
Chapter 12

Partial di↵erential equations

12.1 Di↵erential operators in Rn

The gradient and Jacobian

We recall the definition of the gradient of a scalar function f : Rn ! R, as
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in vector notation and index notation, respectively, which we can interpret
as the di↵erential operator
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acting on the function f . The directional derivative r
v

f , in the direction
of the vector v : Rn ! Rn, is defined as

r
v

f = rf · v. (12.3)

For a vector valued function F : Rn ! Rm, we define the Jacobian J ,

J = F 0 =
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Divergence and rotation

For F : Rn ! Rn we define the divergence,

divF = r · F =
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and, for n = 3, the rotation,

rotF = curlF = r⇥ F, (12.6)

where

r⇥ F = det
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with e = (e1, e2, e3) the standard basis in R3.
The divergence can be understood in terms of the Gauss theorem,

Z

⌦

r · F dx =

Z

�

F · n ds, (12.7)

which relates the volume integral over a domain ⌦ ⇢ R3, with the surface
integral over the boundary � with normal n.

Similarly, the rotation can be interpreted in terms of the Kelvin-Stokes
theorem, Z

⌃

r⇥ F · ds =
Z

@⌃

F · dr, (12.8)

which relates the surface integral of the rotation over a surface ⌃ to the line
integral over its boundary @⌃ with positive orientation defined by dr.

Laplacian and Hessian

We express the Laplacian �f as,

�f = r2f = rTrf = r ·rf =
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and the Hessian H,

H = f 00 = rrTf =
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The vector Laplacian is defined as the

�F = r2F = (�F1, ...,�F
n

), (12.11)

and for m = n = 3, we have

�F = r(r · F )�r⇥ (r⇥ F ). (12.12)
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Partial integration in Rn

For a scalar function f : Rn ! R, and a vector valued function F : Rn !
Rn, we have the following generalization of partial integration over a domain
⌦ ⇢ Rn, referred to as Green’s theorem,

(rf, F )
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with boundary � and outward unit normal vector n = n(x) for x 2 �, where
we use the notation,
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v · w dx, (12.14)

for two vector valued functions v, w, and
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for the boundary integral. For two scalar valued functions the scalar product
in the integrand is replaced by the usual multiplication. With F = rg, for
g : Rn ! R a scalar function, Green’s theorem gives,
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12.2 Function spaces

The Lebesgue spaces Lp(⌦)

Let ⌦ be a domain in Rn and let p be a positive real number, then we define
the Lebesgue space Lp(⌦) by

Lp(⌦) = {f : kfk
p

< 1}, (12.17)

with the Lp(⌦) norm,
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where in the case of a vector valued function f : Rn ! Rn,

|f(x)|p = |f1(x)|p + ...+ |f
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or a matrix valued function f : Rn ! Rn⇥n,

|f(x)|p =
nX

i,j=1

|f
ij

(x)|p. (12.20)



112 CHAPTER 12. PARTIAL DIFFERENTIAL EQUATIONS

Lp(⌦) is a vector space, since (i) ↵f 2 Lp(⌦) for any ↵ 2 R, and (ii)
f + g 2 Lp(⌦) for f, g 2 Lp(⌦), by the inequality,

(a+ b)p  2p�1(ap + bp), a, b � 0, 1  p < 1, (12.21)

which follows from the convexity of the function t 7! tp.
Lp(⌦) is a Banach space, and L2(⌦) is a Hilbert space with the inner

product (12.14) which induces the L2(⌦)-norm. In the following we let it
be implicitly understood that (·, ·) = (·, ·)

L

2⌦ and k · k = k · k
L

2(⌦).

Sobolev spaces

To construct appropriate vector spaces for variational formulations of par-
tial di↵erential equations, we need to extend the spaces L2(⌦) to include
also derivatives. The Sobolev space H1(⌦) is defined by,

H1(⌦) = {v 2 L2(⌦) : rv 2 L2(⌦)}, (12.22)

and we define

H1
0 (⌦) = {v 2 H1(⌦) : v(x) = 0, 8x 2 �}, (12.23)

to be the space of functions in H1(⌦) that are zero on the boundary �.

