
Chapter 14

The Navier-Stokes equations

14.1 A general continuity equation

We consider the flow of a quantity with density �(x, t) at x 2 ⌦ ⇢ Rn,
with n = 2, 3. For a time t > 0, the total flow of the quantity through the
boundary @⌦, is given by Z

@⌦

�u · n ds, (14.1)

where n is the outward unit normal of @⌦, and u = u(x, t) is the velocity
of the flow.

For an arbitrary subdomain ! ⇢ ⌦, the change of the integral of � is
equal to the volume source or sink s = s(x, t) minus the total flow of the
quantity through the boundary @!,

d

dt

Z

!

�(x, t) dx = �
Z

@!

�u · n ds+

Z

!

s(x, t) dx, (14.2)

which by Gauss’ theorem leads to
Z

!

✓
@

@t
�(x, t) +r · (�u)� s

◆
dx = 0, (14.3)

for any ! ⇢ ⌦, and thus we get the general continuity equation

�̇+r · (�u)� s = 0, (14.4)

for any x 2 ⌦, and t > 0.

14.2 Mass conservation

We now consider the flow of mass of a continuum, with ⇢ = ⇢(x, t) the mass
density at of the continuum. The general continuity equation with � = ⇢,
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and zero sink s = 0, gives the equation for conservation of mass

⇢̇+r · (⇢u) = 0. (14.5)

A flow is incompressible if

r · u = 0, (14.6)

or equivalently if the material derivative is zero,

D⇢

Dt
= ⇢̇+ u ·r⇢ = 0, (14.7)

since

0 = ⇢̇+r · (⇢u) = D⇢

Dt
+ ⇢r · u. (14.8)

14.3 Conservation of momentum

Newton’s 2nd Law states that the change of momentum ⇢u, is equal to the
sum of all forces, including volume forces,

Z

!

⇢(x, t)f(x, t) dx, (14.9)

for a force density f = (f1, ..., fn), and surface forces,

Z

@!

n(x, t) · �(x, t) ds, (14.10)

with the Cauchy stress tensor � 2 Rn⇥n. Gauss’ theorem gives the total
force as Z

!

⇢f dx+

Z

@!

n · � ds =
Z

!

(⇢f +r · �) dx. (14.11)

The general continuity equation with � = ⇢u, and the sink given by the
sum of all forces, gives the equation for conservation of momentum

@

@t
(⇢u) +r · (⇢u⌦ u) = ⇢f +r · �, (14.12)

with u ⌦ u = uuT , the tensor product of the velocity vector field u. With
the help of conservation of mass, we can rewrite the left hand side as

@

@t
(⇢u) +r · (⇢u⌦ u) = u(⇢̇+r · (⇢u)) + ⇢(u̇+ (u ·r)u) = ⇢(u̇+ (u ·r)u),
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so that we get
⇢(u̇+ (u ·r)u) = ⇢f +r · �. (14.13)

The Cauchy stress tensor consists of normal stresses on the diagonal,
and shear stresses on the o↵-diagonal. We can decompose � into a dynamic
pressure

p
d

= �1

3
tr(�), (14.14)

and a deviatoric stress tensor ⌧ = � + p
d

I, with I the identity matrix,

� = �p
d

I + ⌧, (14.15)

so that
⇢(u̇+ (u ·r)u) = ⇢f �rp

d

+r · ⌧. (14.16)

The Navier-Stokes equations

We now consider incompressible flow, so that the velocity is divergence free,
and we assume the density to be constant. To determine the deviatoric
stress we need a constitutive model of the fluid.

For a Newtonian fluid, the deviatoric stress depends linearly on the
strain rate tensor

✏ =
1

2
(ru+ (ru)T ) =

1

2

✓
@u

i

@x
j

+
@u

j

@x
i

◆
, (14.17)

with ⌧ = 2µ✏, where µ is the dynamic viscosity.
The incompressible Navier-Stokes equations takes the form,

u̇+ (u ·r)u+rp� ⌫�u = f, (14.18)

r · u = 0, (14.19)

with the kinematic viscosity ⌫ = µ/⇢, and the kinematic pressure p = p
d

/⇢.

