2(0, 1)}, (11.15)

and the vector space that also satisfies the boundary conditions (11.2),

H1
0 (0, 1) = {v 2 H1(0, 1) : v(0) = v(1) = 0}. (11.16)

The variational form (11.1) is now well defined for V = H1
0 (0, 1), since

Z 1

0

u0(x)v0(x) dx  ku0kkv0k < 1 (11.17)

by Cauchy-Schwarz inequality, and

Z 1

0

f(x)v(x) dx  kfkkvk < 1, (11.18)

for f 2 L2(0, 1).

Optimality of Galerkin’s method

Galerkin’s method (11.12) corresponds to searching for an approximate so-
lution in a finite dimensional subspace V

h

⇢ V , for which (11.1) is satisfied
for all test functions v 2 V

h

.
The Galerkin solution U is the best possible approximation in V

h

, in the
sense that,

ku� Uk
E

 ku� vk
E

, 8v 2 V
h

, (11.19)

with the energy norm defined by

kwk
E

=

✓Z 1

0

|w0(x)|2 dx
◆1/2

. (11.20)
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Thus U 2 V
h

represents a projection of u 2 V onto V
h

, with respect to
the inner product defined on V ,

(v, w)
E

=

Z 1

0

v0(x)w0(x) dx, (11.21)

with kwk2
E

= (w,w)
E

. The Galerkin orthogonality,

(u� U, v)
E

= 0, 8v 2 V
h

, (11.22)

expresses the optimality of the approximation U , as

ku� Uk
E

 ku� vk
E

, 8v 2 V
h

, (11.23)

which follows by

ku� Uk2
E

= (u� U, u� u
h

)
E

= (u� U, u� v)
E

+ (u� U, v � u
h

)
E

= (u� U, u� v)
E

 ku� Uk
E

ku� vk
E

,

for any v 2 V
h

.

11.2 Exercises

Problem 26. Derive the variational formulation and the finite element
method for the boundary value problem

�(a(x)u0(x))0 + c(x)u(x) = f(x), x 2 (0, 1), (11.24)

u(0) = u(1) = 0, (11.25)

with a(x) > 0, and c(x) � 0.





Chapter 12

Partial di↵erential equations

12.1 Di↵erential operators in Rn

Di↵erential operators

We recall the definition of the gradient of a scalar function as

rf =

✓
@f

@x1
, ...,

@f

@x
n

◆
T

, (12.1)

which we can interpret as the di↵erential operator

r =

✓
@

@x1
, ...,

@

@x
n

◆
T

, (12.2)

acting on the function f = f(x), with x 2 ⌦ ⇢ Rn. With this interpretation
we express two second order di↵erential operators, the Laplacian �f ,

�f = rTrf =
@2f

@x2
1

+ ...+
@2f

@x2
n

, (12.3)

and the Hessian Hf ,

Hf = rrTf =

2

64

@

2
f

@x1@x1
· · · @

2
f

@x1@xn
...

. . .
...

@

2
f

@xn@x1
· · · @

2
f

@xn@xn

3

75 . (12.4)

For a vector valued function f : Rn ! Rm, we define the Jacobian
matrix by

f 0 =

2

64

@f1

@x1
· · · @f1

@xn
...

. . .
...

@fm

@x1
· · · @fm

@xn

3

75 =

2

64
(rf1)T

...
(rf

m

)T

3

75 , (12.5)
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and for m = n, we define the divergence by

r · f =
@f1
@x1

+ ...+
@f

n

@x
n

. (12.6)

Partial integration in Rn

For the scalar function f : Rn ! R, and the vector valued function g :
Rn ! Rn, we have the following generalization of partial integration over
⌦ ⇢ Rn, referred to as Green’s theorem,

(rf, g) = �(f,r · g) + (f, g · n)�, (12.7)

where we use the notation,

(v, w)� = (v, w)
L

2(�) =

Z

⌦

vw ds, (12.8)

for the boundary integral, with L2(�) the Lebesgue space defined over the
boundary �.

