Binary classification problem given labelled training data

Have labelled training examples

Lecture 2 - Learning Binary & Multi-class

Classifiers from Labelled Training Data
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Given a test example how do we decide its class?

High level solution Technical description of the binary problem

e Have a set of labelled training examples
D= {(x1,41), -+ (Xnyn)}  with each x; € RY, y; € {~1,1}.
e Want to learn from D a classification function

g: ]Rifl x RP —{-1,1}

input space  parameter space

Usually

9(x;0) = sign(f(x;0)) where f:R!xRP -

¢ Have to decide on
1. Form of f (a hyperplane?) and

Decision Boundary

Learn a decision boundary from the labelled training data. 2. How to estimate f's parameters 6 from D

Compare the test example to the decision boundary.



Learn decision boundary discriminatively

o Set up an optimization of the form (usually)
training error

au.{md\ Z (y,9(x:0)) + X R(8)
Ny

(xy)eD Comment on Over- and Under-fitting

regularization term

where
- I(y, f(x | 8)) is the loss function and measures how well (and
robustly) f(x;: ) predicts the label y.
- The training error term measures how well and robustly the
function f(-;0) predicts the labels over all the training data.

- The regularization term measures the complexity of the
function f(-;0).

Usually want to learn simpler functions = less risk of over-fitting.

Example of Over an er fittin

Training Sample

odel Complexity

e Too much fitting == adapt too closely to the training data.

Bayes’ Optimal Under-fitting Over-fitting

e Have a high variance predictor.
e This scenario is termed overfitting.

o In such cases predictor loses the ability to generalize.



Linear Decision Boundaries

High
odel Complexity

e Low complexity model = predictor may have large bias

o Therefore predictor has poor generalization.

Linear discriminant functions Pros & Cons of Linear classifiers

Linear function for the binary classification problem: Pros
Fow,b) =wix+b e Low variance classifier

where model parameters are w the weight vector and b the bias.

r2

e Easy to estimate.

Frequently

an set up training

easy optimization
broblem

WIx+b> 0 o For high dimensional input data a linear decision boundary
d can sometimes be sufficient.

Cons

. e High bias classifier
— WX+ b=0

1,, Often the decision boundary is not well-described by a linear

classifier
w41 if f(x;w,b) >0
IEEWIITN L i fawib) <0



How do we choose & learn the linear classifier? Supervised learning of my classifier

Have a linear classifier next need to decide:

1. How to measure the quality of the classifier w.r.t. labelled
training data?

- Choose/Define a loss function.

Given labelled training data:

how do we choose and learn the best hyperplane to
separate the two classes?

Most intuitive loss function Supervised learning of my classifier

0, 1 Loss function Have a linear classifier next need to decide:
For a single example (x,y) the 0-1

loss is defined as

0.1L0ss

. 1. How to measure the quality of the classifier w.r.t. labelled
Uy, F(x:0)) = 0 ify =sen(f(x;0)) training data?
| 1 if y # sgn(f(x:0)) - Choose/Define a loss function.
_JO ifyf(x0)>0 2. How to measure the complexity of the classifier?
| 1 ifyf(x0)<0 - Choose/Define a regularization term.
+ —— (assuming y € {~1,1})
¥
Applied to all training data > count the number of misclassifications

Not really used in practice as has lots of problems! What are some?



Most common regularization function Supervised learning of my classifier

Have a linear classifier next need to decide:

L, regularization

—

. How to measure the quality of the classifier w.r.t. labelled
training data?
2 _ 3 ion.
R(w) = ||w]| Z w? Choose/Define a loss function

2. How to measure the complexity of the classifier?

" . . - Choose/Define a regularization term.
Adding this form of regularization:

- Encourages w not to contain entries with large absolute values. . P Lo
3. How to do estimate the classifier's parameters by optimizing
- or want small absolute values in all entries of w. relative to the above factors?

Squared error loss & no regularization

e Learn w,b from D. Find the w, b that minimizes:

L(D,w,b) = Z lsa(y, £(x; w, b))
(x y)ED
Example: Squared Error loss -1 3 (Wx ) - v)?