Non-dimensionalization

Solutions to the Navier-Stokes equations may take quite di↵erent forms,
depending on the balance of the inertial and dissipative terms of the equa-
tions. To exhibit this balance, we express the Navier-Stokes equations in
terms of the non-dimensional variables u⇤, p⇤, f⇤, x⇤, t⇤,

u = Uu⇤, p = Pp⇤, x = Lx⇤, f = Ff⇤, t = Tt⇤, (14.20)
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where U, P, L, T are characteristic scales of the velocity, pressure, force,
length and time, respectively. The resulting non-dimensionalized di↵eren-
tial operators are scaled as,

@

@t
=

1

T

@

@t⇤
, r =

1

L
r⇤, � =

1

L2
�⇤, (14.21)

which gives

U

T

@

@t⇤
u⇤ +

U2

L
(u⇤ ·r⇤)u⇤ +

P

L
r⇤p⇤ � ⌫U

L2
�⇤u⇤ = Ff⇤, (14.22)

U

L
r · u⇤ = 0, (14.23)

or,

u̇+ (u ·r)u+rp�Re�1�u = f, (14.24)

r · u = 0. (14.25)

Here we have dropped the non-dimensional notation for simplicity, with

T = L/U, P = U2, F =
U2

L
, Re =

UL

⌫
, (14.26)

where the Reynolds number Re determines the balance between inertial
and viscous characteristics in the flow. For low Re linear viscous e↵ects
dominate, whereas for high Re we have a flow dominated by nonlinear
inertial e↵ect, and turbulence for su�ciently high Reynolds number.

In the limit Re ! 1, the viscous term vanished and we are left with
the Euler equations,

u̇+ (u ·r)u+rp = f, (14.27)

r · u = 0, (14.28)

whereas in the limit Re ! 0, we obtain the Stokes equations as a model of
viscous flow,

��u+rp = f, (14.29)

r · u = 0, (14.30)

with now a di↵erent scaling of the pressure and the force,

P =
⌫U

L
, F =

⌫U

L2
. (14.31)



14.4. STOKES FLOW 123

14.4 Stokes flow

The Stokes equations

The Stokes equations for a domain ⌦ ⇢ R3 with boundary � = �
D

[ �
N

,
and associated normal n, takes the form,

��u+rp = f, x 2 ⌦, (14.32)

r · u = 0, x 2 ⌦, (14.33)

u = g
D

, x 2 �
D

, (14.34)

�ru · n+ pn = g
N

, x 2 �
N

. (14.35)

Homogeneous Dirichlet boundary conditions

First assume that we have � = �
D

and that g
D

= 0, that is homogeneous
Dirichlet boundary conditions for the velocity. We then seek a weak solution
to the Stokes equations in the following spaces,

V = [H1
0 (⌦)]

3 (14.36)

Q = {q 2 L2(⌦) :

Z

⌦

q dx = 0}, (14.37)

where the extra condition on Q is needed to assure uniqueness of the pres-
sure, which otherwise is undetermined up to a constant.

We derive the variational formulation by taking the inner product of the
momentum equation with a test function v 2 V , and the inner product of
the continuity equation with a test function q 2 Q. By Green’s formula and
the homogeneous Dirichlet boundary condition, we obtain the variational
formulation as: find (u, p) 2 V ⇥Q, such that,

a(u, v) + b(v, p) = (f, v), (14.38)

b(u, q) = 0, (14.39)

for all (v, q) 2 V ⇥Q, with

a(v, w) = (rv,rw) =

Z

⌦

rv : rw dx, (14.40)

b(v, q) = �(r · v, q) = �
Z

⌦

(r · v)q dx, (14.41)

and

rv : rw =
3X

i,j=1

@v
j

@x
j

@w
j

@x
j

. (14.42)
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The saddle-point problem

The solution (u, p) to the Stokes equations (14.38-14.39), is also the solution
to the constrained minimization problem,

min J(v) =
1

2
a(v, v)� (f, v) (14.43)

under the constraint
b(v, q) = 0, (14.44)

for which we can formulate the Lagrangian

L(v, q) = J(v) + b(v, q), (14.45)

so that p 2 Q represents a Lagrange multiplier for the constraint r · u = 0.
The Stokes problem thus represents a saddle-point problem, since