Sobolev spaces

The L2 space for ⌦ ⇢ Rn, is defined by

L2(⌦) = {v :

Z

⌦

|v|2 dx < 1}, (12.9)

where in the case of a vector valued function v : Rn ! Rn, we let

|v|2 = kvk22 = v21 + ...+ v2
n

. (12.10)

To construct appropriate vector spaces for the variational formulation
of partial di↵erential equations, we need to extend L2 spaces to include also
derivatives. The Sobolev space H1(⌦) is defined by,

H1(⌦) = {v 2 L2(⌦) :
@v

i

@x
j

2 L2(⌦), 8i, j = 1, ..., n}, (12.11)

and we define

H1
0 (⌦) = {v 2 H1(⌦) : v(x) = 0, x 2 �}, (12.12)

to be the space of functions that are zero on the boundary �.
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12.2 Poisson’s equation

The Poisson equation

We now consider the Poisson equation for a function u 2 C2(⌦),

��u = f, x 2 ⌦, (12.13)

with ⌦ ⇢ Rn, and f 2 C(⌦). For the equation to have a unique solution we
need to specify boundary conditions. We may prescribe Dirichlet boundary
conditions,

u = g
D

, x 2 �, (12.14)

Neumann boundary conditions,

ru · n = g
N

, x 2 �, (12.15)

with n = n(x) the outward unit normal on �
N

, or a linear combination of
the two, which we refer to as a Robin boundary condition.

Homogeneous Dirichlet boundary conditions

We now state the variational formulation of Poisson equation with homo-
geneous Dirichlet boundary conditions,

��u = f, x 2 ⌦, (12.16)

u = 0, x 2 �, (12.17)

which we obtain by multiplication by a test function v 2 V = H1
0 (⌦) and

integration over ⌦, using Green’s theorem, which gives,

(ru,rv) = (f, v), (12.18)

since the boundary term vanishes as the test function is an element of the
vector space H1

0 (⌦).

Homogeneous Neumann boundary conditions

We now state the variational formulation of Poisson equation with homo-
geneous Neumann boundary conditions,

��u = f, x 2 ⌦, (12.19)

ru · n = 0, x 2 �, (12.20)
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which we obtain by multiplication by a test function v 2 V = H1(⌦) and
integration over ⌦, using Green’s theorem, which gives,

(ru,rv) = (f, v), (12.21)

since the boundary term vanishes by the Neumann boundary condition.
Thus the variational forms (12.18) and (12.21) are similar, with the only
di↵erence being the choice of test and trial spaces.

However, it turns out that the variational problem (12.21) has no unique
solution, since for any solution u 2 V , also v + C is a solution, with C a
constant. To ensure a unique solution, we need an extra condition for the
solution, for example, we may change the approximation space to

V = {v 2 H1(⌦) :

Z

⌦

v(x) dx = 0}. (12.22)

Non homogeneous boundary conditions

We now state the variational formulation of Poisson equation with non
homogeneous boundary conditions,

��u = f, x 2 ⌦, (12.23)

u(x) = g
D

, x 2 �
D

, (12.24)

ru · n = g
N

, x 2 �
N

, (12.25)

with � = �
D

[ �
N

, which we obtain by multiplication by a test function
v 2 V , with

V = {v 2 H1(⌦) : v(x) = g
D

(x), x 2 �
D

}, (12.26)

and integration over ⌦, using Green’s theorem, which gives,

(ru,rv) = (f, v) + (g
N

, v)�N . (12.27)

The Dirichlet boundary condition is enforced through the trial space,
and is thus referred to as an essential boundary condition, whereas the
Neumann boundary condition is enforced through the variational form, thus
referred to as a natural boundary condition.

The finite element method

To compute approximate solutions to the Poisson equation, we can formu-
late a finite element method based on the variational formulation of the
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equation, replacing the Sobolev space V with a polynomial space V
h

, con-
structed by a set of basis functions {�

i

}M
i=1, over a mesh T

h

, defined as a
collection of elements {K

i

}N
i=1 and nodes {N

i

}M
i=1.

For the Poisson equation with homogeneous Dirichlet boundary condi-
tions, the finite element method takes the form: Find U 2 V

h

, such that,

(rU,rv) = (f, v), v 2 V
h

, (12.28)

with V
h

⇢ H1
0 (⌦).

The variational form (12.28) corresponds to a linear system of equations
Ax = b, with a

ij

= (�
j

,�
i

), x
j

= U(N
j

), and b
i

= (f,�
i

), with �
i

(x) the
basis function associated with the node N

i

.

12.3 Linear partial di↵erential equations

The abstract problem

We express a linear partial di↵erential equation as the abstract problem,

Lu = f, x 2 ⌦, (12.29)

with boundary conditions,

Bu = g, x 2 �, (12.30)

for which we can derive a variational formulation: find u 2 V such that,

a(u, v) = L(v), v 2 V, (12.31)

with a : V ⇥ V ! R a bilinear form, that is a function which is linear in
both arguments, and L : V ! R a linear form.

