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The course contains 12 sections

<-Basic Quantum Mechanics concepts

<-Basic nuclear physics concepts: Pairing, single-particle excitations, square
well

<-Single-particle model and the spin-orbit interaction

<>Magnetic resonances in nuclei

<-Nuclear deformation and the Nilsson model, the cranking approximation
<-Two-particle system, LS and jj coupling

<Modern theory of the nuclear force, isospin symmtry

<-Seniority coupling scheme and neutron-proton coupling scheme
<-Second quantization

<-Hartree-Fock and energy density functional

<-Tamm-Dankoff & Random Phase Approximations

<-One-nucleon operators, gamma and beta decays, 14C-dating 8 decay
<-Many-body operators and alpha decay

<-If time allows, we may also cover:

<-Scattering theory and resonances

<-Continuum, nuclear halo and astrophysics
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me works (11 in total): Pre-reading + exercises
{t8rbjects (note + oral presentation)

Before the lecture

» Finish the exercises and hand in (two copies) in due time.

* Read the lecture notes in advance
» Pay special attention to the key concepts | mentioned at the beginning of each chapter

» Choose one or several projects to work with

During the lecture

« Present your the exercises

« Mark and approve one copy of the others’
« Present your projects

« Group discussion on key concepts

Bases of your assessment. To pass,
one should have

>7 Approved homeworks

>1 Approved projects

Higher requirement for PhD and late

submission
After the lecture and before you go:

Write on a small piece of paper and leave it to me
» The hard/muddy point
« Theint ' '
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Physics

physics of the electronic, extra-nuclear structure of  atoms

Nuclear Physics

The physics of the atomic nucleus, believed to be constituted
of neutrons and protons

Elementary Particle Physics

The physics of quarks and gluons, believed to be the
constituents of protons and neutrons, and of leptons
and gauge bosons and...

who knows what else!

Quarks, gluons, leptons, and gauge bosons are believed to
have no substructure.

Group




= 1he dawn of nuclear physics
888 Discovery of radioactivity (Becquerel)

1911: Discovery of the nucleus (Rutherford experiment)
1932: Discovery of the neutron (Chadwick)

1935: Bethe-Weiszaker mass formula

1939: Discovery of (neutron-induced) fission

1949: Shell model (Goeppert-Mayer, Jensens)

1951: Collective model (Bohr, Mottelson, Rainwater)
1957 Nuclear superfluidity (Bohr, Mottelson)

Since then: Nuclear forces, many-body methods (HF, HFB,
RPA, GCM, Green function, etc.

Group actiwvi




clear constituents

otation used to represent a given nuclide

Z: atomic number A 8
A N

A: atomic mass number

A=7Z+ N

N: neutron number

X: chemical symbol

M =integerx M,

M: the mass of a specific atom




Z and neutron number /V
Isotopes Nuclides of same Z and different NV
Isotones Nuclides of same /V and different Z
Isobars Nuclides of same mass number A (A = Z + N)
Isomer Nuclide in an excited state with a measurable half-life
Nucleon Neutron or proton

Mesons Particles of mass between the electron mass (mo) and
the proton mass (M};). The best-known mesons are ©
mesons (= 270 m,), which play an important role in

nuclear forces, and |1 mesons (207 m,,) which are
important in cosmic-ray phenomena




Strangeness degree of freedom

hyperon is any baryon containing one or
more strange quarks, but no charm,

bottom, or top quark.

N0 — p+ +e—+ve
NO — p+ + py—+ vy

Z 78 o P Z\Li f\Li SLi 1o Li




Natural units are physical units of measurement based only on universal constants. For
example the elementary charge e is a natural unit of electric charge, or the speed of light
¢ is a natural unit of speed. In nuclear physics, the most useful units are A, ¢, fm, MeV.