L(u, q)  L(u, p)  L(v, p), 8(v, q) 2 V ⇥Q. (14.46)

Theorem 19. The saddle-point point problem (14.38-14.39) has a unique
solution, if

(i) the bilinear form a is coercive, i.e. that exists an ↵ > 0, such that

a(v, v) � ↵kvk
V

, (14.47)

for all v 2 Z = {v 2 V : b(v, q) = 0, 8q 2 Q},
(ii) the bilinear form b satisfies the inf-sup condition, i.e. there exists a

� > 0, such that

inf
q2Q

sup
v2V

b(v, q)

kvk
V

kqk
Q

� �. (14.48)

Mixed finite element approximation

We now formulate a finite element method for solving Stokes equations.
Since we use di↵erent approximation spaces for the velocity and the pres-
sure, we refer to the method as a mixed finite element method. We seek an
approximation (U, P ) 2 V

h

⇥Q
h

, such that,

a(U, v) + b(v, P ) = (f, v), (14.49)

b(U, q) = 0, (14.50)

for all (v, q) 2 V
h

⇥ Q
h

, where V
h

and Q
h

are finite element approxima-
tion spaces. There exists a unique solution to (14.49-14.50), under certain
conditions on the approximation spaces V

h

and Q
h

.
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Theorem 20. The mixed finite element problem (14.49-14.50) has a unique
solution (U, P ) 2 V

h

⇥Q
h

, if

(i) the bilinear form a is coercive, i.e. that exists an ↵
h

> 0, such that

a(v, v) � ↵
h

kvk
V

, (14.51)

for all v 2 Z
h

= {v 2 V
h

: b(v, q) = 0, 8q 2 Q
h

},
(ii) the bilinear form b satisfies the inf-sup condition, i.e. there exists a

�
h

> 0, such that

inf
q2Qh

sup
v2Vh

b(v, q)

kvk
V

kqk
Q

� �
h

, (14.52)

and this unique solution satisfies the following error estimate,

ku� Uk
V

+ kp� Pk
Q

 C

✓
inf
v2vh

ku� vk+ inf
q2Qh

kp� qk
◆
, (14.53)

for a constant C > 0.

The pair of approximation spaces must be chosen to satisfy the inf-sup
condition, with the velocity space su�ciently rich compared to the pres-
sure space. For example, continuous piecewise quadratic approximation of
the velocity and continuous piecewise linear approximation of the pressure,
referred to as the Taylor-Hood elements. On the other hand, continuous
piecewise linear approximation of both velocity and pressure is not inf-sup
stable.

Schur complement methods

Let V
h

= span{�
j

}N
j=1 and Q

h

= span{ 
j

}M
j=1, so that

U
k

(x) =
NX

j=1

U j

k

�
j

(x), k = 1, 2, 3, P (x) =
MX

j=1

P j 
j

(x), (14.54)

which leads to the following discrete system in matrix form,

A B
BT 0

� 
u
p

�
=


f
0

�
. (14.55)

The matrix A is invertible, so we can express

u = A�1(f � Bp), (14.56)
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and since BTu = 0,
BTA�1Bp = BTA�1f, (14.57)

which is the Schur complement equation. If (B) = {0}, then the matrix
S = BTA�1B is symmetric positive definite.

Schur complement methods take the form

p
k

= p
k�1 � C�1(BTA�1Bp

k�1 � BTA�1f), (14.58)

where C�1 is a preconditioner for S = BTA�1B. The Usawa algorithm is
based on C�1 as a scaled identity matrix, which gives

1. Solve Au
k

= f � Bp
k�1,

2. Set p
k

= p
k�1 + ↵BTu

k

.

Stabilized methods

Approximation spaces of equal order is possible, by stabilization of the
standard Galerkin finite element method: find (U, P ) 2 V

h

⇥Q
h

, such that,

a(U, v) + b(v, P ) = (f, v), (14.59)

b(U, q) + s(P, q) = 0, (14.60)

for all (v, q) 2 V
h

⇥Q
h

, which gives the discrete system


A B
BT S

� 
u
p

�
=


f
0

�
. (14.61)

For example, the Brezzi-Pitkäranta stabilization takes the form,

s(P, q) =

Z

⌦

h2rP ·rq dx. (14.62)