In a Galerkin method we seek an approximation U 2 V
h

such that

a(U, v) = L(v), v 2 V
h

, (12.32)

with V
h

⇢ V a finite dimensional subspace, which in the case of a finite
element method is a piecewise polynomial space.

Energy error estimation

A bilinear form a(·, ·) on the Hilbert space V is symmetric, if

a(v, w) = a(w, v), 8v, w 2 V, (12.33)
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and coercive, or elliptic, if

a(v, v) � ckvk, v 2 V, (12.34)

with c > 0. A symmetric and elliptic bilinear form defines an inner product
on V , which induces a norm which we refer to as the energy norm,

kwk
E

= a(w,w)1/2. (12.35)

The Galerkin approximation is optimal in the norm, since by Galerkin
orthogonality,

a(u� U, v) = 0, v 2 V
h

, (12.36)

we have that

ku� Uk2
E

= a(u� U, u� u
h

) = a(u� U, u� v) + a(u� U, v � u
h

)

= a(u� U, u� v)  ku� Uk
E

ku� vk
E

,

so that
ku� Uk

E

 ku� vk
E

, v 2 V
h

. (12.37)

12.4 Heat equation

We consider the heat equation,

u̇(x, t)��u(x, t) = f(x, t), (x, t) 2 ⌦⇥ I, (12.38)

u(x, t) = 0, (x, t) 2 �⇥ I, (12.39)

u(x, 0) = u0(x), x 2 ⌦ (12.40)

on the domain ⌦ ⇢ Rn with boundary �, and with the time interval I =
(0, T ). To find an approximate solution to the heat equation, we use semi-
discretization where space and time are discretized separately, using the
finite element method and time stepping, respectively.

For each t 2 T , multiply the equation by a test function v 2 V = H1
0 (⌦)

and integrate in space over ⌦ to get the variational formulation,
Z

⌦

u̇(x, t)v(x) dx+

Z

⌦

ru(x, t) ·rv(x) dx =

Z

⌦

f(x, t)v(x) dx,

from which we formulate a finite element method: find U 2 V
h

⇢ V , such
that,

Z

⌦

U̇(x, t)v(x) dx+

Z

⌦

rU(x, t) ·rv(x) dx =

Z

⌦

f(x, t)v(x) dx,
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for all v 2 V
h

, which corresponds to the system of initial value problems,

MU̇(t) + SU(t) = b(t), (12.41)

with m
ij

=
R
⌦ �

j

(x)�
i

(x) dx, and b
i

(t) =
R
⌦ f(x, t)�

i

(x) dx, which is solved
by time stepping to get,

U(x, t) =
mX

j=1

U
j

(t)�
j

(x). (12.42)

12.5 Exercises

Problem 27. Derive the variational formulation (12.27), and formulate
the finite element method.

Problem 28. Derive (12.41) from the variational formulation of the heat
equation.

Problem 29. Multiply (12.38) by u(x, t) and integrate over ⌦, to show that
for f(x, t) = 0,

d

dt
ku(t)k2  0. (12.43)
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Chapter 13

Minimization problems

13.1 Unconstrained minimization

The minimization problem

Find x̄ 2 D ⇢ Rn, such that

f(x̄)  f(x), 8x 2 D, (13.1)

with D ⇢ Rn the search space, x̄ 2 D the optimal solution, and f : D ! R
the objective function (or cost function).

A stationary point, or critical point, x̂ 2 D is a point for which the
gradient of the objective function is zero, that is,

rf(x̂) = 0, (13.2)

and we refer to x⇤ 2 D as a local minimum if there exists � > 0, such that,

f(x⇤)  f(x), 8x : kx� x⇤k  �. (13.3)

If the minimization problem is convex, an interior local minimum is a
global minimum, where in a convex minimization problem the search space
is convex, i.e.

(1� t)x+ ty 2 D, (13.4)

and the objective function is convex, i.e.

(1� t)f(x) + tf(y)  f((1� t)x+ ty), (13.5)

for all x, y 2 D and t 2 [0, 1].

119
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Gradient descent method

The level set of the function f : D ! Rn is defined as

L
c

(f) = {x 2 D : f(x) = c}, (13.6)

where we note that L
c

(f) represents a level curve in R2, a level surface in
R3, and more generally a hypersurface of dimension n� 1 in Rn.

Theorem 18. If f 2 C1(D), then the gradient rf(x) is orthogonal to the
level set L

c

(f) at x 2 D.