Planck constant h 6.626 06957(29) x 1073* J s
4.135667516(91) x 107 eV s
h/2n h 1.054 571 726(47) x 10734 J s
6.58211928(15) x 10716 ¢V s
he 197.326 9718(44) MeV fm

Nuclear masses ~ 10?7 kg




jvenient energy units

1eV =1.602x10" ]
Atomic Scale ~ eV

Nuclear Scale ~ MeV (10° eV)

Particle Scale ~ GeV (10° eV)

What is the mass of a nucleon?
e 1MeV
e 1GeV




electron mass
energy equivalent

electron-muon mass ratio
electron-tau mass ratio
electron-proton mass ratio
electron-neutron mass ratio
proton mass

energy equivalent

proton-electron mass ratio
proton-neutron mass ratio
neutron mass

energy equivalent

alpha particle mass

energy equivalent

9.109 38291(40) x 1073 kg
5.4857990946(22) x 107* u
8.18710506(36) x 10714 J
0.510998928(11) MeV
4.83633166(12) x 1073
2.87592(26) x 10~
5.4461702178(22) x 104
5.438 6734461(32) x 1074
1.672621777(74) x 10727 kg
1.503 277 484(66) x 10710 J
938.272 046(21) MeV
1836.15267245(75)
0.998 623 478 26(45)
1.674927351(74) x 10727 kg
1.008 664 916 00(43) u

1.505 349631(66) x 1071° J
939.565 379(21) MeV
6.644 656 75(29) x 10727 kg
4.001 506179125(62) u
5.97191967(26) x 10710 J
3727.379240(82) MeV




Size of Nuclei

#%/\/hat is the size of the nucleus
* nanometer
« femtometer
e picometer

Atomic radius of aluminum=1.3x 10"1°m

Nuclear radius aluminum =3.6 x 101" m

Gold
A outermost
torm electron
3.3 miles {6 -
Sun and gold
nuclaus are
scaled to a
radius of 1 foal. I—-
11t « Earth
~
Solar 215 fi outermost
- planet
System 1.6 miles {¢ -
Pluto




The convenient unit for measuring the nuclear mass

u . is called the atomic mass unit or for short amu.

The mass of a "?C atom (including all six electrons) is defined as 12 amu (or
12 u) exact.

1 u=1amu=1.6605402 10)x10~*" kg
=931.49432 (28) MeV/c”

(1)

The mass of a proton M, =1.007276470 (12) u = 938.27231 MeV/c’

The mass of a neutron 2




Total binding energy B(A,Z)

B(A,Z)=[ZM ,+ NM,-M(A4,2)Ic’| (2

The total binding energy B(A,Z) is defined as the total minimum work that an
external agent must do to disintegrate the whole nucleus completely. By doing

so the nucleus would no longer be existent but disintegrated into separated
nucleons.

This can also be considered as the total amount of
energy released when nucleons, with zero kinetic

energy initially, come close enough together to form a
stable nucleus.

An interesting measured quantity is the
averagedgbindi




How large is nuclear binding energy per nucleon?
« 1MeV
« 10MeV




The average binding energy per nucleon versus mass number A

>Fe has 8.8 MeV per nucleon

binding energy and is the most

.7 |tightly bound nucleus

Average binding energy per nucleon (MeV)

3 -ﬁ W3 o
rHce3 Bave = B/A

Y, LI I (N W I S S— S R

0 20 40 60 80 100 120 140 160 180 200 220 240
Number of nucleons in nucleus, A




ilinc eneroy of a nucleus
g

Definition:

(9)

From the liquid drop model — Weizsacker’ s formula

(10)

Carl Friedrich von Weizsacker, 1993
A German physicist (1912-2007)



Separation energy (S)

{88 Beparation energy of a neutron S,

4 A-1
7 XNy, Xy 0

S =[M(A-1,Z)+ M, —M(A4,2)]c? (4)

M(A,Z)c* =(ZM , + NM,)c* - B(A,Z)
M(A-1,Z)c* =[ZM ,+ (N -1)M,]c* - B(4-1,Z)
S, ={[ZM ,+(N-1)M,Ic" - B(4-1,Z)+ M ¢
- (ZM , + NM, )¢’ + B(A4,Z)}
=B(4,2)-B(4-1,2)

