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Binary classification problem given labelled training data

Have labelled training examples

?

Given a test example how do we decide its class?

High level solution

Decision Boundary

Learn a decision boundary from the labelled training data.

Compare the test example to the decision boundary.

Technical description of the binary problem

• Have a set of labelled training examples

D = {(x1, y1), . . . , (xn, yn)} with each xi ∈ Rd, yi ∈ {−1, 1}.

• Want to learn from D a classification function

g : Rd
↑

input space

× Rp
↑

parameter space

→ {−1, 1}

Usually

g(x;θ) = sign(f(x;θ)) where f : Rd × Rp → R

• Have to decide on

1. Form of f (a hyperplane?) and

2. How to estimate f ’s parameters θ̂ from D.



Learn decision boundary discriminatively

• Set up an optimization of the form (usually)

arg max
θ

training error︷ ︸︸ ︷∑

(x,y)∈D
l(y, f(x;θ)) + λ R(θ)︸ ︷︷ ︸

↑
regularization term

where

- l(y, f(x | θ)) is the loss function and measures how well (and

robustly) f(x;θ) predicts the label y.

- The training error term measures how well and robustly the

function f(· ;θ) predicts the labels over all the training data.

- The regularization term measures the complexity of the
function f(· ;θ).

Usually want to learn simpler functions =⇒ less risk of over-fitting.

Comment on Over- and Under-fitting

Example of Over and Under fitting

Bayes’ Optimal Under-fitting Over-fitting

Overfitting
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FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)

2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

• Too much fitting =⇒ adapt too closely to the training data.

• Have a high variance predictor.

• This scenario is termed overfitting.

• In such cases predictor loses the ability to generalize.



Underfitting

38 2. Overview of Supervised Learning

High Bias

Low Variance

Low Bias

High Variance

P
re
d
ic
ti
o
n
E
rr
o
r

Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)

2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

• Low complexity model =⇒ predictor may have large bias

• Therefore predictor has poor generalization.

Linear Decision Boundaries

Linear discriminant functions

Linear function for the binary classification problem:

f(x; w, b) = wTx + b

where model parameters are w the weight vector and b the bias.

x1

x2

wTx+ b = 0

d

‖d‖ = b
‖w‖

w

−w
wTx+ b > 0

wTx+ b < 0

g(x;w, b) =

{
1 if f(x;w, b) > 0

−1 if f(x;w, b) < 0

Pros & Cons of Linear classifiers

Pros

• Low variance classifier

• Easy to estimate.

Frequently can set up training so that have an easy optimization

problem.

• For high dimensional input data a linear decision boundary
can sometimes be sufficient.

Cons

• High bias classifier

Often the decision boundary is not well-described by a linear
classifier.



How do we choose & learn the linear classifier?
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Optimal separating hyperplanes (1)
! Consider the problem of finding a separating hyperplane for a linearly 

separable dataset {(x1,y1),(x2,y2),…,(xN,yN)}, x!RD, y!{-1,+1}
" Which of the infinite hyperplanes should we choose? 

! Intuitively, a hyperplane that passes too close to the training examples will be sensitive 
to noise and, therefore, less likely to generalize well for data outside the training set

! Instead, it seems reasonable to expect that a hyperplane that is farthest from all 
training examples will have better generalization capabilities

" Therefore, the optimal separating hyperplane will be the one with the largest 
margin, which is defined as the minimum distance of an example to the decision 
surface

From [Cherkassky and Mulier, 1998]

x1

x2

x1

x2

Optimal hyperplane

Maximum
margin

Given labelled training data:

how do we choose and learn the best hyperplane to
separate the two classes?

Supervised learning of my classifier

Have a linear classifier next need to decide:

1. How to measure the quality of the classifier w.r.t. labelled
training data?

- Choose/Define a loss function.

Most intuitive loss function

0, 1 Loss function
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0,
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For a single example (x, y) the 0-1
loss is defined as

l(y, f(x;θ)) =

{
0 if y = sgn(f(x;θ))

1 if y 6= sgn(f(x;θ))

=

{
0 if y f(x;θ) > 0

1 if y f(x;θ) < 0

(assuming y ∈ {−1, 1})

Applied to all training data =⇒ count the number of misclassifications.

