Lecture 2 - Learning Binary & Multi-class Classifiers from Labelled Training Data

DD2424

March 21, 2017

Binary classification problem given labelled training data

Have labelled training examples

Given a test example how do we decide its class?

· Have a set of labelled training examples

High level solution

Technical description of the binary problem

 $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \quad \text{with each } \mathbf{x}_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\}.$

 \bullet Want to learn from ${\mathcal D}$ a classification function

$$g: \underset{\text{input space}}{\mathbb{R}^d} \times \underset{\text{parameter space}}{\mathbb{R}^p} \to \{-1, 1\}$$

Usually

$$g(\mathbf{x}; \boldsymbol{\theta}) = \mathrm{sign}(f(\mathbf{x}; \boldsymbol{\theta})) \quad \text{where} \quad f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}$$

- · Have to decide on
 - 1. Form of f (a hyperplane?) and
 - 2. How to estimate f's parameters $\hat{\theta}$ from \mathcal{D} .

Learn a decision boundary from the labelled training data.

Compare the test example to the decision boundary.

Learn decision boundary discriminatively

· Set up an optimization of the form (usually)

$$\arg\max_{\pmb{\theta}} \sum_{(\mathbf{x},y) \in \mathcal{D}} l(y,g(\mathbf{x};\pmb{\theta})) \ + \ \lambda \underbrace{R(\pmb{\theta})}_{\text{regularization term}}$$

where

- $l(y, f(\mathbf{x} \mid \boldsymbol{\theta}))$ is the **loss function** and measures how well (and robustly) $f(\mathbf{x}; \boldsymbol{\theta})$ predicts the label y.
- The training error term measures how well and robustly the function f(·:θ) predicts the labels over all the training data.
- The **regularization** term measures the *complexity* of the function $f(\cdot; \theta)$.

Usually want to learn simpler functions \impress less risk of over-fitting.

Comment on Over- and Under-fitting

Example of Over and Under fitting

Overfitting

- Too much fitting

 adapt too closely to the training data.
- · Have a high variance predictor.
- · This scenario is termed overfitting.
- . In such cases predictor loses the ability to generalize.

Underfitting

- Low complexity model ⇒ predictor may have large bias
- · Therefore predictor has poor generalization.

Linear discriminant functions

Linear function for the binary classification problem:

$$f(\mathbf{x}; \mathbf{w}, b) = \mathbf{w}^T \mathbf{x} + b$$

where model parameters are w the weight vector and b the bias.

Linear Decision Boundaries

Pros & Cons of Linear classifiers

Pros

- Low variance classifier
- · Easy to estimate.

Frequently can set up training so that have an easy optimization problem.

 For high dimensional input data a linear decision boundary can sometimes be sufficient.

Cons

· High bias classifier

Often the decision boundary is not well-described by a linear classifier.

How do we choose & learn the linear classifier?

Supervised learning of my classifier

Given labelled training data:

v * f(x)

how do we choose and learn the best hyperplane to separate the two classes?

Have a linear classifier next need to decide:

- How to measure the quality of the classifier w.r.t. labelled training data?
 - Choose/Define a loss function.

Most intuitive loss function

Supervised learning of my classifier

0, 1 Loss function

For a single example (x, y) the 0-1 loss is defined as

$$\begin{split} l(y, f(\mathbf{x}; \boldsymbol{\theta})) &= \begin{cases} 0 & \text{if } y = \text{sgn}(f(\mathbf{x}; \boldsymbol{\theta})) \\ 1 & \text{if } y \neq \text{sgn}(f(\mathbf{x}; \boldsymbol{\theta})) \end{cases} \\ &= \begin{cases} 0 & \text{if } y f(\mathbf{x}; \boldsymbol{\theta}) > 0 \end{cases} \end{split}$$

$$= \begin{cases} 0 & \text{if } y f(\mathbf{x}; \boldsymbol{\theta}) > 0 \\ 1 & \text{if } y f(\mathbf{x}; \boldsymbol{\theta}) < 0 \end{cases}$$
(assuming $y \in \{-1, 1\}$)

Have a linear classifier next need to decide:

- 1. How to measure the quality of the classifier w.r.t. labelled training data?
 - Choose/Define a loss function.
- 2. How to measure the complexity of the classifier?
 - Choose/Define a regularization term.

Applied to all training data \implies count the number of misclassifications.

Not really used in practice as has lots of problems! What are some?

Most common regularization function

 L_2 regularization

$$R(\mathbf{w}) = \|\mathbf{w}\|^2 = \sum_{i=1}^d w_i^2$$

Adding this form of regularization:

- Encourages $\ensuremath{\mathbf{w}}$ not to contain entries with large absolute values.
- or want small absolute values in all entries of w.

Example: Squared Error loss

Have a linear classifier next need to decide:

- How to measure the quality of the classifier w.r.t. labelled training data?
 - Choose/Define a loss function.
- 2. How to measure the complexity of the classifier?
 - Choose/Define a regularization term.
- How to do estimate the classifier's parameters by optimizing relative to the above factors?

Squared error loss & no regularization

• Learn w, b from D. Find the w, b that minimizes:

$$\begin{split} L(\mathcal{D}, \mathbf{w}, b) &= \frac{1}{2} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l_{\text{sq}}(y, f(\mathbf{x}; \mathbf{w}, b)) \\ &= \frac{1}{2} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \frac{\left((\mathbf{w}^T \mathbf{x} + b) - y\right)^2}{\text{Squared error loss}} \end{split}$$

L is known as the sum-of-squares error function.

- The w*, b* that minimizes L(D, w, b) is known as the Minimum Squared Error solution.
- This minimum is found as follows....