- | S = B(4,2)-B(A-1,2)] (5)




Separation energy (S)

8 Eeparation energy of a proton Sy

JX =Y, +p

‘SP=B(A,Z)—B(A—1,Z—1)‘ (6)

(3). The separation energy of a a-particle S,

A A-4 4
4 XN %Z—ZYN—Z +2H62

- 2)—3(4,2)\ (7)




The naturally occurring nuclei

ol I
126 g
G RTR
- 208pp
proton-rich nuclei
178Hf
N=Z
08 166
i 50
e 1328n
WCa o I neutron-rich nuclei
| 50 78N
line of beta stability £




Total Angular momentum and Nuclear spin

The nucleus is an isolated system and so often acts like a single entity with has a
well defined total angular momentum.

It is common practice to represent this total angular momentum of a nucleus
by the symbol | and to call it nuclear spin.

[Associated with each nuclear spin is a nuclear magnetic moment
which produces magnetic interactions with its environment.]

For electrons in atoms:

For electrons in atoms we make a clear distinction between electron spin and
electron orbital angular momentum and then combine them to give the total
angular momentum.

\




What is spin of the ground state of an even-even nucleus?
« Zero
* Non-zero

Why?




The full Hamiltonian
@0h-relativistic approximation, nuclear properties are described by the Schrédinger
Fon for A nucleons

HY¥(1,2,...,A) =EY¥(1,2,....A)

W(1,2,...,A) denotes an A-body wave function. The Hamiltonian H contains nucleon
kinetic energy operators and interactions between nucleons (two-body and three
body).

—Z( Az)+ZW(11)+ Z W (i, j,k),

1< j=1 i<j<k=1

i denotes all relevant coordinates of a given particle (i=1,2, ... ,A).

Practically it is formidable!!



Basic notions of quantum mechanics

Wave function encodes all information about a quantum system

Schrodinger equation gives the wave-function

. K2
Hou=Bun = |59+ V()| 0u(r) = Eeon)
Energy of the system, and its evolution in time is dictated by the Hamiltonian,
H=T+V

Hamiltonian spectrum (eigenvalues of operator) can be
—  Discrete: bound-states, localized

- Continuous: continuum, resonance, delocalized scattering states

To an observable (measurable) quantity corresponds a Hermitian operator




1.2 The Hilbert space

In Quantum Mechanics the states are represented by vectors in an abstract space called
Hilbert space. Thus, a state a is a vector which, in Dirac notation, is written as |a).
As we will see below, this vector can be associated either to a function ¥, (7), which
is regular and square integrable, or to a one-dimensional matrix (spinor). In the first
case the metric of the space is defined by the scalar product in the region V of the
three-dimensional (physical) space where the functions are square integrable. Usually V
includes the whole space. Thus, the scalar product between the vectors |a) and |8) is
defined by

(Bla) = / 07 () V() (1.6)

The vector (| is called "bra” and |a) is called "ket”. The scalar product («|3) is called
"bracket”.

Quantum mechanical states are characterized by vectors of a Hilbert space

| ),

o) € H.



[. The abstract Hilbert space £* is given by a set of elements H = (| ¢), | @) | x)s ),
for which addition and multiplication with complex numbers is defined

|0)+ @)=l +¢) €H (L.1)

alv) = lav) €A (1.2)
together with a scalar product
(e|v) € C. (1.3)

With respect to (1.1) and (1.2), H is a linear vector space, i.e.,

|¥)+|w) = |e)+|¥)




(le)+ 1D+ o) = |0) + (@)t | z))
[v)+10) = ¥)
[ @)+ =¥} = 0
(1.4)

The last two relations state the existence of a O-vector and the existence of a negative
vector with respect to | v).