Not really used in practice as has lots of problems! What are some?

Supervised learning of my classifier

Have a linear classifier next need to decide:

1. How to measure the quality of the classifier w.r.t. labelled
training data?

- Choose/Define a loss function.

2. How to measure the complexity of the classifier?

- Choose/Define a regularization term.



Most common regularization function

L2 regularization

R(w) = ‖w‖2 =
d∑

i=1

w2
i

Adding this form of regularization:

- Encourages w not to contain entries with large absolute values.

- or want small absolute values in all entries of w.

Supervised learning of my classifier

Have a linear classifier next need to decide:

1. How to measure the quality of the classifier w.r.t. labelled
training data?

- Choose/Define a loss function.

2. How to measure the complexity of the classifier?

- Choose/Define a regularization term.

3. How to do estimate the classifier’s parameters by optimizing
relative to the above factors?

Example: Squared Error loss

Squared error loss & no regularization

• Learn w, b from D. Find the w, b that minimizes:

L(D,w, b) =
1

2

∑

(x,y)∈D
lsq(y, f(x; w, b))

=
1

2

∑

(x,y)∈D

(
(wTx + b)− y

)2
︸ ︷︷ ︸

Squared error loss

L is known as the sum-of-squares error function.

• The w∗, b∗ that minimizes L(D,w, b) is known as the
Minimum Squared Error solution.

• This minimum is found as follows....



Technical interlude: Matrix Calculus

Matrix Calculus

• Have a function f : Rd → R that is f(x) = b

• We use the notation

∂f

∂x
=




∂f
∂x1

...
∂f
∂xd




• Example: If f(x) = aTx =
∑d

i=1 aixi then

∂f

∂xi
= ai =⇒ ∂f

∂x
=



a1
...
ad


 = a

Matrix Calculus

• Have a function f : Rd×d → R that is f(X) = b with
X ∈ Rd×d

• We use the notation

∂f

∂X
=




∂f
∂x11

∂f
∂x12

. . . ∂f
∂x1d

∂f
∂x21

∂f
∂x22

. . . ∂f
∂x2d

...
...

. . .
...

∂f
∂xd1

∂f
∂xd2

. . . ∂f
∂xdd




• Example: If f(X) = aTXb =
∑d

i=1 ai
∑d

j=1 xijbj then

∂f

∂xij
= aibj =⇒ ∂f

∂X
=



a1b1 a1b2 . . . a1bd

...
...

...
...

adb1 adb2 . . . adbd


 = abT

Matrix Calculus

Derivative of a linear function

∂xTa

∂x
= a (1)

∂aTx

∂x
= a (2)

∂aTXb

∂X
= abT (3)

∂aTXTb

∂X
= baT (4)



Matrix Calculus

Derivative of a quadratic function

∂xTBx

∂x
= (B +BT )x (5)

∂bTXTXc

∂X
= X(bcT + cbT ) (6)

∂(Bx + b)TC(Dx + d)

∂x
= BTC(Dx + d) +DTCT (Bx + b)

(7)

∂bTXTDXc

∂X
= DTXbcT +DXcbT (8)

End of Technical interlude

Pseudo-Inverse solution

• Can write the cost function as

L(D,w, b) =
1

2

∑

(x,y)∈D

(
wTx + b− y

)2
=

1

2

∑

(x,y)∈D

(
wT

1 x′ − y
)2

where x′ = (xT , 1)T ,w1 = (wT , b)T

• Writing in matrix notation this becomes

L(D,w1) =
1

2
‖Xw1 − y‖2 =

1

2
(Xw1 − y)T (Xw1 − y)

=
1

2

(
wT

1X
TXw1 − 2yTXw1 + yTy

)

where

y = (y1, . . . , yn)T , w = (w1, . . . , wd+1)
T , X =




xT1 1
...

...
xTn 1




Pseudo-Inverse solution

• The gradient of L(D,w1) w.r.t. w1:

∇w1L(D,w1) = XTXw1 −XTy

• Setting this equal to zero yields XTXw1 = XTy and

w1 = X†y

where

X† ≡
(
XTX

)−1
XT

• X† is called the pseudo-inverse of X. Note that X†X = I
but in general XX† 6= I.