Matrix Calculus

Matrix Calculus

- Have a function $f: \mathbb{R}^d \to \mathbb{R}$ that is $f(\mathbf{x}) = b$
- · We use the notation

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{pmatrix}$$

• Example: If $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = \sum_{i=1}^d a_i x_i$ then

$$\frac{\partial f}{\partial x_i} = a_i \implies \frac{\partial f}{\partial \mathbf{x}} = \begin{pmatrix} a_1 \\ \vdots \\ a_d \end{pmatrix} = \mathbf{a}$$

Technical interlude: Matrix Calculus

Matrix Calculus

Derivative of a linear function

• Have a function $f:\mathbb{R}^{d\times d}\to\mathbb{R}$ that is f(X)=b with $X\in\mathbb{R}^{d\times d}$

· We use the notation

$$\frac{\partial f}{\partial X} = \begin{pmatrix} \frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} & \cdots & \frac{\partial f}{\partial x_{1d}} \\ \frac{\partial f}{\partial x_{21}} & \frac{\partial f}{\partial x_{22}} & \cdots & \frac{\partial f}{\partial x_{2d}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_{n1}} & \frac{\partial f}{\partial x_{n2}} & \cdots & \frac{\partial f}{\partial x_{nd}} \end{pmatrix}$$

• Example: If $f(X) = \mathbf{a}^T X \mathbf{b} = \sum_{i=1}^d a_i \sum_{j=1}^d x_{ij} b_j$ then

$$\frac{\partial f}{\partial x_{ij}} = a_i b_j \quad \Longrightarrow \quad \frac{\partial f}{\partial X} = \begin{pmatrix} a_1 b_1 & a_1 b_2 & \dots & a_1 b_d \\ \vdots & \vdots & \vdots & \vdots \\ a_i b_1 & a_i b_2 & \dots & a_i b_j \end{pmatrix} = \mathbf{a} \mathbf{b}^T$$

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}$$
 (1)

$$-\frac{\partial}{\partial x} - a$$
 (1)

$$\frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \tag{2}$$

$$\frac{\partial \mathbf{a}^T X \mathbf{b}}{\partial X} = \mathbf{a} \mathbf{b}^T \tag{3}$$

$$\frac{\partial \mathbf{a}^T X^T \mathbf{b}}{\partial X} = \mathbf{b} \mathbf{a}^T \tag{4}$$

Matrix Calculus

(6)

(7)

Derivative of a quadratic function

$$\frac{\partial \mathbf{x}^T B \mathbf{x}}{\partial \mathbf{x}} = (B + B^T) \mathbf{x}$$
 (5)

$$\frac{\partial \mathbf{b}^T X^T X \mathbf{c}}{\partial Y} = X(\mathbf{b} \mathbf{c}^T + \mathbf{c} \mathbf{b}^T) \tag{6}$$

$$\frac{\partial (B\mathbf{x} + \mathbf{b})^T C(D\mathbf{x} + \mathbf{d})}{\partial \mathbf{x}} = B^T C(D\mathbf{x} + \mathbf{d}) + D^T C^T (B\mathbf{x} + \mathbf{b})$$

$$\frac{\partial \mathbf{b}^T X^T D X \mathbf{c}}{\partial Y} = D^T X \mathbf{b} \mathbf{c}^T + D X \mathbf{c} \mathbf{b}^T$$
(8)

End of Technical interlude

Pseudo-Inverse solution

Can write the cost function as

$$L(\mathcal{D}, \mathbf{w}, b) = \frac{1}{2} \sum_{(\mathbf{x}, y) \in \mathcal{D}} (\mathbf{w}^T \mathbf{x} + b - y)^2 = \frac{1}{2} \sum_{(\mathbf{x}, y) \in \mathcal{D}} (\mathbf{w}_1^T \mathbf{x}' - y)^2$$
where $\mathbf{x}' = (\mathbf{x}^T, 1)^T, \mathbf{w}_1 = (\mathbf{w}^T, b)^T$

· Writing in matrix notation this becomes

$$\begin{split} L(\mathcal{D}, \mathbf{w}_1) &= \frac{1}{2} \|X\mathbf{w}_1 - \mathbf{y}\|^2 = \frac{1}{2} (X\mathbf{w}_1 - \mathbf{y})^T (X\mathbf{w}_1 - \mathbf{y}) \\ &= \frac{1}{2} \left(\mathbf{w}_1^T X^T X \mathbf{w}_1 - 2 \mathbf{y}^T X \mathbf{w}_1 + \mathbf{y}^T \mathbf{y} \right) \end{split}$$

where

$$\mathbf{y} = (y_1, \dots, y_n)^T$$
, $\mathbf{w} = (w_1, \dots, w_{d+1})^T$, $X = \begin{pmatrix} \mathbf{x}_1^T & 1 \\ \vdots & \vdots \\ \mathbf{x}_n^T & 1 \end{pmatrix}$

Pseudo-Inverse solution

The gradient of L(D, w₁) w.r.t. w₁:

$$\nabla_{\mathbf{w}_1} L(\mathcal{D}, \mathbf{w}_1) = X^T X \mathbf{w}_1 - X^T \mathbf{y}$$

• Setting this equal to zero yields $X^T X \mathbf{w}_1 = X^T \mathbf{v}$ and

$$\mathbf{w}_1 = X^{\dagger} \mathbf{v}$$

where

$$X^{\dagger} \equiv (X^T X)^{-1} X^T$$

 X[†] is called the pseudo-inverse of X. Note that X[†]X = I but in general $XX^{\dagger} \neq I$.