1) = |v)
ab|¥)) = (ab) | )
(@+8)|¥) = alv)+b]|0)

al )+ | ¢) = alv)+ale)

(1.5)




One sees from the definition of the scalar product that it is (a|8) = (8|a)*. Therefore
the norm N, of a vector |a), i. e. N, = y/{(c|a) is a real number. In Quantum Mechanics
N2 is the probability of measuring the system in the state a. Since the system exists,
this probability should be N2 = 1. Notice that we assume that the system is stationary,
that is all processes are time-independent. Therefore if the system is in the state «, it

II. With respect to the scalar product, H is a unitary vector space

Wlv)=0 (1.6)
and

@) =0 =|¢)=0 (L.7)

(elv) = @le)
(p|av) = ale|¥)
(o |1 +va) = (p|¥)+{p]|¢)

(1.8)

Because of (1.6) a Norm can be defined

(1.9)

| ¥ ||=




1.2 Eigenvalues and eigenvectors of matrices

The word ”eigenvector” almost always means a ”’right column” vector that must be placed to the "right”
of the matrix A. The eigenvalue equation for a matrix A is

Av—dv =0

In matrix form we can write,

A1
Az

Anl

b

where for each element we have,

w; = Ajv1 + Ajve +

(1.4)
Ain U1 U1
A2,'n, V2 U2
=\
Apnn) \Vn Un




For a 2 x 2 matrix the eigenvalues are found to be

_tr(4)+ Vtr2(A) — 4det(A)

A 2

(1.14)

For the eigen vectors we have

U1 A1z _ A — Az (1.15)

(%) - A — A11 A21




1.3 Hermitian operators

The relation between |a) and |8) is Ala) = [B). The corresponding adjoint operator
At is defined by (8| = (aAf. Taking the scalar product with another vector  one gets,

(7|Ale) = (78) = (B]y)* = (a]Af|y)*. The operator A is called Hermitian if
At=A Hermitian

The eigenvalues a and eigenvectors |a) of the operator A satisfy the equation

Alo) = a|a)
and for the adjoint operator A it is,

(a]At = a*(q
If the operator A is Hermitian one has

(BlAla) = (B AT]a)
If, in addition, |e) and |B) are eigenvectors of A, then one gets
a(Bla) = b*(B|a)

Which implies that

{ ) # |8); (Bla) =0

la) =|B); a real

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)



The eigenvectors of Hermitian operators are the corresponding wave functions that
allow one to evaluate all probabilities, in particular transition probabilities. Besides, they

play a fundamental role in Quantum Mechanics. Thus, normalizing the eigenvectors in
Eq. (1.13) as (a|a) = 1 and from Eq. (1.14) one finds that they satisfy

(a]B) = bas (1.15)

which means that they form an orthonormal set of vectors in the Hilbert space. They
can be used as a basis to describe any vector belonging to the space. In a more rigorous
statement one can say that the eigenvectors of an Hermitian operator span the Hilbert
space on which the operator acts. To see the great importance of this property, assume a
Hilbert space of dimension N and a Hermitian operator A acting on this space such that,

Aloy) = ajlay), i=1,2,---,N (1.16)

Any vector |v) in the space spanned by the basis {|a)} can be written as

[v) = Z ¢ilai) (1.17)




Representations and their use

From Eq. (1.15) one obtains
c; = (a;|v) (1.18)

The numbers (a;|v) are called ” amplitudes”. If the vector |v) represents a physical (quan-
tum) state, then the amplitudes have to obey the normality relation given by,

(vl) = 3 cifvlas) = Y (vla)* (v]as) Z|<v|az = (1.19)

From Eq. (1.18) the vector |v) can be written as,

N

v) = (euv)|ews) Z ;) (i |v) (1.20)

=1
which shows that

Z o) (au| =1 (1.21)

This is the projector into the space spanned by the set {|a)} We will use the projector
often in these lectures.



v v

For the case of an N-dimensional spinor the vector « is associated to the one-dimensional
matrix given by
(o2 )
Q2