The gradient descent method is an iterative method that compute ap-
proximations to a local minimum of (13.1), by searching for the next iterate
in a direction orthogonal to the level set L

c

(f) in which the objective func-
tion decreases, the direction of steepest descent, with a step length ↵.

Algorithm 18: Method of steepest descent

Start from x(0) . initial approximation

for k = 1, 2, ... do
x(k+1) = x(k) � ↵(k)rf(x(k)) . Step with length ↵(k)

end

Newton’s method

For f 2 C1(D) we know by Taylor’s formula that,

f(x) ⇡ f(y) +rf(y) · (x� y) +
1

2
(x� y)THf(y)(x� y), (13.7)

for x, y 2 D, with Hf the Hessian matrix.
Newton’s method to find a local minimum in the form of a stationary

point is based on (13.7) with x = x(k+1), y = x(k) and �x = x(k+1) � x(k),
for which we seek the stationary point, by

0 =
d

d(�x)

✓
f(x(k)) +rf(x(k)) ·�x+

1

2
�xTHf(x(k))�x

◆

= rf(x(k)) +Hf(x(k))�x,

which gives Newton’s method as an iterative method with increment

�x = �(Hf(x(k)))�1rf(x(k)). (13.8)
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Algorithm 19: Newton’s method for finding a stationary point

Start from x(0) . initial approximation

for k = 1, 2, ... do
Hf(x(k))�x = �rf(x(k)) . solve linear system for �x
x(k+1) = x(k) +�x . Update approximation

end

13.2 Linear system of equations

We now revisit the problem to find a solution x 2 Rn to the system of linear
equations

Ax = b, (13.9)

with A 2 Rm⇥n and b 2 Rm, with m � n.

Least square method

The linear system of equations Ax = b can be solved by minimzation algo-
rithms, for example, in the form a least squares problem,

min
x2D

f(x), f(x) = kAx� bk2, (13.10)

with A 2 Rm⇥n and b 2 Rm, and m � n. The gradient is computed as,

rf(x) = r(kAx� bk2) = r((Ax)TAx� (Ax)T b� bTAx+ bT b)

= r(xTATAx� 2xTAT b+ bT b) = ATAx+ xTATA� 2AT b

= ATAx+ ATAx� 2AT b = 2AT (Ax� b),

which gives the following gradient descent method

x(k+1) = x(k) � ↵(k)2AT (Ax(k) � b) (13.11)

Quadratic forms

We consider the minimization problem,

min
x2D

f(x), (13.12)

where f(x) is the quadratic form

f(x) = xTAx� bTx+ c, (13.13)
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with x 2 Rn, A 2 Rn⇥n and n 2 R, with a stationary point given by

0 = rf(x) = r(
1

2
xTAx� bTx+ c) =

1

2
Ax+

1

2
ATx� b, (13.14)

which in the case A is a symmetric matrix corresponds to the linear system
of equations,

Ax = b. (13.15)

To prove that the solution x = A�1b is the solution of the minimization
problem, study the error e = u� y, with y 2 D, for which we have that

f(x+ e) =
1

2
(x+ e)TA(x+ e)� bT (x+ e) + c

=
1

2
xTAx+ eTAx+

1

2
eTAe� bTx� bT e+ c

= (
1

2
xTAx� bTx+ c) +

1

2
eTAe+ (eT b� bT e)

= f(x) +
1

2
eTAe.

We find that if A is a positive definite matrix x = A�1b is a global
minimum, and thus any system of linear equations with a symmetric posi-
tive definite matrix may be reformulated as minimization of the associated
quadratic form.

If A is not positive definite, it may be negative definite with minimum
being �1, singular with non unique minima, or else the quadratic form
f(x) has a saddle-point.

Gradient descent method

To solve the minimization problem for a quadratic form, we may use a
gradient descent method for which the gradient gives the residual,

�rf(x(k)) = b� Ax(k) = r(k), (13.16)

that is,
x(k+1) = x(k) � ↵rf(x(k)) = x(k) + ↵r(k). (13.17)

To choose a step length ↵ that minimizes x(k+1), we compute the deriva-
tive

d

d↵
f(x(k+1)) = rf(x(k+1))T

d

d↵
x(k+1) = rf(x(k+1))T r(k) = �(r(k+1))T r(k),
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which gives that ↵ should be chosen such that the successive residuals are
orthogonal, that is