2
(SH)ED "5 ared error loss

L is known as the sum-of-squares error function.

e The w*,b* that minimizes L(D, w,b) is known as the
Minimum Squared Error solution.

e This minimum is found as follows....



Matrix Calculus

o Have a function f: RY — R that is f(x) = b

o We use the notation
f

Dy

Technical interlude: Matrix Calculus e

o
Oxq
o Example: If f(x) = a”x = %, a;a; then
ai

of _ or _

=a, =
dx; ' Ix
ad,

Matrix Calculus Matrix Calculus

« Have a function f : R%*4 — R that is f(X) = b with Derivative of a finear function

X e RIxd
9xT.
e We use the notation ().( 2_a (1)
Ix
af  of af
Jzii Daiz T Dawa T
da’x
é of of =
Of _|owm wem o Pem x 2 @
X . . . . "
: : . : da’ Xb
af  _of af =ab’
Ozq1  Ozaz " Otaq X ab @
o Example: If f(X) =a’Xb =YL a; % 2ib; then 9alXTh .
% ———— =ba 4)
b b: b, ox
aipby arbz ... aibg
of = a;b a5 = : : : —ab’
Owij I X . : .
agby agby ... agby



Matrix Calculus

Derivative of a quadratic function

9x" Bx

B+BT)x
= ¢ )x (5)
BT XT Xe . . End of Technical interlude
%% = X(bc" +cb") (6)
J(B: b)'c(D d o
% BTC(Dx +d) + DTCT(Bx + b)
(1)
’XTDXe 4o o .
T_D Xbc” + DXcb (8)
Pseudo-Inverse solution Pseudo-Inverse solution
e Can write the cost function as o The gradient of L(D, w1) w.rt. wi:
1 2 1
L(D.w,b)fi(x%:gp(w x+b-y) =3 VZ (wix’ —y VW‘L(D,Wl):XTle—XTy

where x' = (x, )T, w; = (wT,0)T
¢ ) 1=( ) e Setting this equal to zero yields X7 Xw; = X7y and

e Writing in matrix notation this becomes wi =Xy
LD.wi) = 51w~y = l()(w] ~y) (Wi -y) where
-1 (wl XTXw; — 29" Xwy +y"y) xt=(x"x)" x7
where
XT 1 o X1 is called the pseudo-inverse of X. Note that XTX =T

i t
Y= )’y W= (e wa)”. X = but in general XXT 7 1.



Simple 2D Example Pseudo-Inverse solution

e The gradient of L(D, w1) w.r.t. wi:

Ve, L(D,w1) = XT Xwy — XTy
o Setting this equal to zero yields X7 Xw; = X7y and
W, = X'y
where
1

Xt=(xTx)" xT

o X1 is called the pseudo-inverse of X. Note that XTX = I
but in general X X1 # 1.

Decision boundary found by minimizing

L Dow,0) = 30 (= (w'x+0))°
(x,y)ED

o If X7 X singular = no unique solution to X7 Xw = X'y,

Iterative Optimization

Common approach to solving such unconstrained optimization
problem is iterative non-linear optimization.

x* = argmin f(x)
" x

Technical interlude: Iterative Optimization
Start with an estimate x(0).

Try to improve it by finding successive new estimates
xD, x5, s fD) 2 fx) 2 fx®) 2
until convergence.

To find a better estimate at each iteration: Perform the
search locally around the current estimate.

e Such iterative approaches will find a local minima.



Iterative Optimization Choosing a search direction: The gradient

Iterative optimization methods alternate between these two steps:
The gradient is defined as:

Decide search direction

Choose a search direction based on the local properties of the
cost function.

Line Search

P:rformdfan |:tens|ve search to find the minimum along the s The gradient points in the
chosen direction. direction of the greatest increase

of f(x).

dient descent: Method for function minimizatio

Gradient descent finds the minimum in an iterative fashion by
moving in the direction of steepest descent.
Gradient Descent Minimization

fjg;‘ with an arbitrary solution End of Technical interlude

N
-

N

Compute the gradient
Vi (x1).

Move in the direction of
steepest descent:

w

XD — 30 _p By p(x®)).

x where 7*) is the step size.

IS

Go to 2 (until convergence).



adient descent solutio ient descent solutio

The error function J(w;) could also be minimized wrt wy by using Solution
a gradient descent procedure.