(1.7)

\ oy /

and the scalar product between the vectors a and § is given by
(o)
(0'5) N
i=1

\ oy /




Translation symmetry

The translation operator T is defined by,
T(A7)|r) = |r + A7) (1.36)

which applied to the vector |¥) gives,

T(AT)|T) = / Ar' T (AT ) (/| T = / dr'|r' + Ar)(r'|T) (1.37)
and, in r-representation, the translated function is
Uy (r) = (r|T(A7)|T) = /dr’é(r —r' — Ar){r'|¥) = U(r — Ar) (1.38)
Since
(r|THAP)T(Ar)|7) = (r + Ar|r + Ar) =1 (1.39)

one obtains

T =1 (1.40)
which defines the operator 7' as unitary.




Parity symmetry

The parity operator 7 is defined as,
ftlz) = | — z)

it is #T = 7 (exercise) The eigenvalues of the parity operator are obtained as,
7|Wa) = A|W,) = 72| W,) = A\2|T,)
since
?lz) = |z)

one gets
N|0y) = |Wy) = A= =1

in x-space it is
(z|7|¥x) = (—z|¥x) = Un(—2z) = AUx(z)

even, A=1
Ua(2) = { odd, A= -1

(1.72)

(1.73)

(1.74)
(1.75)

(1.76)

(1.77)

If [H,#]=0, as it happens with potentials with reflection symmetry, parity is conserved and A is a good
quantum number.




1.5 Sum of angular momenta

We will here analyze the possible angular momenta values of a two-particle system. The angular momenta
qf tl}e Rarticles are L; and Lo and the total angular momentum is L = L; + Ls. The components
L., Ly, L, of L satisfy the commutation relations

(L%, L) =0 (i=z,y,2) (1.78)

[Ly,L,) =ihLl,, [L,,L,)=ihLl,, [L,,L,)=ikL, (1.79)

and the same for L; and L».
Besides, since the degrees of freedom of the particles are independent of each other one also has,

[L1,Ly) =0, [L? Li])=[L? La]=0 (1.80)

The eigenvectors corresponding to these operators are given by

Lymy) = RL(L+1D)[hm) 5 Lilhm) = hmgllim,)
L%lemz) = hzlz(lz + 1)|l2m2) ; Lzzllzmz) = hm2|l2m2) (1.81)
L?|lm) = R2(l+1)|lm) : L.|lm) = hml|lm)
|l1 - l2| 1< ll + lg, m = mqy + Mg (182)




Not all the quantum numbers related to these operators can be used to label the states. In other
words, not all of them can be taken as good quantum numbers. To see the reason for this we will analyze
the behavior of commuting operators.

P B} N 1 41




Symmetry properties of the Clebsch-Gordan coefficient

The Clebsch-Gordan coefficient can best be written in terms of the 3-j symbol defined as

( ll l2 l )_ (_1)11—12+m
my mg —m ) 41

(l1m1l2m2|lm)

with the properties that

1 LWl 1 _ lh 1 L _ I L I
"\my my m me m  my m o mp Mo
9 ( Ll 1 )z(_1)11+zz+z( I 1 1 )

my m2 m mg M1 M

3-( I lo l )z(_1)11+12+t( L Iy l)
—m; —Mm2 —MmM m M2 M

4. m1+m2—m=0

(1.91)



6-j symbols

In the sum of three angular momenta one can choose the partition

J=g1+Jetiz=Jdi2+Jz=71+J2 (1.101)
where
Ji2=7J1+7J2, Js=72+7s3 (1.102)
One can write the basis vector in one representation in terms of the other representation as
|(j1j2) J1243; TM) = Z(ﬁ (4273)J23; J|(J1j2) J1273; I)|j1(j243) J23; J M) (1.103)
Ja3

The symmetry properties of the expansion coefficient can best be seen by introducing the 6-j symbol as