Decision boundary found by minimizing

$$L_{\text{squared error}}(D, \mathbf{w}, b) = \sum_{(\mathbf{x}, y) \in D} (y - (\mathbf{w}^T \mathbf{x} + b))^2$$

Technical interlude: Iterative Optimization

The gradient of L(D, w₁) w.r.t. w₁:

$$\nabla_{\mathbf{w}_1} L(D, \mathbf{w}_1) = X^T X \mathbf{w}_1 - X^T \mathbf{y}$$

• Setting this equal to zero yields $X^T X \mathbf{w}_1 = X^T \mathbf{y}$ and

$$\mathbf{w}_1 = X^{\dagger}\mathbf{y}$$

where

$$X^{\dagger} \equiv (X^T X)^{-1} X^T$$

- X[†] is called the **pseudo-inverse** of X. Note that X[†]X = I but in general XX[†] ≠ I.
- $\bullet \ \ \text{If} \ X^TX \ \text{singular} \implies \ \text{no unique solution to} \ X^TX\mathbf{w} = X^T\mathbf{y}.$

Iterative Optimization

 Common approach to solving such unconstrained optimization problem is iterative non-linear optimization.

$$\mathbf{x}^* = \arg \min_{\forall \mathbf{x}} f(\mathbf{x})$$

- Start with an estimate x⁽⁰⁾.
- Try to improve it by finding successive new estimates $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \dots$ s.t. $f(\mathbf{x}^{(1)}) \geq f(\mathbf{x}^{(2)}) \geq f(\mathbf{x}^{(3)}) \geq \dots$ until convergence.
- To find a better estimate at each iteration: Perform the search locally around the current estimate.
- Such iterative approaches will find a local minima.

Iterative optimization methods alternate between these two steps:

Decide search direction

Choose a search direction based on the local properties of the cost function

Line Search

Perform an intensive search to find the minimum along the chosen direction.

The gradient is defined as:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) \equiv \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_d} \end{pmatrix}$$

The gradient points in the direction of the greatest increase of $f(\mathbf{x})$.

Gradient descent: Method for function minimization

Gradient descent finds the minimum in an iterative fashion by moving in the direction of steepest descent.

Gradient Descent Minimization

- 1. Start with an arbitrary solution $\mathbf{x}^{(0)}$.
- 2. Compute the gradient $\nabla_{\mathbf{x}} f(\mathbf{x}^{(k)}).$
- steepest descent:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \eta^{(k)} \nabla_{\mathbf{x}} f(\mathbf{x}^{(k)}).$$

where $\eta^{(k)}$ is the step size.

4. Go to 2 (until convergence).

3. Move in the direction of

End of Technical interlude

The error function $J(\mathbf{w}_1)$ could also be minimized wrt \mathbf{w}_1 by using a gradient descent procedure.

Why?

- \bullet This avoids the numerical problems that arise when X^TX is (nearly) singular.
- . It also avoids the need for working with large matrices.

How

- 1. Begin with an initial guess $\mathbf{w}_1^{(0)}$ for $\mathbf{w}_1.$
- 2. Update the weight vector by moving a small distance in the direction $-\nabla_{\mathbf{W}^{1}}J.$

Stochastic gradient descent solution

 Increase the number of updates per computation by considering each training sample sequentially

$$\mathbf{w}_1^{(t+1)} = \mathbf{w}_1^{(t)} - \eta^{(t)} (\mathbf{x}_i^T \mathbf{w}_1^{(t)} - y_i) \mathbf{x}_i$$

- This is known as the Widrow-Hoff, least-mean-squares (LMS) or delta rule [Mitchell, 1997].
- More generally this is an application of Stochastic Gradient Descent.

Solution

$$\mathbf{w}_{1}^{(t+1)} = \mathbf{w}_{1}^{(t)} - \eta^{(t)} X^{T} (X \mathbf{w}_{1}^{(t)} - \mathbf{y})$$

- If $\eta^{(t)}=\eta_0/t$, where $\eta_0>0$, then
- $\mathbf{w}_1^{(0)}, \mathbf{w}_1^{(1)}, \mathbf{w}_1^{(2)}, \dots$ converges to a solution of

$$X^T(X\mathbf{w}_1 - \mathbf{y}) = \mathbf{0}$$

ullet Irrespective of whether X^TX is singular or not.

Technical interlude: Stochastic Gradient Descent

Form of the optimization problem:

$$J(\mathcal{D}, \boldsymbol{\theta}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l(f(\mathbf{x}; \boldsymbol{\theta}), y) + \lambda R(\boldsymbol{\theta})$$

$$\theta^* = \arg \min_{\theta} J(D, \theta)$$

- · Solution with gradient descent
 - 1. Start with a random guess $\theta^{(0)}$ for the parameters.
 - 2. Then iterate until convergence

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} \nabla_{\boldsymbol{\theta}} J(\mathcal{D}, \boldsymbol{\theta})|_{\boldsymbol{\theta}^{(t)}}$$

If $|\mathcal{D}|$ is large

- ⇒ computing ∇_θ J(θ, D)|_{ρ(t)} is time consuming
- ⇒ each update of θ^(t) takes lots of computations
- Gradient descent needs lots of iterations to converge as η usually small
- ⇒ GD takes an age to find a local optimum.

Work around: Stochastic Gradient Descent

Comments about SGD

- Start with a random solution $\theta^{(0)}$.
- Until convergence for t = 1,...
 - Randomly select (x, u) ∈ D.
 - Set D^(t) = {(x, y)}.
 - 3. Update parameter estimate with

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} \nabla_{\boldsymbol{\theta}} J(\mathcal{D}^{(t)}, \boldsymbol{\theta}) \Big|_{\boldsymbol{\theta}^{(t)}}$$

• When $|D^{(t)}| = 1$:

$$\left. \nabla_{\boldsymbol{\theta}} J(\mathcal{D}^{(t)}, \boldsymbol{\theta}) \right|_{\boldsymbol{\theta}^{(t)}} \text{ a noisy estimate of } \left. \nabla_{\boldsymbol{\theta}} J(\mathcal{D}, \boldsymbol{\theta}) \right|_{\boldsymbol{\theta}^{(t)}}$$

Therefore

 $|\mathcal{D}|$ noisy update steps in SGD ≈ 1 correct update step in GD.