Why? Wl 0 0 xT (x4 0 _y)

o This avoids the numerical problems that arise when X7 X is

0 —
(nearly) singular. e If o/t where 19 > 0, then

e It also avoids the need for working with large matrices. o (1) (2 .
e w; ,w; ’,w;”,... converges to a solution of

How XT(Xw; —y)=0
1. Begin with an initial guess wiﬂ) for wy.

o Irrespective of whether X' X is singular or not.
2. Update the weight vector by moving a small distance in the

direction —Vy,, J.

Stochastic ient descent solutio

o Increase the number of updates per computation by
considering each training sample sequentially

Wi = wif = Ol — g

Technical interlude: Stochastic Gradient Descent

e This is known as the Wi Hoff, least: q!
(LMS) or delta rule [Mitchell, 1997].

e More generally this is an application of Stochastic Gradient
Descent.



Common Optimization Problem in Machine Learning Given large scale data
e Form of the optimization problem: If|D} is large

e = computing Vg J(8,D)|y is time consuming
J(D,8) = N 37 Uf(x:60),y) + AR(9) o = each update of 8(*) takes lots of computations

D‘ (xy)eD
EX) . . .
e Gradient descent needs lots of iterations to converge as 7
usually small
* — are mi
0" = argugn J(D.6) o = GD takes an age to find a local optimum.

e Solution with gradient descent
1. Start with a random guess 0% for the parameters.
2. Then iterate until convergence

01D =9 — 5 VoI (D,0)lg0)

Work around: Stochastic Gradient Descent Comments about SGD

o When [D®)| = 1:

o Start with a random solution 8%,
VoJ(DY,0)| ) a noisy estimate of VgJ(D,0)|y

o Until convergence for t =1,...
1. Randomly select (x,y) € D.
2. Set DO = {(x,y)}.
3. Update parameter estimate with
o In practice SGD converges a lot faster then GD.

o Therefore
|D| noisy update steps in SGD ~ 1 correct update step in GD.

0D = g0 _ () 741D, ) o
e Given lots of labelled training data:

Quantity of updates more important than quality of updates!



st practices for SG

¢ Preparing the data o Start with a random guess 8(*) for the parameters.

- Randomly shuffle the training examples and zip sequentially

through D. o Until convergence fort = 1,...

1. Randomly select a subset D) ¢ D s.t. D] = ny, (typically
1 2 150. )

2. Update parameter estimate with

- Use preconditioning techniques.

¢ Monitoring and debugging
- Monitor both the training cost and the validation error 0D Z ) _ ) vy 7O, g) .
- Check the gradients using finite differences. o
- Experiment with learning rates 7(*) using a small sample of the
training set.

nefits of mini-bat

e Obtain a more accurate estimate of VgJ(D,8)|4«) than in o Issues with setting the learning rate 7(!)?
SGD. - Larger 's == potentially faster learning but with the risk of
less stable convergence.

o Still get lots of updates per epoch (one iteration through all the - Smaller n's = slow learning but stable convergence.

training data).
* Strategies

- Constant: n® = .01
- Decreasing: 7 = 1/vi

o Lots of recent algorithms dealing with this issue

Will describe these algorithms in the near future



End of Technical interlude Squared Error loss + L, regularization

Add an L, regularization term ridge regression Centre the data to simplify
o Add a regularization term to the loss function * Add a regularization term to the loss function
1
1 ; Jigee(D,w.b) = = Xw + b1 — y|* + Al|w]|?
TisgeDw.0) =5 D7 lagly, x4 1)+ Aw® e ) =3l yIE Al
(xy)ED

® Let's centre the input data

1
= 5lIXw b1 —y[? + Aw]? o XD -
— Xla
where A > 0 and small and X is the data matrix Xe=

— xI, -
T = Xx'1=o0.