12.3 FEM for Poisson’s equation

The Poisson equation

We now consider the Poisson equation for an unknown function u : Rn ! R,

��u = f, x 2 ⌦, (12.24)

with ⌦ ⇢ Rn, and given data f : Rn ! R. For the equation to have a
unique solution we need to specify boundary conditions. We may prescribe
Dirichlet boundary conditions,

u = g
D

, x 2 �, (12.25)

Neumann boundary conditions,

ru · n = g
N

, x 2 �, (12.26)

with n = n(x) the outward unit normal on �
N

, or a linear combination of
the two, which we refer to as a Robin boundary condition.
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Homogeneous Dirichlet boundary conditions

We now state the variational formulation of Poisson equation with homo-
geneous Dirichlet boundary conditions,

��u = f, x 2 ⌦, (12.27)

u = 0, x 2 �, (12.28)

which we obtain by multiplication with a test function v 2 V = H1
0 (⌦)

and integration over ⌦. Using Green’s theorem, we obtain the variational
formulation: find u 2 V , such that

(ru,rv) = (f, v), (12.29)

for all v 2 V , since the boundary term vanishes as the test function is an
element of the vector space H1

0 (⌦).

Homogeneous Neumann boundary conditions

We now state the variational formulation of Poisson equation with homo-
geneous Neumann boundary conditions,

��u = f, x 2 ⌦, (12.30)

ru · n = 0, x 2 �, (12.31)

which we obtain by multiplication with a test function v 2 V = H1(⌦)
and integration over ⌦. Using Green’s theorem, we get the variational
formulation: find u 2 V , such that,

(ru,rv) = (f, v), (12.32)

for all v 2 V , since the boundary term vanishes by the Neumann boundary
condition. Thus the variational forms (12.29) and (12.32) are similar, with
the only di↵erence being the choice of test and trial spaces.

However, it turns out that the variational problem (12.32) has no unique
solution, since for any solution u 2 V , also v +C is a solution, with C 2 R
a constant. To ensure a unique solution, we need an extra condition for
the solution which determines the arbitrary constant, for example, we may
change the approximation space to

V = {v 2 H1(⌦) :

Z

⌦

v(x) dx = 0}. (12.33)
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Non homogeneous boundary conditions

Poisson equation with non homogeneous boundary conditions takes the
form,

��u = f, x 2 ⌦, (12.34)

u(x) = g
D

, x 2 �
D

, (12.35)

ru · n = g
N

, x 2 �
N

, (12.36)

with � = �
D

[ �
N

. We obtain the variational formulation by by multipli-
cation with a test function v 2 V0, with

V
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= {v 2 H1(⌦) : v(x) = w(x), x 2 �
D

}, (12.37)

and integration over ⌦. Using Green’s theorem, we get the variational
formulation: find u 2 V

gD , such that,

(ru,rv) = (f, v) + (g
N

, v)
L

2(�N ). (12.38)

for all v 2 V0.
The Dirichlet boundary condition is enforced through the trial space,

and is referred to as an essential boundary condition, whereas the Neumann
boundary condition is enforced through the variational form, referred to as
a natural boundary condition.

Galerkin finite element method

To compute approximate solutions to the Poisson equation, we can formu-
late a Galerkin method based on the variational formulation of the equa-
tion, replacing the Sobolev space V with a finite dimensional space V

h

,
constructed by a set of basis functions {�

i

}M
i=1, over a mesh T

h

, defined as
a collection of elements {K
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}N
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}M
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For the Poisson equation with homogeneous Dirichlet boundary condi-
tions, the Galerkin element method takes the form: Find U 2 V

h

, such
that,

(rU,rv) = (f, v), v 2 V
h

, (12.39)

with V
h

⇢ H1
0 (⌦).