Simple 2D Example

Decision boundary found by minimizing

Lsquared error(D,w, b) =
∑

(x,y)∈D

(
y − (wTx + b)

)2

Pseudo-Inverse solution

• The gradient of L(D,w1) w.r.t. w1:

∇w1L(D,w1) = XTXw1 −XTy

• Setting this equal to zero yields XTXw1 = XTy and

w1 = X†y

where

X† ≡
(
XTX

)−1
XT

• X† is called the pseudo-inverse of X. Note that X†X = I
but in general XX† 6= I.

• If XTX singular =⇒ no unique solution to XTXw = XTy.

Technical interlude: Iterative Optimization

Iterative Optimization

• Common approach to solving such unconstrained optimization
problem is iterative non-linear optimization.

x∗ = arg min
∀x

f(x)

• Start with an estimate x(0).

• Try to improve it by finding successive new estimates
x(1),x(2),x(3), . . . s.t. f(x(1)) ≥ f(x(2)) ≥ f(x(3)) ≥ · · ·
until convergence.

• To find a better estimate at each iteration: Perform the
search locally around the current estimate.

• Such iterative approaches will find a local minima.



Iterative Optimization

Iterative optimization methods alternate between these two steps:

Decide search direction

Choose a search direction based on the local properties of the
cost function.

Line Search

Perform an intensive search to find the minimum along the
chosen direction.

Choosing a search direction: The gradient

The gradient is defined as:

∇xf(x) ≡ ∂f(x)

∂x
=




∂f(x)
∂x1

∂f(x)
∂x2

...

∂f(x)
∂xd




The gradient points in the
direction of the greatest increase
of f(x).

Gradient descent: Method for function minimization

Gradient descent finds the minimum in an iterative fashion by
moving in the direction of steepest descent.
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Gradient descent
! Gradient descent is general method for function minimization 

" Recall that the minimum of a function J(x) is defined by the zeros of the gradient

" Only in very special cases this minimization function has a closed form solution
" In some other cases, a closed form solution may exist, but is numerically ill-

posed or impractical (e.g., memory requirements)
! Gradient descent finds the minimum in an iterative fashion by moving 

in the direction of steepest descent 

" where ! is a learning rate 

" # 0J(x)J(x)argminx* x
x

$%&$
'

1. Start with an arbitrary solution x(0)
2. Compute the gradient &xJ(x(k))
3. Move in the direction of steepest descent: 

4. Go to 1 (until convergence)

1. Start with an arbitrary solution x(0)
2. Compute the gradient &xJ(x(k))
3. Move in the direction of steepest descent: 

4. Go to 1 (until convergence)
( ) ( ) ( )( )kxJ!kx1kx x&*$+

-2 0 2
-2

0

2

x1

x 2

Initial
guess Global

minimum

Local
minimum

-2 0 2
-2

0

2

x1

x 2

Initial
guess Global

minimum

Local
minimum

Gradient Descent Minimization

1. Start with an arbitrary solution
x(0).

2. Compute the gradient
∇xf(x(k)).

3. Move in the direction of
steepest descent:

x(k+1) = x(k)−η(k)∇xf(x(k)).

where η(k) is the step size.

4. Go to 2 (until convergence).

Gradient descent: Method for function minimization

Gradient descent finds the minimum in an iterative fashion by
moving in the direction of steepest descent.
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Gradient Descent Minimization
Properties

1. Will converge to a local minimum.

2. The local minimum found
depends on the initialization x(0).

But this is okay

1. For convex optimization
problems: local minimum ≡
global minimum

2. For deep networks most
parameter setting corresponding
to a local minimum are fine.
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End of Technical interlude

Gradient descent solution

The error function L(D,w1) could also be minimized wrt w1 by
using a gradient descent procedure.

Why?

• This avoids the numerical problems that arise when XTX is
(nearly) singular.

• It also avoids the need for working with large matrices.

How

1. Begin with an initial guess w
(0)
1 for w1.

2. Update the weight vector by moving a small distance in the
direction −∇w1L.

Gradient descent solution

Solution

w
(t+1)
1 = w

(t)
1 − η(t)XT (Xw

(t)
1 − y)

• If η(t) = η0/t, where η0 > 0, then

• w
(0)
1 ,w

(1)
1 ,w

(2)
1 , . . . converges to a solution of

XT (Xw1 − y) = 0

• Irrespective of whether XTX is singular or not.