- . In practice SGD converges a lot faster then GD.
- · Given lots of labelled training data:

Quantity of updates more important than quality of updates!

- · Preparing the data
 - Randomly shuffle the training examples and zip sequentially through D.
 - Use preconditioning techniques.
- Monitoring and debugging
 - Monitor both the training cost and the validation error.
 - Check the gradients using finite differences.
 - Experiment with learning rates $\eta^{(t)}$ using a small sample of the training set.

- Start with a random guess $oldsymbol{ heta}^{(0)}$ for the parameters.
- Until convergence for $t = 1, \dots$
 - 1. Randomly select a subset $\mathcal{D}^{(t)}\subset\mathcal{D}$ s.t. $|\mathcal{D}^{(t)}|=n_b$ (typically $n_bpprox 150$.)
 - 2. Update parameter estimate with

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} \nabla_{\boldsymbol{\theta}} J(\mathcal{D}^{(t)}, \boldsymbol{\theta}) \Big|_{\boldsymbol{\theta}^{(t)}}$$

Benefits of mini-batch gradient descent

What learning rate?

- Obtain a more accurate estimate of $\left. \nabla_{\pmb{\theta}} J(\mathcal{D}, \pmb{\theta}) \right|_{\pmb{\theta}^{(t)}}$ than in SGD.
- Still get lots of updates per epoch (one iteration through all the training data).

- Issues with setting the learning rate $\eta^{(t)}$?
 - Larger η's ⇒ potentially faster learning but with the risk of less stable convergence.
 - Smaller η 's \implies slow learning but stable convergence.
- Strategies
 - Constant: $\eta^{(t)} = .01$
 - Decreasing: $\eta^{(t)}=1/\sqrt{t}$
- · Lots of recent algorithms dealing with this issue

Will describe these algorithms in the near future.

End of Technical interlude

Squared Error loss $+ L_2$ regularization

Add an L_2 regularization term (a.k.a. ridge regression)

· Add a regularization term to the loss function

$$\begin{split} J_{idge}(\mathcal{D}, \mathbf{w}, b) &= \frac{1}{2} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} l_{sq}(\mathbf{y}, \mathbf{w}^T \mathbf{x} + b) + \lambda \|\mathbf{w}\|^2 \\ &= \frac{1}{2} \|X\mathbf{w} + b\mathbf{1} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|^2 \end{split}$$

where $\lambda > 0$ and small and X is the data matrix

$$X = \begin{pmatrix} \leftarrow & \mathbf{x}_1^T & \rightarrow \\ \leftarrow & \mathbf{x}_2^T & \rightarrow \\ & \vdots & \\ \leftarrow & \mathbf{x}_n^T & \rightarrow \end{pmatrix}$$

Solving Ridge Regression: Centre the data to simplify

· Add a regularization term to the loss function

$$J_{\text{ridge}}(\mathcal{D}, \mathbf{w}, b) = \frac{1}{2} ||X\mathbf{w} + b\mathbf{1} - \mathbf{y}||^2 + \lambda ||\mathbf{w}||^2$$

· Let's centre the input data

$$X_{c} = \begin{pmatrix} \leftarrow & \mathbf{x}_{c,1}^{T} & \rightarrow \\ \leftarrow & \mathbf{x}_{c,2}^{T} & \rightarrow \\ & \vdots & \\ \leftarrow & \mathbf{x}_{c}^{T} & \rightarrow \end{pmatrix} \quad \text{where } \mathbf{x}_{c,i} = \mathbf{x}_{i} - \boldsymbol{\mu}_{\mathbf{x}}$$

$$\implies X_c^T \mathbf{1} = \mathbf{0}.$$

Optimal bias with centered input X_c (does not depend on w*) is:

$$\begin{split} \frac{\partial J_{idge}}{\partial b} &= b\mathbf{1}^T\mathbf{1} + \mathbf{w}^TX_c^T\mathbf{1} - \mathbf{1}^T\mathbf{y} \\ &= b\mathbf{1}^T\mathbf{1} - \mathbf{1}^T\mathbf{y} \\ \implies b^* &= 1/n\sum_{i=1}^n y_i = \bar{y}. \end{split}$$

Add a regularization term to the loss function

$$J_{\mathsf{ridge}}(\mathcal{D}, \mathbf{w}) = \frac{1}{2} \|X_c \mathbf{w} + \bar{y} \mathbf{1} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|^2$$

• Compute the gradient of J_{ridge} w.r.t. w

$$\frac{\partial J_{\text{ridge}}}{\partial \mathbf{w}} = (X_c^T X_c + \lambda I_d) \mathbf{w} - X_c^T \mathbf{y}$$

Set to zero to get

$$\mathbf{w}^* = (X_c^T X_c + \lambda I_d)^{-1} X_c^T \mathbf{v}$$

• $(X_c^T X_c + \lambda I_d)$ has a unique inverse even if $X_c^T X_c$ is singular.

Ridge Regression decision boundaries

Simple 2D Example

Solving ridge regression: Optimal weight vector

 $\lambda = 1000$

Decision boundaries found by minimizing

Add a regularization term to the loss function

 $\lambda = 100$

$$J_{\mathsf{ridge}}(\mathcal{D}, \mathbf{w}) = \frac{1}{2} \|X_c \mathbf{w} + \bar{y} \mathbf{1} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|^2$$

ullet Compute the gradient of J_{ridge} w.r.t. ${f w}$

$$\frac{\partial J_{\text{ridge}}}{\partial \mathbf{w}} = (X_c^T X_c + \lambda I_d) \mathbf{w} - X_c^T \mathbf{y}$$

· Set to zero to get

$$\mathbf{w}^* = (X_c^T X_c + \lambda I_d)^{-1} X_c^T \mathbf{y}$$

- $(X_c^T X_c + \lambda I_d)$ has a unique inverse even if $X_c^T X_c$ is singular.
- If d is large

 have to invert a very large matrix.