The variational form (12.39) corresponds to a linear system of equations
Ax = b, with a
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i

(x) the
basis function associated with the node N

i

.
For V

h

a piecewise polynomial space, we refer to (12.39) as a Galerkin
finite element method.
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12.4 Linear partial di↵erential equations

The abstract problem

We can express a general linear partial di↵erential equation as the abstract
problem,

A(u) = f, x 2 ⌦, (12.40)

with boundary conditions,

B(u) = g, x 2 �. (12.41)

For a Hilbert space V , we can derive the variational formulation: find
u 2 V such that,

a(u, v) = L(v), v 2 V, (12.42)

with a : V ⇥ V ! R a bilinear form, that is a function which is linear in
both arguments, and L : V ! R a linear form, or linear functional, which
is a linear function onto the scalar field R.

Theorem 18 (Riesz representation theorem). For every linear functional
L : V ! R on the Hilbert space V , with inner product (·, ·), there exists a
unique element u 2 V , such that

L(v) = (u, v), 8v 2 V. (12.43)

Existence and uniqueness

We can prove the existence of unique solutions to the variational problem
(12.42), under certain conditions. Assume the bilinear form a(·, ·) is sym-
metric,

a(v, w) = a(w, v), 8v, w 2 V, (12.44)

and coercive, or V-elliptic,

a(v, v) � c0kvkV , v 2 V, (12.45)

with c0 > 0, and k · k
V

the norm on V . A symmetric and elliptic bilinear
form defines an inner product on V , which induces a norm which we refer
to as the energy norm,

kwk
E

= a(w,w)1/2. (12.46)

But if the bilinear form is an inner product on V , by Riesz representation
theorem there exists a unique u 2 V , such that

a(u, v) = L(v). (12.47)
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If the bilinear form is not symmetric, we still have unique solution to
(12.42) by the Lax-Milgram theorem, if the bilinear form is elliptic (12.45),
and continuous,

a(u, v)  C1kukV kvkV , C1 > 0, (12.48)

with also the linear form continuous,

L(v)  C2kvkV , C2 > 0. (12.49)

Galerkin’s method

In a Galerkin method we seek an approximation U 2 V
h

such that

a(U, v) = L(v), v 2 V
h

, (12.50)

with V
h

⇢ V a finite dimensional subspace, which in the case of a finite
element method is a piecewise polynomial space.

The Galerkin approximation is optimal in the energy norm, since by
Galerkin orthogonality,

a(u� U, v) = 0, v 2 V
h

, (12.51)

we have that
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)
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,

so that
ku� Uk

E
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, v 2 V
h

. (12.52)

12.5 Exercises

Problem 34. Derive the variational formulation (12.38), and formulate
the finite element method.



Chapter 13

The heat equation

13.1 The heat equation

We consider the heat equation,

u̇(x, t)��u(x, t) = f(x, t), (x, t) 2 ⌦⇥ I, (13.1)

u(x, t) = 0, (x, t) 2 �⇥ I, (13.2)

u(x, 0) = u0(x), x 2 ⌦ (13.3)

on the domain ⌦ ⇢ Rn with boundary �, and with the time interval I =
(0, T ). To find an approximate solution to the heat equation, we use semi-
discretization where space and time are discretized separately, using the
finite element method and time stepping, respectively.

For each t 2 T , multiply the equation by a test function v 2 V = H1
0 (⌦)

and integrate in space over ⌦ to get the variational formulation,
Z

⌦

u̇(x, t)v(x) dx+

Z

⌦

ru(x, t) ·rv(x) dx =

Z
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f(x, t)v(x) dx,

from which we formulate a finite element method: find U 2 V
h

⇢ V , such
that,

Z
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U̇(x, t)v(x) dx+
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rU(x, t) ·rv(x) dx =

Z
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f(x, t)v(x) dx,

for all v 2 V
h

. The finite element method corresponds to the system of
initial value problems,

MU̇(t) + SU(t) = b(t), (13.4)

with
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s
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=
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b
i

(t) =

Z

⌦

f(x, t)�
i

(x) dx, (13.7)

which is solved by time stepping to get,

U(x, t) =
MX

j=1

U
j

(t)�
j

(x). (13.8)

13.2 Exercises

Problem 35. Derive (13.4) from the variational formulation of the heat
equation.

Problem 36. Multiply (13.1) by u(x, t) and integrate over ⌦, to show that
for f(x, t) = 0,

d

dt
ku(t)k2  0. (13.9)


