Chapter 14

The Navier-Stokes equations

14.1 A general continuity equation

We consider the flow of a quantity with density ¢(x,t) at = € Q C R",
with n = 2,3. For a time t > 0, the total flow of the quantity through the
boundary 012, is given by
ou - nds, (14.1)
9

where n is the outward unit normal of 99, and u = u(z,t) is the velocity
of the flow.

For an arbitrary subdomain w C €2, the change of the integral of ¢ is
equal to the volume source or sink s = s(x,t) minus the total flow of the
quantity through the boundary ow,

% /w¢(x,t) de = — N ou-nds+ /w s(x,t) de, (14.2)
which by Gauss’ theorem leads to
/w <%¢(m,t) + V- (pu) — s) dr =0, (14.3)
for any w C €2, and thus we get the general continuity equation
o+ V- (¢u) —s =0, (14.4)

for any x € 2, and t > 0.

14.2 Mass conservation

We now consider the flow of mass of a continuum, with p = p(x,t) the mass
density at of the continuum. The general continuity equation with ¢ = p,
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and zero sink s = 0, gives the equation for conservation of mass
p+ V- (pu)=0. (14.5)
A flow is incompressible if
V.ou=0, (14.6)

or equivalently if the material derivative is zero,

Dp
=-r _ . — 14.
oy = PTuVp=0, (14.7)
since D
Oz,o'—i-V-(pu):Fi—l—pV-u. (14.8)

14.3 Conservation of momentum

Newton’s 2nd Law states that the change of momentum pu, is equal to the
sum of all forces, including volume forces,

/ o, 1) f (@, 1) da, (14.9)

for a force density f = (f1,..., fn), and surface forces,

/ n(z,t) - o(x,t)ds, (14.10)

with the Cauchy stress tensor o € R"*". Gauss’ theorem gives the total
force as

/wpfdx+/awn-ads=/W(Pf+v-cr)dx. (14.11)

The general continuity equation with ¢ = pu, and the sink given by the
sum of all forces, gives the equation for conservation of momentum

O (ou) + ¥ (pu @) = pf +V -0 (14.12)

with u ® u = uu?, the tensor product of the velocity vector field u. With
the help of conservation of mass, we can rewrite the left hand side as

O (pu) + V- (pu @ w) = u(p V- (o) + pli+ (- V) = pli+ (- V),
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so that we get
pi+ (u-Vu)=pf +V-o. (14.13)

The Cauchy stress tensor consists of normal stresses on the diagonal,
and shear stresses on the off-diagonal. We can decompose o into a dynamic
pressure

1
pa=—3 tr(o), (14.14)

and a dewviatoric stress tensor T = o + pgl, with I the identity matrix,
o=—pil +, (14.15)

so that
p(a+ (u-Vu) =pf —Vps+ V- (14.16)

The Navier-Stokes equations

We now consider incompressible flow, so that the velocity is divergence free,
and we assume the density to be constant. To determine the deviatoric
stress we need a constitutive model of the fluid.

For a Newtonian fluid, the deviatoric stress depends linearly on the
strain rate tensor

1 T 1 811,1 OU]'
_ = S 14.1
€ 2(Vu+(Vu) ) Q(ij+8xi>’ (14.17)
with 7 = 2ue, where p is the dynamic viscosity.
The incompressible Navier-Stokes equations takes the form,
U+ (u-V)u+Vp—vAu = f, (14.18)
V-u=0, (14.19)

with the kinematic viscosity v = p/p, and the kinematic pressure p = py/p.

Non-dimensionalization

Solutions to the Navier-Stokes equations may take quite different forms,
depending on the balance of the inertial and dissipative terms of the equa-
tions. To exhibit this balance, we express the Navier-Stokes equations in
terms of the non-dimensional variables wu,, ps, f«, Ts, ty,

u=Uu,, p=Pp,, x=Lx, f=Ff, t=Tt,, (14.20)
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where U, P, L, T are characteristic scales of the velocity, pressure, force,
length and time, respectively. The resulting non-dimensionalized differen-
tial operators are scaled as,

o 10 1 1

- - =—-V. A= —=A,, 14.21
ot Tot,’ v LV ’ L? ( )
which gives
U 0 U? P vU
Tar e T e Vi)t + FVap = 5 A fe, (14.22)
%V “Uy =0, (14.23)
or,
i+ (u-V)u+Vp— Re 'Au = f, (14.24)
V-u=0. (14.25)

Here we have dropped the non-dimensional notation for simplicity, with

2
T=L/U P=U? F= U—, Re = E, (14.26)
L v
where the Reynolds number Re determines the balance between inertial
and viscous characteristics in the flow. For low Re linear viscous effects
dominate, whereas for high Re we have a flow dominated by nonlinear
inertial effect, and turbulence for sufficiently high Reynolds number.
In the limit Re — oo, the viscous term vanished and we are left with
the Fuler equations,

U+ (u-V)u+Vp=f, (14.27)
Vou=0, (14.28)

whereas in the limit Re — 0, we obtain the Stokes equations as a model of
viscous flow,

—Au+ Vp=f, (14.29)
Vou=0, (14.30)

with now a different scaling of the pressure and the force,

vU vU
P=— F=—. 14.31
., F=2 (14.31)
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14.4 Stokes flow

The Stokes equations

The Stokes equations for a domain Q C R? with boundary I' = I'p U 'y,
and associated normal n, takes the form,

—Au+Vp = f, x € (), (14.32)
V.u=0, x € (), (14.33)

U= gp, x € 'p, (14.34)
—Vu-n+pn = gn, x €. (14.35)

Homogeneous Dirichlet boundary conditions

First assume that we have I' = I'p and that gp = 0, that is homogeneous
Dirichlet boundary conditions for the velocity. We then seek a weak solution
to the Stokes equations in the following spaces,

V = [Hy(Q))? (14.36)
Q=1{qe L*O): /qux =0}, (14.37)

where the extra condition on () is needed to assure uniqueness of the pres-
sure, which otherwise is undetermined up to a constant.