— x5

o Optimal bias with centered input X, (does not depend on w*) is:
O Jage
Cidge _ 1171 4+ wTXT1 1Ty

=pnT1-1"y

= b =1/n3 =0



Solving ridge regression: Optimal weight vector Simple 2D Example

o . Ridge Regression decision boundaries
® Add a regularization term to the loss function

1 _ ;
Joage(Dw) = 5[ Xew + 71—y |[* + AJw]?

e Compute the gradient of Jgg w.r.t. w

OJrgge
e = (XI X+ M) w — Xy

® Set to zero to get

w' = (XTX. +AL,) ' Xy

o (XTX.+ M) has a unique inverse even if X7 X, is singular.

A =100 A = 1000

Simple 2D Example Solving ridge regression: Optimal weight vector

Decision boundaries found by minimizing

* Add a regularization term to the loss function

1 . 5 2
Jiage(D, W) = 5[ Xew + 51—y * + A wl|*

o Compute the gradient of Jigge w.r.t. w

[
Tv:j: (XTX.+ Mg)w— XTy

o Set to zero to get

w* = (XX + A1) Xy

Squared Error Loss Ridge regression (A — .01) ® (XP'X.+ Aly) has a unique inverse even if X! X is singular.

e If d is large = have to invert a very large matrix.



Solving ridge regression: Iteratively

o The gradient-descent update step is

wlt) = w® _ g [(XZX, L) Wit — XCTy}

e The SGD update step for sample (x,y) is Hinge Loss

WD = w® o [ (= ) (= ) o M) w® = (o= )]

The Hinge loss

I(x,y; w,b) = max {O. 1-y(wix+ b)}
linge loss

Technical interlude: Sub-gradient

valx:0)

e This loss is not differentiable but is convex.

o Correctly classified examples sufficiently far from the decision
boundary have zero loss.

e —> have a way of choosing between classifiers that correctly
classify all the training examples.



Subgradient of a function Subgradient of a function

* g is a subgradient of f at x if o Set of all subgradients of f at x is called the subdifferential of

F3) > £+ €Ty %) vy £ at x, written 8f(x)

e 1D example:
f(@) = |z f ()

e 1D example:
S (@)

Flan) + ol (@ =),
Flw2) + g5 (x — 2)
) + ol (@ — a2)

- 2,93 are subgradients at za;
e If fis convex and differentiable: V f(x) a subgradient of f at x.

The Hinge loss

e Find w, b that minimize

- g1 is a subgradient at x;.

Line(D,w,b) = >~ max{0,1—y(w'x+1b)}
_—

(y)eD Hings Loss

End of Technical interlude o Can use stochastic gradient descent to do the optimization.

o The (sub-)gradients of the hinge-loss are

—yx ify(wix+b)>1

Yl yiw,b) = {0 otherwise.

Al(x,y;w,b) -y if y(wix+1b) > 1
b -

0 otherwise.



Example of decision boundary found

L, Regularization + Hinge Loss

Decision boundary found by minimizing with SGD

Lynge(D,w,b0) = Y max{0,1—y(w'x+1b)}
(x,y)eD

L regularization + Hinge loss Example of decision boundary found

e Find w,b that minimize

,JM(D,w,b):%Hw||7+ 3 max{0,1- y(w"x +b)}

(xy)eD Hinge Loss

e Can use stochastic gradient descent to do the optimization.
e The sub-gradients of this cost function

Tl W, b) — {Aw— yx ify(wix+b)>1

Aw otherwise.

e . A T.
Axysw,b) _ J—y ify(wix+b)>1 Decision boundary found with SGD by minimizing (A = .01)

b 0  otherwise. A
Jhinge(D, w,b) = §HWH2 + 0y max{0,1-y(w'x+b)}

(xy)eD



Regularization reduces the influence of outliers

Decision boundaries found by minimizing

“Ls Regularization + Hinge Loss” = SVM

Hinge Loss L, Regularization + Hinge Loss

SVM's constrained optimization problem Alternative formulation of SVM optimization
SVM solves this constrained optimization problem: SVM solves this constrained optimization problem:
1, u . "
i <§w w+ CZ E’) subject to min [ Lww + CZE, subject to
i=1 wb |\ 2 =

yi(wix; +0)>1-¢ fori=1,
& >0 fori=1,..., n.

yl(wa[ +b)>1-§& fori=1,..., n and
&>0fori=1,..., n.