(J1(J2ga)J23; J|(j142) J1243; J)

= (_1)j1+.1'2+j3+J\/(2J12+1)(2J23+1){ .7.1 Jo Ji2 } (1.104)
J3 J J2s

which is a real number (therefore it is the same for ((j1j2)J1273; J|j1(j273)J23; J)). The 6-j symbol does
not change if two columns are inter changed, for instance

Ji J2 Ji2 i Jiz g2
i = . . 1.1
{ Jjz J  J2s } { gz Joz J } ( 05)




The angular momentum triangular relation must be satisfied for (ji, jo, J12), (j1, J; Jo3), (43, J2, J23)

and (j3,J, J12). Thus, e.g.,
1/2 1/2 0 _
{ 2 12 2 }_0 (1.107)

In general, When jg = 0 the expression for the 6-j symbol can be written as

Ji 2 73 8in.iaOir s i
. . = —1)1TI2TIs , G2, . 1.108
{.74 Js 0 } \/(2j1 +1)(2j2 + 1)( ) {41, J2, 33} ( )

The function {} is equal to 1 when the triad satisfies the triangle conditions, and zero otherwise.
The 6-j symbols satisfy the orthogonality relation,

2(2.73 +1) {ﬁ I2 ]3} {Jl I2 '73} = 2% (4 js, jeHJas G2, J6 }- (1.109)
Js

Js JeJ \Ja Js J6J 2je+1




9-j symbols

In the case of 4 angular momenta
J=Ji1+J2+7d3+Ja (1.110)

one can write, e.g.,
J=Jig+ J3q = Ji3 + J2s (1.111)

where Ji2 = j1 + J2, J34 = J3 + Ja, J13 = J1 + J3 and Jog = jJ2 + ja.
One can thus write

|(G153) 13 (jeja) Jea; TM) =Y ((juje) Trz(fasa) Jaa; | (j1a) Jra(fzda) Joa; T M)
Ji2J34

X |(j142) J12(J3ja) J3a; ) (1.112)
and the 9-j symbol is defined by,

((J1d2)J12(Jaja) J3a; J[(J143) J13(G27a) J24; J)

Ji J2 Ji2
=V (@2J12+1)(2J34 +1)(2J13 + 1)(2Jos + 1) 3 Ja  Jaa (1.113)
Jiz Joa  J

which is also a real number.




The symmetry properties of the 9-j symbols are

1. Any permutation of rows and columns does not change the 9-j symbol except the sign, which is plus
if the permutation is even and (—1)°, where S is the sum of all angular momenta, if the permutation
is odd.

For example, we have,

J1 J2 J3 Ja Js Je Jj2 1 J3

ja s go p=(1%S g1 g2 gz p=(-1% 5 ja Je (1.114)
Jr Js Jo Jr Js Jo J8 Jr Jo
where
9
5= (1.115)
i=1

2. The 9-j symbol does not change under a reflection about either diagonal.

J1 J2 Js J1 Jja Jr Jo Je J3
Ja Js Je6 p =% J2 Js Jg8 p =4 J8 Js Jo (1.116)
Jr Js Jo Js Je Jo Jr Ja N

The 9-j symbols can be calculated as sums over triple-products of 6-j symbols where the summation
extends over all ”x” admitted by the triangle condition,

Ji J2 J3 . L. ..
ja Js Je =Z(—1)2””(2a:+1){31 o }{” J5 I }{73 Js I } (1.117)
Jr J8 Jo z

Jjg8  Jo Ja T Je T J1 Jo




V(x) A

E.

«Y

Eb

-V,

Figure 2.1: Square well potential in one-dimension. The range of the potential is a and
the depth is —Vj. For z < 0 the potential is infinite and, therefore, the wave function
vanishes at z = 0. E, (E,) is the energy of a bound (continuum) state.