We derive the variational formulation by taking the inner product of the
momentum equation with a test function v € V, and the inner product of
the continuity equation with a test function ¢ € (). By Green’s formula and
the homogeneous Dirichlet boundary condition, we obtain the variational
formulation as: find (u,p) € V' x @, such that,

a(u,v) +b(v,p) = (f,v), (14.38)
b(u,q) = 0, (14.39)

for all (v,q) € V x @, with

a(v,w) = (Vou,Vw) = /QV’U : Vw dz, (14.40)
b(v,q) = —(V - v,q) = — /Q(v Co)gdz, (14.41)

and AP
Vo : Vu = Z a—:]:;@—xj. (14.42)

i,5=1
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The saddle-point problem

The solution (u, p) to the Stokes equations (14.38-14.39), is also the solution
to the constrained minimization problem,

1
min J(v) = ia(v,v) — (f,v) (14.43)
under the constraint
b(v,q) =0, (14.44)
for which we can formulate the Lagrangian
L(v,q) = J(v) + b(v,q), (14.45)

so that p € @) represents a Lagrange multiplier for the constraint V -u = 0.
The Stokes problem thus represents a saddle-point problem, since

L(u,q) < L(u,p) < L(v,p), VY(v,q) €V x Q. (14.46)

Theorem 19. The saddle-point point problem (14.38-14.39) has a unique
solution, if

(i) the bilinear form a is coercive, i.e. that exists an o > 0, such that
a(v,v) > allv]v, (14.47)
forallve Z={veV:bl,q) =0,YqeQ},

(11) the bilinear form b satisfies the inf-sup condition, i.e. there exists a
B >0, such that

b
inf sup b > . (14.48)
€Quev [lvllviiale

Mixed finite element approximation

We now formulate a finite element method for solving Stokes equations.
Since we use different approximation spaces for the velocity and the pres-
sure, we refer to the method as a mixed finite element method. We seek an
approximation (U, P) € V}, x @y, such that,

a(U,0) +b(0,P) = (f.0) (14.49)
b(U,q) = 0, (14.50)
for all (v,q) € Vi, x Qp, where V}, and @), are finite element approxima-

tion spaces. There exists a unique solution to (14.49-14.50), under certain
conditions on the approximation spaces V}, and Q.
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Theorem 20. The mized finite element problem (14.49-14.50) has a unique
solution (U, P) € Vi, X Qp, if

(i) the bilinear form a is coercive, i.e. that exists an cy, > 0, such that
a(v,v) > agl|v||v, (14.51)
for allv e Z, = {v eV :b(v,q) =0,Yq € Qn},

(7i) the bilinear form b satisfies the inf-sup condition, i.e. there exists a
By, > 0, such that
b(v
inf sup (v.9)

> B, (14.52)
a€Qn vevy, [[V|lv]allq

and this unique solution satisfies the following error estimate,
lu=Ully+llp— Pllg < C (mf Ju— vl + inf p— q||) . (1453)
vEVR q4€Qn

for a constant C > 0.

The pair of approximation spaces must be chosen to satisfy the inf-sup
condition, with the velocity space sufficiently rich compared to the pres-
sure space. For example, continuous piecewise quadratic approximation of
the velocity and continuous piecewise linear approximation of the pressure,
referred to as the Taylor-Hood elements. On the other hand, continuous
piecewise linear approximation of both velocity and pressure is not inf-sup
stable.

Schur complement methods

Let Vi, = span{¢;}., and Q) = span{¢;}}7,, so that

Up(z) = Z Ulgi(x), k=1,2,3, P(z)= Z Piap;(x), (14.54)

which leads to the following discrete system in matrix form,

FAE-0 e

The matrix A is invertible, so we can express

u=A"Yf — Bp), (14.56)



126 CHAPTER 14. THE NAVIER-STOKES EQUATIONS
and since BTu = 0,

BTA™'Bp=BTA'Y}, (14.57)

which is the Schur complement equation. If (B) = {0}, then the matrix
S = BT A~'B is symmetric positive definite.
Schur complement methods take the form

pe = pe—1 —C(BTA'Bpy_y — BTA™'f), (14.58)

where C~! is a preconditioner for S = BT A7'B. The Usawa algorithm is
based on C~! as a scaled identity matrix, which gives

1. Solve Auy, = f — Bpp_1,

2. Set pp = pp_1 + aBTuy.

Stabilized methods

Approximation spaces of equal order is possible, by stabilization of the
standard Galerkin finite element method: find (U, P) € V}, X @y, such that,

a(U,v) +b(v, P) = (f,v), (14.59)
b(U,q) +s(P.q) = 0, (14.60)

for all (v,q) € Vi, X Qp, which gives the discrete system

I

For example, the Brezzi- Pitkdranta stabilization takes the form,

s(P,q) = / h*V P -Vqdz. (14.62)
Q