+ =0 . e Let's look at the constraints:

Wik +b)>1-& = &>1-y(wx+0h)

e But & > 0 also, therefore

(6 > max {01y +b)} |




Alternative formulation of the SVM optimization Alternative formulation of the SVM optimization

Thus the original constrained optimization problem can be restated Thus the original constrained optimization problem can be restated
as an unconstrained optimization problem: as an unconstrained optimization problem:
min lusz + Czn:max {U 1—yi(whxi + b)} min leHQ + Cimax {O 1—yi(wx; + b)}
min 3 - s 1 =i i iy B - s Yi i
—— = TS < — -
Regularization term Hinge loss Regularization term Hinge loss
and corresponds to the L, regularization + Hinge loss and corresponds to the L, regularization 4+ Hinge loss

formulation! formulation!

= can train SVMs with SGD/mini-batch gradient descent.

Example dataset: CIFAR-10

airplane
automobile
bird

From binary to multi-class classification

HEOHER

horse

ship

PR EEO—~9A
EERoNENEND

E [05 2 NEELED
RNEOESHIVUN
PEEENEERE 1
EEETFAIMELK
K

EENDO®EEANY
POAEERSHGE

ElgoEaNEDs

truck



Example dataset: CIFAR-10 Technical description of the multi-class problem

e Have a set of labelled training examples

airplane = :
automobile ) = -
vied L7 | B EETH& 04 o Want to learn from D a classification function
- . . classes

« HONEDEFEDRE « 50,000 training g: R x RP S{l,....C}
o BEEFSEEEDRE images pupsce e pce

= ;P
= HEBREFESEOEBRA . 00w Usually
- DHENS® B moes
horse j m o . E & ! . e Each image has 9(x:©) = arg 121135}{( f](X; gj)
ship FEEEELEEEREs size 32 x 32 x 3

_ — where for j =1,...,C:

o DaEladNred T

fi:RIxRP - R

and © = (61,6>,...,0¢).

Multi-class linear classifier

Multi-class linear classifier to an image

e Let each f; be a linear function that is e Have a 2D colour image but can flatten it into a 1D vector x

5i(x:0) = wlx by !
e Define ﬁ _ ttenimage I
fix) [
fx0)=1| |
fC (x) 32x32x3 3072 x 1
then e Apply classifier: Wx + b to get a score for each class.
7(x:0) = f(x;W,b) = Wx + b I H ]
e wT o _ | ==
W= I b=|: | I I
wi, b w x b class scores
o Note W has size C'x d and b is C' x 1. 10 x 3072 3072 x 1 101 10x 1



lass linear classifier Interpreting a mul

o Learn W, b to classify the images in a dataset. e Each w]x +b; = 0 corresponds to a hyperplane, Hj, in R,

. . o sign(w] x + b;) tells us which side of H; the point x lies.

e Can interpret each row, w;, of T as a template for class j. en(v; ) ’ P
e The score |w]x + b;| o the distance of x to Hj.

¢ Below is the visualization of each learnt w; for CIFAR-10

airplane bird deer fog  homse  ship  truck

How do we learn W and b? How do we learn W and

As before need to As before need to
o Specify a loss function (+ a regularization term). e Specify a loss function

o Set up the optimization problem. - must quantify the quality of all the class scores across all the

training data
o Perform the optimization.
e Set up the optimization problem.

o Perform the optimization.



Multi-class SVM Loss

e Remember have training data
D= {(x1,51); -, (Xn,yn)} with each x; € RY, y; € {1,...,C}.
. . e Let s; be the score of function f; applied to x
Multi-class loss functions ,
5= [i(xiwj; bj) = wix+b
e The SVM loss for training example x with label y is

c
1 Zmax(O.s] —sy+1)

j=1
J#Y

Calculate the multi-class SVM loss for a CIFAR image

ul

input: X output label loss

e s; is the score of function f; applied to x
10

. _ T —w _ 1= max(0,s; — s, +1)
sj = fi(x;wj,bj) = wix +b; s=Wx+b y=38 =
iFy
max(0,5, — 3, +1)
-0.3166
car -0.6609
bird 0.7058
0.8
0.6525
0.1874
0.6072
0.5134
® SVM loss for training example x with label y is ship -1.3490
ruck -1.2225

c s=Wx+b
= Zmax([), sj—sy+1)
i=1
T



Calculate the multi-class SVM loss f

a CIFAR image

input: x output label loss

10
1= 3" max(0,s; — s, +1)

s=Wx+b y=38 F=1

ity
=

Scores Compare to horse score
airplanc -0.3166 0.1701
car -0.6609 01743
bird 0.7038 1.1925
cat 08538 13405
decr 06525 11392
d 01874 0.6741