Solving ridge regression: Iteratively

· The gradient-descent update step is

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \left[\left(X_c^T X_c + \lambda I_d \right) \mathbf{w}^{(t)} - X_c^T \mathbf{y} \right]$$

• The SGD update step for sample (\mathbf{x},y) is

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \left[\left((\mathbf{x} - \boldsymbol{\mu}_x) (\mathbf{x} - \boldsymbol{\mu}_x)^T + \lambda I_d \right) \mathbf{w}^{(t)} - (\mathbf{x} - \boldsymbol{\mu}_x) y \right]$$

The Hinge loss

$$l(\mathbf{x},y;\mathbf{w},b) = \max\left\{0,1-y(\mathbf{w}^T\mathbf{x}+b)\right\}$$

- . This loss is not differentiable but is convex.
- Correctly classified examples sufficiently far from the decision boundary have zero loss.

Hinge Loss

Technical interlude: Sub-gradient

• g is a subgradient of f at x if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{y}$$

• 1D example:

- g_2, g_3 are subgradients at x_2 ;
- g_1 is a subgradient at x_1 .

End of Technical interlude

- Set of all subgradients of f at ${\bf x}$ is called the subdifferential of f at ${\bf x}$, written $\partial f({\bf x})$
- 1D example:

• If f is convex and differentiable: $\nabla f(\mathbf{x})$ a subgradient of f at \mathbf{x} .

The Hinge loss

Find w, b that minimize

$$L_{\text{hinge}}(\mathcal{D}, \mathbf{w}, b) = \sum_{(\mathbf{x}, y) \in \mathcal{D}} \underbrace{\max \{0, 1 - y(\mathbf{w}^T \mathbf{x} + b)\}}_{\text{Hinge loss}}$$

- · Can use stochastic gradient descent to do the optimization.
- . The (sub-)gradients of the hinge-loss are

$$\nabla_{\mathbf{w}} l(\mathbf{x}, y; \mathbf{w}, b) = \begin{cases} -y \, \mathbf{x} & \text{if } y(\mathbf{w}^T \mathbf{x} + b) > 1 \\ 0 & \text{otherwise.} \end{cases}$$

$$\frac{\partial \, l(\mathbf{x},y;\mathbf{w},b)}{\partial b} = \begin{cases} -y & \text{if } y(\mathbf{w}^T\mathbf{x}+b) > 1 \\ 0 & \text{otherwise}. \end{cases}$$

Example of decision boundary found

Decision boundary found by minimizing with SGD

$$L_{\text{hinge}}(\mathcal{D}, \mathbf{w}, b) = \sum_{(\mathbf{x}, y) \in \mathcal{D}} \ \max \left\{ 0, 1 - y(\mathbf{w}^T \mathbf{x} + b) \right\}$$

L_2 regularization + Hinge loss

 \bullet Find \mathbf{w},b that minimize

$$J_{\text{svm}}(\mathcal{D}, \mathbf{w}, b) = \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{(\mathbf{x}, y) \in \mathcal{D}} \underbrace{\max \left\{0, 1 - y(\mathbf{w}^T \mathbf{x} + b)\right\}}_{\text{Hinge Loss}}$$

- · Can use stochastic gradient descent to do the optimization.
- · The sub-gradients of this cost function

$$\begin{split} \nabla_{\mathbf{w}} l(\mathbf{x}, y; \mathbf{w}, b) &= \begin{cases} \lambda \mathbf{w} - y \, \mathbf{x} & \text{if } y(\mathbf{w}^T \mathbf{x} + b) > 1 \\ \lambda \mathbf{w} & \text{otherwise.} \end{cases} \\ \frac{\partial l(\mathbf{x}, y; \mathbf{w}, b)}{\partial b} &= \begin{cases} -y & \text{if } y(\mathbf{w}^T \mathbf{x} + b) > 1 \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

L_2 Regularization + Hinge Loss

Example of decision boundary found

Decision boundary found with SGD by minimizing ($\lambda = .01$)

$$J_{\text{hinge}}(\mathcal{D}, \mathbf{w}, b) = \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{(\mathbf{x}, y) \in \mathcal{D}} \max \left\{ 0, 1 - y(\mathbf{w}^T \mathbf{x} + b) \right\}$$

Regularization reduces the influence of *outliers*

Decision boundaries found by minimizing

" L_2 Regularization + Hinge Loss" \equiv SVM

SVM's constrained optimization problem

SVM solves this constrained optimization problem:

$$\begin{aligned} \min_{\mathbf{w},b} & \left(\frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i=1}^n \xi_i\right) & \text{subject to} \\ & y_i(\mathbf{w}^T\mathbf{x}_i + b) \geq 1 - \xi_i & \text{for } i = 1,\dots,n \end{aligned} \quad \text{and} \quad \xi_i \geq 0 & \text{for } i = 1,\dots,n. \end{aligned}$$

Alternative formulation of SVM optimization

SVM solves this constrained optimization problem:

$$\min_{\mathbf{w},b} \left(\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^n \xi_i \right) \quad \text{subject to}$$

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i \quad \text{for } i = 1, \dots, n \quad \text{and}$$

$$\xi_i \ge 0 \quad \text{for } i = 1, \dots, n.$$

· Let's look at the constraints:

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i \implies \xi_i \ge 1 - y_i(\mathbf{w}^T\mathbf{x}_i + b)$$

But ξ_i ≥ 0 also, therefore

$$\{\xi_i \geq \max\{0, 1 - y_i(\mathbf{w}^T\mathbf{x}_i + b)\}$$

Thus the original constrained optimization problem can be restated as an unconstrained optimization problem:

$$\min_{\mathbf{w},b} \left(\frac{\frac{1}{2} \|\mathbf{w}\|^2}{\operatorname{Regularization term}} + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b) \right\} \right)$$

and corresponds to the L_2 regularization + Hinge loss formulation!