Stochastic gradient descent solution

• Increase the number of updates per computation by
considering each training sample sequentially

w
(t+1)
1 = w

(t)
1 − η(t)(xTi w

(t)
1 − yi)xi

• This is known as the Widrow-Hoff, least-mean-squares
(LMS) or delta rule [Mitchell, 1997].

• More generally this is an application of Stochastic Gradient
Descent.

Technical interlude: Stochastic Gradient Descent

Common Optimization Problem in Machine Learning

• Form of the optimization problem:

J(D,θ) =
1

|D|
∑

(x,y)∈D
l(y, f(x;θ)) + λR(θ)

θ∗ = arg min
θ

J(D,θ)

• Solution with gradient descent

1. Start with a random guess θ(0) for the parameters.

2. Then iterate until convergence

θ(t+1) = θ(t) − η(t) ∇θJ(D,θ)|θ(t)

Given large scale data

If |D| is large

• =⇒ computing ∇θ J(θ,D)|θ(t) is time consuming

• =⇒ each update of θ(t) takes lots of computations

• Gradient descent needs lots of iterations to converge as η
usually small

• =⇒ GD takes an age to find a local optimum.



Work around: Stochastic Gradient Descent

• Start with a random solution θ(0).

• Until convergence for t = 1, . . .

1. Randomly select (x, y) ∈ D.

2. Set D(t) = {(x, y)}.
3. Update parameter estimate with

θ(t+1) = θ(t) − η(t) ∇θJ(D(t),θ)
∣∣∣
θ(t)

Comments about SGD

• When |D(t)| = 1:

∇θJ(D(t),θ)
∣∣
θ(t) a noisy estimate of ∇θJ(D,θ)|θ(t)

• Therefore

|D| noisy update steps in SGD ≈ 1 correct update step in GD.

• In practice SGD converges a lot faster then GD.

• Given lots of labelled training data:

Quantity of updates more important than quality of updates!

Best practices for SGD

• Preparing the data

- Randomly shuffle the training examples and zip sequentially

through D.

- Use preconditioning techniques.

• Monitoring and debugging

- Monitor both the training cost and the validation error.

- Check the gradients using finite differences.

- Experiment with learning rates η(t) using a small sample of the

training set.

Mini-Batch Gradient Descent

• Start with a random guess θ(0) for the parameters.

• Until convergence for t = 1, . . .

1. Randomly select a subset D(t) ⊂ D s.t. |D(t)| = nb (typically

nb ≈ 150.)

2. Update parameter estimate with

θ(t+1) = θ(t) − η(t) ∇θJ(D(t),θ)
∣∣∣
θ(t)



Benefits of mini-batch gradient descent

• Obtain a more accurate estimate of ∇θJ(D,θ)|θ(t) than in
SGD.

• Still get lots of updates per epoch (one iteration through all the

training data).

What learning rate?

• Issues with setting the learning rate η(t)?

- Larger η’s =⇒ potentially faster learning but with the risk of

less stable convergence.

- Smaller η’s =⇒ slow learning but stable convergence.

• Strategies

- Constant: η(t) = .01

- Decreasing: η(t) = 1/
√
t

• Lots of recent algorithms dealing with this issue

Will describe these algorithms in the near future.

End of Technical interlude Squared Error loss + L2 regularization



Add an L2 regularization term (a.k.a. ridge regression)

• Add a regularization term to the loss function

Jridge(D,w, b) =
1

2

∑

(x,y)∈D
lsq(y,wTx + b) + λ‖w‖2

=
1

2
‖Xw + b1− y‖2 + λ‖w‖2

where λ > 0 and small and X is the data matrix

X =




← xT
1 →

← xT
2 →
...

← xT
n →




Solving Ridge Regression: Centre the data to simplify

• Add a regularization term to the loss function

Jridge(D,w, b) =
1

2
‖Xw + b1− y‖2 + λ‖w‖2

• Let’s centre the input data

Xc =




← xT
c,1 →

← xT
c,2 →
...