0.6072 10938

5131 0000

-1.3490 -0.8624

12225 07359

s=Wx+b s—sx+1

Calculate the multi-class SVM loss for a CIFAR image

input: x output label loss

10
s=Wx+b y=8 U= max(0,s; — s, +1)

i=1
iy
=
Scores Compare to horse score Keep badly performing classes
-0.3166 01701
car -0.6609 0
ird 0.7058 1.1925
0.8538 13405
deer 06525 11392
0.1874 0.6741
0.6072 10938
0.5131 0000
-1.3490 0
truck 12225 0
s=Wx+b max(0,s — s+ 1)

Loss for x: 5.4723

Problem with the SVM loss N

Given IV and b then
e Response for one training example
S W,b)=Wx+b=s

e loss for x

c
I(x,y,W,x) = Zmax(o. sj—sy+1)
=1
i#y
e Loss over all the training data

L(D‘W‘b):‘%‘ > Ixy,W,b)
(xy)eD

Have found a W s.t. L = 0. Is this W unique?

Let W; = oV and by = ab where a > 1 then
o Response for one training example

F(x;Wi,b) = Wix + b = = a(Wx +b)

e Loss for (x,y) w.r.t. Wi and by

C
U, y, W1, b1) = »_ max(0, 5 — s, + 1)
T

max(0, a(w] x +b; —wix —b,) +1)

max(0, a(s; — sy) + 1)
=0 as by definition s; —s, < -1 and a > 1

e Thus the total loss L(D, Wi, by) is 0.



Solution: Wei regularizatio

C
L(D,W,b) = ER S S max(0, £ W, b) = f,(x; W, b) + 1) + AR(W)

Bl 2
(xy)eD =1

Commonly used Regularization Cross-entropy Loss

Name of regularization Mathematical def. of R(W)
Ly S Wi
Ly 2 X Wl
Elastic Net e (ﬂVl/',f), + ‘I‘Vk.l‘)
Probabilistic interpretation of scores Softmax operation
Let p; be the probability that input x has label j: o This transformation is known as
Pyx (7 |x) =p; exp(s;)
. . Softmax(s) = =2
o For x our linear classifier outputs scores for each class: 1 exp(sk)
s=Wx+b
e Can interpret scores, s, as: . _ .
unnormalized log probability for each class.
o "
- ! |
g ol
o) = logT, ‘ \M‘ o
where apj = pj and a = 3 pf. " "
= B B A ] S B B A ]
exp(s;) x Softmax(x)

Pyx(j|x)=p; = S exp(s)



Softmax operation Softmax classifier: Log likelihood of the training data

o This transformation is known as * Given probabilistic model: Estimate its parameters by
maximizing the log-likelihood of the training data.

exp(s;)
Softmax(s) = —=——+—
>k exp(sk)
A = argmax o \D\ Z log Pyix(y | x;6)
(xv)eﬂ
: e *algmm —W Z log Pyx(y | x;0)
(xy)eD

05
1 i

N [ o o
fhl o

05 ]
B S R B R A 1] S A ()

x Softmax(x)

Softmax classifier: Log likelihood of the training data Softmax classifier + cross-entropy loss

« Given probabilistic model: Estimate its parameters by Given the probabilistic interpretation of our classifier, the

maximizing the log-likelihood of the training data. negative log-likelihood of the training data is
| 1 L(D,W,b) = - 3 log (%)
0" = arg max a Z log Pyx(y | x;6) |D| (een S exp(sk)
(x y)ED
h =Wx+b.
= argmin 7@ 3 log Prx(y | x:0) where s = W+
(xy)€D e Can also interpret this in terms of the cross-entropy loss:
e Given probabilistic interpretation of our classifier, the negative 1 ex
log-likelihood of the training data is L(D,W,b) = D] Z —log <#>
Pl o S exp(se)
—_—
1 exp(sy) cross-entropy loss for (x,)
- log <7J Py 3
o 2 ey
1P (xy)eD k1 oxp(sr) = % 37 U(x.y,W,b)
P! (xy)eD

where s = Wx + b.