Victorial CV/Marchite CCD / mini basel and the statement

From binary to multi-class classification

Thus the original constrained optimization problem can be restated as an unconstrained optimization problem:

$$\min_{\mathbf{w},b} \left(\frac{\frac{1}{2}\|\mathbf{w}\|^2}{\text{Regularization term}} + C \sum_{i=1}^n \max\left\{0,1-y_i(\mathbf{w}^T\mathbf{x}_i+b)\right\} \right)$$

and corresponds to the L_2 ${\bf regularization} + {\bf Hinge}$ loss formulation!

⇒ can train SVMs with SGD/mini-batch gradient descent.

Example dataset: CIFAR-10

Example dataset: CIFAR-10

Technical description of the multi-class problem

- 10
- 10 classes
 - 50,000 training images
 - 10,000 test images
 - Each image has size $32 \times 32 \times 3$

Multi-class linear classifier

ullet Let each f_j be a linear function that is

$$f_j(\mathbf{x}; \boldsymbol{\theta}_j) = \mathbf{w}_j^T \mathbf{x} + b_j$$

Define

bird

deer

dog

ship

truck

$$f(\mathbf{x}; \boldsymbol{\Theta}) = \begin{pmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_C(\mathbf{x}) \end{pmatrix}$$

then

$$f(\mathbf{x}; \mathbf{\Theta}) = f(\mathbf{x}; W, \mathbf{b}) = W\mathbf{x} + \mathbf{b}$$

where

$$W = \begin{pmatrix} \mathbf{w}_1^T \\ \vdots \\ \mathbf{w}^T \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1^T \\ \vdots \\ b^T \end{pmatrix}$$

• Note W has size $C \times d$ and \mathbf{b} is $C \times 1$.

Have a set of labelled training examples

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \quad \text{with each } \mathbf{x}_i \in \mathbb{R}^d, \ y_i \in \{1, \dots, C\}.$$

ullet Want to learn from ${\mathcal D}$ a classification function

$$g: \underset{\text{input space}}{\mathbb{R}^d} \times \underset{\text{parameter space}}{\mathbb{R}^P} \to \{1, \dots, C\}$$

Usually

$$g(\mathbf{x}; \mathbf{\Theta}) = \arg \max_{1 \le j \le C} f_j(\mathbf{x}; \mathbf{\theta}_j)$$

where for $j = 1, \dots, C$:

$$f_j: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}$$

and $\Theta = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_C)$.

Multi-class linear classifier to an image

 \bullet Have a 2D colour image but can flatten it into a 1D vector $\mathbf x$

 $oldsymbol{\cdot}$ Apply classifier: $W\mathbf{x}+\mathbf{b}$ to get a score for each class.

Interpreting a multi-class linear classifier

Interpreting a multi-class linear classifier

- · Learn W, b to classify the images in a dataset.
- Can interpret each row, \mathbf{w}_i , of W as a template for class j.
- Below is the visualization of each learnt \mathbf{w}_i for CIFAR-10

- Each $\mathbf{w}_{i}^{T}\mathbf{x} + b_{j} = 0$ corresponds to a hyperplane, H_{j} , in \mathbb{R}^{d} .
- $sign(\mathbf{w}_i^T\mathbf{x} + b_i)$ tells us which side of H_i the point \mathbf{x} lies.
- The score |w_i^T x + b_i| ∝ the distance of x to H_i.

How do we learn W and \mathbf{b} ?

How do we learn W and b?

As before need to

- Specify a loss function (+ a regularization term).
- · Set up the optimization problem.
- · Perform the optimization.

As before need to

- · Specify a loss function
 - must quantify the quality of all the class scores across all the training data.
- · Set up the optimization problem.
- · Perform the optimization.

Multi-class SVM Loss

· Remember have training data

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \quad \text{with each } \mathbf{x}_i \in \mathbb{R}^d \text{, } y_i \in \{1, \dots, C\}.$$

• Let s_i be the score of function f_i applied to x

$$s_j = f_j(\mathbf{x}; \mathbf{w}_j, b_j) = \mathbf{w}_j^T \mathbf{x} + b_j$$

The SVM loss for training example x with label y is

$$l = \sum_{\substack{j=1\\j \neq y}}^{C} \max(0, s_j - s_y + 1)$$

Multi-class SVM Loss

s_i is the score of function f_i applied to x

Multi-class loss functions

$$s_i = f_i(\mathbf{x}; \mathbf{w}_i, b_i) = \mathbf{w}_i^T \mathbf{x} + b_i$$

ullet SVM loss for training example ${f x}$ with label y is

$$l = \sum_{\substack{j=1\\ j \neq y}}^{C} \max(0, s_j - s_y + 1)$$

Calculate the multi-class SVM loss for a CIFAR image

cat

deer

ship

truck

$$\mathbf{s} = W\mathbf{x} + \mathbf{b} \qquad y = 8 \qquad \qquad l = \sum_{\substack{j=1\\j \neq y}}^{10} \max(0, s_j - s_y + 1)$$

output

Scores -0.3166-0.6609 0.7058

0.8538

0.65250.18740.6072

-1.3490

-1.2225

s = Wx + b

$$l = \sum_{\substack{j=1\\j \neq y}}^{10} m$$

$$l = \sum_{\substack{j=1\\j\neq y}} n$$

$$=\sum_{\substack{j=1\\j\neq y}}\max(0,$$

Calculate the multi-class SVM loss for a CIFAR image

input: x output label loss
$$\mathbf{s} = W\mathbf{x} + \mathbf{b} \qquad y = 8 \qquad l = \sum_{\substack{j=1 \\ j \neq y}}^{10} \max(0, s_j - s_y + 1)$$
 Scores Compare to here score source of the second of the sec