Chapter 2

Gamow states and the Berggren representation




One-particle Hamiltonian in one dimension
The one-dimension Hamiltonian is.

h? d2
[—zd? + V(x)] ®,(z) = En®n(z) (2:3)
and we will consider the square well potential shown in Fig. 2.1. To solve the eigenvalue
problem given by Eq. (2.3) we notice that there are two regions:

Region (1): 0 <z < q; V(z) = -V
Region (2): z 2 a; V(z) =0

There are also two possibilities for the energy: Continue (E = E. > 0) and Bound
(E =—-F, < 0)

B2

Region (1) |—3 5~V #02) = E.20@)
K2 g2

Regon @ || 900 = B

with




the eigenvectors solution of the eigenvalue problem are
dW(z) = A,e!% + B,e %
P (z) = Cre™ + D™

To determine the constant A,, B, C, and D, the boundary conditions of continuity
of density and current have to be applied. In addition, since V(z) = oo for z < 0, one
has

®M(z=0=0= A, +B,=0




I) Bound states

2 2
¢ =2 (Vo-EB)>0; kK =-"0E,<0

Notice that we assume E} > 0 and, therefore, the energy of the bound state is —Ej.
2,U.Eb
B2

k==ix; x=

2()(a) = 22 (a)

d
— o)
~a)(z)

- ~30(z)

r—=a T=a

An additional condition in ®(z) = Che™® + D, X" is that since eX* diverrges as
x — oo one has to impose D,, = 0. Besides there is the normalization condition.
With the constants thus evaluated one obtains the possible energies as those for
which the continuity relations are satisfied.
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II) Continuum

24 21
¢ =35V +E)>0; k'=37E. >0

assuming that the system is confined in the region

L
0<:c<L=>/ @, (z)[?dz = 1
0

Notice that all energies E, > 0 are allowed in the continuum, but only a discrete number
of energies —E, < 0 are allowed as bound states.




2.1 Gamow states

The wave function of a resonance with a peak at energy Ey and a width I" can be factorized
as

/2
e \/ (E—Ey+ @/ ) 24

where ¥(r) = /n'/2®(Ey,r). Through the Fourier transform, we obtain the time
evolution of the resonance

B(t,r) = / (B, r)e~ P E = W(r)e—iE" (2.5)

which gives us the resonance in the form of a stationary state, but with a complex energy

. T
E =By —ig. (2.6)

The probability of measuring the system at ¢ is given by
(¢, 1)* = [¥(r)|?e~"/", (2.7)

The half-life of the resonance can be obtained from

hln2



(2.9)

They can be written as
k, = K, + ivp. (2.10)

The states can be classified into four classes, namely:
1. bound states, for which «,, = 0 and ~,, > 0;
2. antibound states with k, = 0 and 7, < 0;

3. decay resonant states with x, > 0 and ~, < 0;

4. capture resonant states with «,, < 0 and ~,, < 0.
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Figure 2.2: Radial function of a narrow resonance and a bound state. The solid and the
dashed line denote the real and imaginary part of the wave function of a narrow resonance
respectively, while the dotted line denotes the wave function of a bound state.

Since the radial wave function has the form of w(E,,r) ~ €, one can see that the
wave function of the resonant states will diverge at infinity. However a narrow resonance
can still be treated stationary since the wave function does not diverge at small distance.



2.2 Berggren completeness relation

The eigenvectors of a Hamiltonian provide a representation projector which allows one to
write o
5(r— 1) = 3 wa(r)wn(r) + / dEu(r, E)u(r', E), (2.11)
- 0

where w,(r) are the wave functions of the bound states and u(r, E) are the scattering
states. The integration contour is along the real energy axis, and all the energies and
radial wave functions are real, or more precisely, can be chosen to be real. Notice that

only bound states and scattering states enter in Eq. (2.11).
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Figure 2.3: Radial function ¢(r) corresponding to the single-particle neutron antibound state 0sy/2 at an
energy of -0.050 MeV. Taken from Ref. [1].

Figure 2.4: A schematic picture of the halo nucleus !Li.