o p the probability vector the network assigns to x for each class

Cross-entropy loss

p = SOFTMAX (Wx + b)

—log(py)

by

o Cross-entropy loss for training example x with label y is

Calculate the cross-entropy loss for a CIFAR image

input: x

airplane
bird

cat
deer
dog
rog
horse
ship

truck

output

s=Wx+b

Scores
-0.3166
-0.6609
0.7058
0.8538
0.6525
0.1874

0.6072
0.5134

s=Wx+b

1= —log(py)

label
y=8

exp(Scores)

0.7354
0.5328
2.0203
2.3583
1.9303
1.2080
1.8319
17141
0.2585
0.2945

exp(s)

loss

l:—log(

exp(sy)

Sexp(s)

)

input:

airplane

bird

Calculate the cross-entropy loss for a CIFAR image

input:

airplanc
bird
cat
deer
dog
frog
horsc
ship

truck

Calculate the cross-entropy loss for a CIFAR image

x

X

output

s=Wx+b

03166
06609
0.7058
0.8538
0.6525
01874
0.6072
0.5134
13490
12225

s=Wx+b

output

s=Wx+b

Scores
-0.3166
-0.6609
0.7058
0.8538
0.6525
0.1874
0.6072
0.5134
-1.3490
-1.2225

s=Wx+b

Loss for x: 2.0171

label

y=38

label

y=38

exp(Scores)

0.7354
0.5328
2.0203
2.3583
1.9303
1.2080
1.8319
17141

0.2585
0.2045

exp(s)

loss

1= —log (=2

loss

_ exp(sy)
I=—log (vapw)

Normalized scores

0.0571
0.0414
0.1568
0.1830
0.1498
0.0938
0.1422
0.1330
0.0201
0.0229

exps)



Cross-entropy loss

Cross-entropy loss
I(x.y. W, b) = —log <%)
D=1 exp(sk)
Questions
* What is the minimum possible value of I(x,y, W, b)?
o What is the max possible value of /(x,y, W, b)?

e At initialization all the entries of W are small = all s # 0. What
is the loss?

A training point’s input value is changed slightly. What happens to
the loss?

The log of zero is not defined. Could this be a problem?

Learning the parameters: ¥

Learning the pa

* Have training data D.
e Have scoring function:

s=f(x;W,b) =Wx+b
e We have a choice of loss functions

) exp(sy)
lsoftmax(X, 4, W, b) = —log | —————
T explse)

c
Loum (%, 9, W, b) = >~ max(0,5; — s, + 1)
=1
v
o Complete training loss

1
= O Lsomax(evm) (W3 biX, ) + AR(V)

b D) —
L(W,b; D) = RN

Learning the parameter

Learning W, b corresponds to solving the optimization problem
W*,b* = argmin L(D,W,b
, arg min ( )
where

1 , ,
LD W,b) = i 3 lotemaoum) (0, Wi b) + AR(W)
(xy)eD

e Learning W, b corresponds to solving the optimization problem
W*,b* = argmin L(D, W, b
argmin L( )

where

-

LD.W.) = D7 leoftmax(em) (X, 4, W, b) + AR(W)

(xy)eD

e Know how to solve this! Mini-batch gradient descent.



Learning the parameters: ¥ Next Lect

We will cover how to compute these gradients using

e Learning W, b corresponds to solving the optimization problem .
back-propagation.

W*, b* = argx‘%l: L(D,W,b)

where

, 1 ,
L(D,W.b) = ol > Lsostmaxsvm) (X, 5, W, b) + AR(V)
(xy)eD

e Know how to solve this! Mini-batch gradient descent.

e To implement mini-batch gradient descent need
- to compute gradient of the 10ss lsoftmax(svm) (X, ¥, W, b)
and R(W)
- Set the hyper-parameters of the mini-batch gradient
descent procedure.