1 1392

0.6741

1.0938

1.0000

-0.8624

 $s - s_0 + 1$

Calculate the multi-class SVM loss for a CIFAR image

$$\mathbf{s} = W\mathbf{x} + \mathbf{b} \qquad \mathbf{y} = \mathbf{8} \qquad \begin{array}{c} l = \sum\limits_{j=1}^{10} \max(0, s_j - s_y + 1) \\ \\ \text{Scores} \qquad & \text{Compare to horse score} \\ \text{airphane} \qquad -0.3166 \qquad 0.1701 \qquad 0.1701 \\ \text{car} \qquad -0.6690 \qquad -0.1743 \qquad 0 \\ \text{bird} \qquad 0.7058 \qquad 1.1925 \qquad 1.1925 \\ \text{cat} \qquad 0.8538 \qquad 1.1405 \qquad 1.1302 \\ \text{deer} \qquad 0.6525 \qquad 1.1302 \qquad 1.1302 \\ \text{dog} \qquad 0.1874 \qquad 0.6741 \qquad 0.6741 \\ \text{frow} \qquad 0.0672 \qquad 1.0938 \qquad 1.0938 \\ \end{array}$$

1.0000

 $\max(0, s - s_n + 1)$

No

Loss for x: 5.4723

-1.3490

-12225

s = Wx + b

ship

Problem with the SVM loss

Given W and b then

ship

0.1874

0.6072

-1.3490

-12225

s = Wx + b

· Response for one training example

$$f(\mathbf{x}; W, \mathbf{b}) = W\mathbf{x} + \mathbf{b} = \mathbf{s}$$

• loss for x

$$l(\mathbf{x}, y, W, \mathbf{x}) = \sum_{j=1}^{C} \max(0, s_j - s_y + 1)$$

Loss over all the training data

$$L(\mathcal{D}, W, \mathbf{b}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} l(\mathbf{x}, y, W, \mathbf{b})$$

Have found a W s.t. L=0. Is this W unique?

Let $W_1 = \alpha W$ and $\mathbf{b}_1 = \alpha \mathbf{b}$ where $\alpha > 1$ then

Response for one training example

$$f(x; W_1, b) = W_1x + b_1 = s' = \alpha(Wx + b)$$

-0.8624

 $s - s_0 + 1$

• Loss for (x, y) w.r.t. W_1 and b_1

$$\begin{split} l(\mathbf{x}, y, W_1, \mathbf{b}_1) &= \sum_{\substack{j=1\\j \neq y}}^{C} \max(0, s_j' - s_y' + 1) \\ &= \max(0, \alpha(\mathbf{w}_j^T \mathbf{x} + b_j - \mathbf{w}_y^T \mathbf{x} - b_y) + 1) \\ &= \max(0, \alpha(s_j - s_y) + 1) \end{split}$$

=0 as by definition $s_i - s_u < -1$ and $\alpha > 1$

Thus the total loss L(D, W₁, b₁) is 0.

Solution: Weight regularization

$$L(\mathcal{D}, W, \mathbf{b}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \sum_{j=1}^{C} \max(0, f_j(\mathbf{x}; W, \mathbf{b}) - f_y(\mathbf{x}; W, \mathbf{b}) + 1) + \lambda R(W)$$

Commonly used Regularization

Name of regularization	
L_2	$\sum_{k}\sum_{l}W_{k,l}^{2}$
L_1	$\sum_k \sum_l W_{k,l} $
Elastic Net	$\sum_{k}\sum_{l}\left(\beta W_{k,l}^{2}+\left W_{k,l}\right \right)$

Cross-entropy Loss

Probabilistic interpretation of scores

Let p_i be the probability that input x has label j:

$$P_{Y|X}(j \mid \mathbf{x}) = p_j$$

· For x our linear classifier outputs scores for each class:

$$s = Wx + b$$

· Can interpret scores, s, as:

unnormalized log probability for each class.

 \Rightarrow

$$s_i = \log p'_i$$

where $\alpha p_j' = p_j$ and $\alpha = \sum p_j'$.

$$P_{Y|\mathbf{X}}(j \mid \mathbf{x}) = p_j = \frac{\exp(s_j)}{\sum_k \exp(s_k)}$$

Softmax operation

· This transformation is known as

$$Softmax(s) = \frac{exp(s_j)}{\sum_k exp(s_k)}$$

This transformation is known as

$$\mathsf{Softmax}(\mathbf{s}) = \frac{\exp(s_j)}{\sum_k \exp(s_k)}$$

Softmax classifier: Log likelihood of the training data

 Given probabilistic model: Estimate its parameters by maximizing the log-likelihood of the training data.

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg \max_{\boldsymbol{\theta}} \ \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log P_{Y \mid \mathbf{X}}(y \mid \mathbf{x}; \boldsymbol{\theta}) \\ &= \arg \min_{\boldsymbol{\theta}} \ -\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log P_{Y \mid \mathbf{X}}(y \mid \mathbf{x}; \boldsymbol{\theta}) \end{aligned}$$

 Given probabilistic interpretation of our classifier, the negative log-likelihood of the training data is

$$-\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log \left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)} \right)$$

where s = Wx + b.

 Given probabilistic model: Estimate its parameters by maximizing the log-likelihood of the training data.

$$\begin{split} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log P_{Y \mid \mathbf{X}}(y \mid \mathbf{x}; \boldsymbol{\theta}) \\ &= \arg\min_{\boldsymbol{\theta}} - \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log P_{Y \mid \mathbf{X}}(y \mid \mathbf{x}; \boldsymbol{\theta}) \end{split}$$

 Given probabilistic interpretation of our classifier, the negative log-likelihood of the training data is

$$-\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log \left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)} \right)$$

where s = w x + r

Softmax classifier + cross-entropy loss

 Given the probabilistic interpretation of our classifier, the negative log-likelihood of the training data is

$$L(\mathcal{D}, W, \mathbf{b}) = -\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log \left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)} \right)$$

where $\mathbf{s} = W\mathbf{x} + \mathbf{b}$.

