BB1190 VT17 P4: Genteknik/ Gene Technology

Instructor

Bitr. Lektor Paul Hudson huds@kth.se / Office: Gamma 5 Science for Life Laboratory

Course Schedule

Meet No.	Date	Time	Room	Title	Key Concepts	Required prep reading (before lecture)
1	T 21/3	10-12	FD5	L01: Genome features and organization	-What is a gene? -Chromosomes and complexity	-Ch. 2 C&P DNA, RNA, Protein (p 33-58) -Ch. 8 C&P: Genome (231-250) -Optional: Gregory 2014: Junk DNA
2	W 22/3	13-15	FD5	L02: PCR and DNA sequencing	-PCR theory and application -DNA sequencing	-Ch. 4 C&P DNA Synthesis (p. 100, 105-120) -Opt: Ch 9&10 Brown: PCR, DNA Seq
3	F 24/3	13-15	FD5	L03: DNA synthesis and cloning	-Gene synthesis -Cloning methods	-Ch. 1 Brown, Basic Principles of cloning (all) -Ch. 4 Brown (all) -Ch. 3 C&P Recombinant DNA (p.70-72,76-83)
4	M 27/3	13-15	FD5			-Opt: Gibson 2009/2010 "Gibson assembly method"
5	T 28/3	10-12	FD5	Homework 1: Genome assembly		Turn in homework at beginning of class
6	W 29/3	13-15	FD5	L04: Molecular Diagnostics Guest lecturer: Peter Savolainen KTH	-SNP analysis -Forensic analysis	-Ch. 8 C&P: Genome (231-250) -Figure 8.16, 8.17
7	F 31/3	13-15	FD5	L05: Genetic engineering of E.coli	-Plasmids -Homologous recombination -Laboratory strains	- <i>Opt:</i> Ch. 13 Brown: Proteins from cloned genes (p 225-237)
8	T 4/4	10-12	FD5	L06: Synthetic biology	-Simple gene regulation -Genetic "logic"	Alon 2007: Network motifs (p 450-455) -Opt: Collins 2014, Synbio history

9	W 5/4	13-15	FD5	Homework 2:		-Opt: Elowitz 1999
				Synthetic Biology		Turn in homework at beginning of class
10	F 7/4	15-17	FD5	L07: Gene regulation in a cell factory	-Transcription and translation control -Metabolic modeling	-Ch. 13 C&P Pathway Eng. (p 371-385) -BioNumbers excerpt on mutation -Opt: Pfleger TIGR paper
11	W	15-17	FD5	Homework 3:		-Opt: Paper on codon bias
	26/4			Gene regulation, cell factory		-Opt: Paper on adaptive evolution Turn in homework at beginning of class
12	H 27/4	13-15	FD5	L08: Antibody engineering	Antibody diversity in the genome -Natural antibody libraries	-Ch 6 C&P: Antibodies (p 173-191) -Opt: Ch 10 Glick, Antibodies (p 399-422)
13	W 3/5	15-17	FD5	L09: Vaccine creation	-Case study: Influenza vaccines -Case study: HIV vaccines	-Ch 6 C&P: Vaccines (p 191-201) -Opt: Ch 12 Glick, Vaccines (p. 460-472)
14	H 4/5	13-15	FD5	Cancelled		
15	W 10/5	15-17	FD5	Homework 4: Antibody development		
16	H 11/5	15-17	FD5	L10: Gene therapy	-Case: Glybera -Case: Zinc-finger nucleases	-Ch 17 C&P: Gene Therapy (all) -Ch 5 C&P: Ribozymes (p 152-168) -Opt: Perez 2008 Gene editing of HIV -Opt: Carrol 2014 Review gene editing tools
17	H 18/5	13-15	FD5	Homework 5: Gene therapy		
18	F 19/5	8-12	FD5	Review, practice exam	1	
	1 10/0	012				
	T 30/5	14-19	FB52	EXAM		

Laboratory

You will be provided with a laboratory manual that includes all relevant deadlines. Helpful texts for understanding the lab are from Brown: *Ch 3 "Purification of DNA from cells*," and Ch 5 *"Introduction of DNA into cells."* (Uploaded)

Course reading materials

Lecture notes and reading will be uploaded. Optional are not required but give more detail in an area. -C&P: Clark and Pazdernik **Biotechnology** (2nd ed, both 2009 and 2012 versions OK). -Brown TA: **Gene cloning and DNA analysis** (6th ed 2010) -Glick, Pasternak, and Patten: **Molecular Biotechnology** (4th ed 2010)

Grading

Homeworks must be handed in at the beginning of the class period. I will then scan them and hand back to you before we go over the answers. Homeworks will graded on a scale of P/F. You will get +1 point on the exam for each homework you complete. You must complete 3/5 homeworks to take the exam.

Homework problems are very indicative of exam problems.

Exam will be based on what we cover in class, homeworks, and the assigned reading (no specific questions from *Optional readings*). Grading rubric: <50 F, 50-60 E, 60-70 D, 70-80 C, 80-90 B, 90-100 A