(r(k+1))T r(k) = 0, (13.18)

which gives that

(r(k+1))T r(k) = 0

(b� Ax(k+1))T r(k) = 0

(b� A(x(k) + ↵r(k)))T r(k) = 0

(b� A(x(k))T r(k) � ↵(Ar(k))T r(k) = 0

(r(k))T r(k) = ↵(Ar(k))T r(k)

so that

↵ =
(r(k))T r(k)

(Ar(k))T r(k)
. (13.19)

Algorithm 20: Steepest descent method for Ax = b

Start from x(0) . initial approximation

for k = 1, 2, ... do
r(k) = b� Ax(k) . Compute residual r(k)

↵ = (r(k))T r(k)/(Ar(k))T r(k) . Compute step length ↵(k)

x(k+1) = x(k) + ↵(k)r(k) . Step with length ↵(k)

end

Conjugate gradient method revisited

We now revisit the conjugate gradient (CG) method in the form of a method
for solving the minimization of the quadratic form corresponding to a linear
system of equations with a symmetric positive definite matrix.

The idea is to formulate a search method,

x(k+1) = x(k) + ↵(k)d(k), (13.20)

with a set of orthogonal search directions {d(k)}n�1
k=0 , where the step length

↵(k) is determined by the condition that e(k+1) = x � x(k+1) should be A-
orthogonal, or conjugate, to d(k), thus

(d(k))TAe(k+1) = 0

(d(k))TA(e(k) � ↵(k)d(k)) = 0,
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so that

↵ =
(d(k))TAe(k)

(d(k))TAd(k)
=

(d(k))T r(k)

(d(k))TAd(k)
. (13.21)

To construct the orthogonal search directions d(k) we can use the Gram-
Schmidt iteration, whereas if we choose the search direction to be the resid-
ual we get the steepest descent method.

13.3 Constrained minimization

The constrained minimization problem

We now consider the constrained minimization problem,

min
x2D

f(x) (13.22)

g(x) = c, (13.23)

with the objective function f : D ! R, and the constraints g : D ! Rm,
with x 2 D ⇢ Rn and c 2 Rm.

We define the Lagrangian L : Rn+m ! R, as

L(x,�) = f(x)� � · (g(x)� c), (13.24)

with the dual variables, or Lagrangian multipliers, � 2 Rm, from which we
obtain the optimality conditions,

r
x

L(x,�) = rf(x)� � ·rg(x) = 0, (13.25)

r
�

L(x,�) = g(x)� c = 0, (13.26)

that is, n+m equations from which we can solve for the unknown variables
(x,�) 2 Rn+m.

Example in R2

For f : R2 ! R, g : R2 ! R and c = 0, the Lagrangian takes the form

L(x,�) = f(x)� �g(x), (13.27)

with the optimality conditions

r
x

L(x,�) = rf(x)� �rg(x) = 0, (13.28)

r
�

L(x,�) = g(x) = 0, (13.29)

so that rf = �rg(x), which corresponds to the curve defined by the con-
straint g(x) = 0 being parallel to a level curve of f(x) in x̄ 2 R2, the
solution to the constrained minimization problem.
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13.4 Optimal control

The constrained optimal control problem

We now consider the constrained optimal control problem,

min
↵

f(x,↵) (13.30)

g(x,↵) = c, (13.31)

with the objective function f : D⇥A ! R, and the constraints g : D⇥A !
Rm, with x 2 D ⇢ Rn, ↵ 2 A ⇢ Rl and c 2 Rm.

We define the Lagrangian L : Rn+m ! R, as

L(x,�,↵) = f(x,↵)� � · (g(x,↵)� c), (13.32)

with the dual variables, or Lagrangian multipliers, � 2 Rm, from which we
obtain the optimality conditions,

r
x

L(x,�) = r
x

f(x,↵)� � ·r
x

g(x,↵) = 0, (13.33)

r
�

L(x,�) = g(x,↵)� c = 0, (13.34)

r
↵

L(x,�) = r
↵

f(x,↵)� � ·r
↵

g(x) = 0, (13.35)

that is, n + m + l equations from which we can solve for the unknown
variables (x,�,↵) 2 Rn+m+l.

Example

We now consider the constrained minimization problem,

min
x2D

cTx (13.36)

Ax = b, (13.37)

with x, b, c 2 Rn, and A 2 Rn⇥n.
We define the Lagrangian L : R2n ! R, as

L(x,�) = cTx� �T (Ax� b), (13.38)

with � 2 Rn, from which we obtain the optimality conditions,

r
x

L(x,�) = c+ AT� = 0, (13.39)

r
�

L(x,�) = Ax� b = 0. (13.40)