· Can also interpret this in terms of the cross-entropy loss:

$$\begin{split} L(\mathcal{D}, W, \mathbf{b}) &= \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \underbrace{-\log \left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)} \right)}_{\text{cross-entropy loss for } (\mathbf{x}, y)} \\ &= \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l(\mathbf{x}, y, W, \mathbf{b}) \end{split}$$

Cross-entropy loss

Calculate the cross-entropy loss for a CIFAR image

• p the probability vector the network assigns to x for each class

$$\mathbf{p} = \mathsf{SOFTMAX}\left(W\mathbf{x} + \mathbf{b}\right)$$

· Cross-entropy loss for training example x with label y is

$$l = -\log(p_y)$$

$$y = 8$$
 $l = -\log \left(\frac{\exp(s_y)}{\sum \exp(s_z)} \right)$

rplane	-0.3166
r	-0.6609
rd	0.7058
£	0.8538
er	0.6525
g	0.1874
og .	0.6072
ese	0.5134
ip	-1.3490
uek	-1.2225
	$\mathbf{s} = W\mathbf{x} + \mathbf{b}$

output

Calculate the cross-entropy loss for a CIFAR image

loss

KA	$\mathbf{s} = W\mathbf{x} + \mathbf{b}$	y = 8	$l = -\log\left(\frac{\exp(s_y)}{\sum \exp(s_k)}\right)$
	Scores	exp(Scores)	Normalized scores
airplane	-0.3166	0.7354	0.0571
car	-0.6609	0.5328	0.0414
bird	0.7058	2.0203	0.1568
cat	0.8538	2.3583	0.1830
deer	0.6525	1.9303	0.1498
dog	0.1874	1.2080	0.0938
frog	0.6072	1.8319	0.1422
horse	0.5134	1.7141	0.1330
ship	-1.3490	0.2585	0.0201
truck -1.2225 $\mathbf{s} = W\mathbf{x} + \mathbf{b}$	-1.2225	0.2945	0.0229
	$\exp(\mathbf{s})$	$\sum_{k} \exp(s_k)$	

label

Loss for x: 2.0171

input: x

Cross-entropy loss

$$l(\mathbf{x}, y, W, \mathbf{b}) = -\log\left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)}\right)$$

Questions

- What is the minimum possible value of $l(\mathbf{x},y,W,\mathbf{b})$?
- What is the max possible value of $l(\mathbf{x},y,W,\mathbf{b})$?
- At initialization all the entries of W are small \implies all $s \neq \mathbf{0}.$ What is the loss?
- A training point's input value is changed slightly. What happens to the loss?
- ullet The \log of zero is not defined. Could this be a problem?

Learning the parameters: W, \mathbf{b}

ullet Learning $W, {f b}$ corresponds to solving the optimization problem

$$W^*$$
, $\mathbf{b}^* = \arg \min_{W,\mathbf{b}} L(\mathcal{D}, W, \mathbf{b})$

where

$$L(\mathcal{D}, W, \mathbf{b}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} l_{\mathsf{softmax}(\mathsf{svm})}(\mathbf{x}, y, W, \mathbf{b}) + \lambda R(W)$$

- . Know how to solve this! Mini-batch gradient descent
- To implement mini-batch gradient descent need
 to compute gradient of the loss l_{softmax(svm)}(x, y, W, k and R(W)
 - Set the hyper-parameters of the mini-batch gradient descent procedure.

- Have training data D.
- · Have scoring function:

$$\mathbf{s} = f(\mathbf{x}; W, \mathbf{b}) = W\mathbf{x} + \mathbf{b}$$

We have a choice of loss functions

$$l_{\text{softmax}}(\mathbf{x}, y, W, \mathbf{b}) = -\log\left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)}\right)$$

$$l_{\mathsf{svm}}(\mathbf{x}, y, W, \mathbf{b}) = \sum_{\substack{j=1\\j \neq y}}^{C} \max(0, s_j - s_y + 1)$$

Complete training loss

$$L(W, \mathbf{b}; \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l_{\mathsf{softmax(svm)}}(W, \mathbf{b}; \mathbf{x}, y) + \lambda R(W)$$

Learning the parameters: W, \mathbf{b}

 $f \cdot$ Learning $W, {f b}$ corresponds to solving the optimization problem

$$W^*, \mathbf{b}^* = \arg \min_{W, \mathbf{b}} L(\mathcal{D}, W, \mathbf{b})$$

where

$$L(\mathcal{D}, W, \mathbf{b}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l_{\mathsf{softmax(svm)}}(\mathbf{x}, y, W, \mathbf{b}) + \lambda R(W)$$

- . Know how to solve this! Mini-batch gradient descent.
 - to compute gradient of the loss $l_{\text{softmax(sym)}}(\mathbf{x}, y, W, \mathbf{b})$ and R(W)
 - Set the hyper-parameters of the mini-batch gradient descent procedure.

 \bullet Learning W, \mathbf{b} corresponds to solving the optimization problem

$$W^*$$
, $\mathbf{b}^* = \arg \min_{W, \mathbf{b}} L(\mathcal{D}, W, \mathbf{b})$

where

$$L(\mathcal{D}, W, \mathbf{b}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l_{\mathsf{softmax}(\mathsf{svm})}(\mathbf{x}, y, W, \mathbf{b}) + \lambda R(W)$$

- · Know how to solve this! Mini-batch gradient descent.
- To implement mini-batch gradient descent need
 - to compute gradient of the loss $l_{\mathsf{softmax}(\mathsf{svm})}(\mathbf{x},y,W,\mathbf{b})$ and R(W)
 - Set the hyper-parameters of the mini-batch gradient descent procedure.

We will cover how to compute these gradients using back-propagation.