← xT
c,n →


 where xc,i = xi − µx

=⇒ XT
c 1 = 0.

• Optimal bias with centered input Xc (does not depend on w∗) is:

∂Jridge

∂b
= b1T1 + wTXT

c 1− 1Ty

= b1T1− 1Ty

=⇒ b∗ = 1/n
∑n

i=1 yi = ȳ.

Solving ridge regression: Optimal weight vector

• Add a regularization term to the loss function

Jridge(D,w) =
1

2
‖Xcw + ȳ1− y‖2 + λ‖w‖2

• Compute the gradient of Jridge w.r.t. w

∂Jridge

∂w
=
(
XT

c Xc + λId
)
w −XT

c y

• Set to zero to get

w∗ =
(
XT

c Xc + λId
)−1

XT
c y

• (XT
c Xc + λId) has a unique inverse even if XT

c Xc is singular.

Simple 2D Example

Ridge Regression decision boundaries as λ is varied

λ = 1 λ = 10

λ = 100 λ = 1000



Solving ridge regression: Optimal weight vector

• Add a regularization term to the loss function

Jridge(D,w) =
1

2
‖Xcw + ȳ1− y‖2 + λ‖w‖2

• Compute the gradient of Jridge w.r.t. w

∂Jridge

∂w
=
(
XT

c Xc + λId
)
w −XT

c y

• Set to zero to get

w∗ =
(
XT

c Xc + λId
)−1

XT
c y

• (XT
c Xc + λId) has a unique inverse even if XT

c Xc is singular.

• If d is large =⇒ have to invert a very large matrix.

Solving ridge regression: Iteratively

• The gradient-descent update step is

w(t+1) = w(t) − η
[(
XT
c Xc + λId

)
w(t) −XT

c y
]

• The SGD update step for sample (x, y) is

w(t+1) = w(t) − η
[(

(x− µx)(x− µx)
T + λId

)
w(t) − (x− µx)y

]

Hinge Loss

The Hinge loss

l(x, y; w, b) = max
{

0, 1− y(wTx + b)
}
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y g(x; θ))

hinge loss

• This loss is not differentiable but is convex.

• Correctly classified examples sufficiently far from the decision
boundary have zero loss.

• =⇒ have a way of choosing between classifiers that correctly
classify all the training examples.



Technical interlude: Sub-gradient

Subgradient of a function

• g is a subgradient of f at x if

f(y) ≥ f(x) + gT (y − x) ∀y

• 1D example:

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) ≥ f(x) + gT (y − x) for all y

(⇐⇒ (g,−1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1

Prof. S. Boyd, EE392o, Stanford University 2

- g2, g3 are subgradients at x2;

- g1 is a subgradient at x1.

Subgradient of a function

• Set of all subgradients of f at x is called the subdifferential of
f at x, written ∂f(x)

• 1D example:

example: f(x) = |x|

PSfrag replacements f(x) = |x| ∂f(x)

x

x

1

−1

Prof. S. Boyd, EE392o, Stanford University 6

• If f is convex and differentiable: ∇f(x) a subgradient of f at x.

End of Technical interlude



The Hinge loss

• Find w, b that minimize

Lhinge(D,w, b) =
∑

(x,y)∈D
max

{
0, 1− y(wTx + b)

}
︸ ︷︷ ︸

Hinge Loss

• Can use stochastic gradient descent to do the optimization.

• The (sub-)gradients of the hinge-loss are

∇wl(x, y; w, b) =

{
−y x if y(wTx + b) > 1

0 otherwise.

∂ l(x, y; w, b)

∂b
=

{
−y if y(wTx + b) > 1

0 otherwise.

Example of decision boundary found

Decision boundary found by minimizing with SGD

Lhinge(D,w, b) =
∑

(x,y)∈D
max

{
0, 1− y(wTx + b)

}

L2 Regularization + Hinge Loss

L2 regularization + Hinge loss

• Find w, b that minimize

Jsvm(D,w, b) =
λ

2
‖w‖2 +

∑

(x,y)∈D
max

{
0, 1− y(wTx + b)

}
︸ ︷︷ ︸

Hinge Loss

• Can use stochastic gradient descent to do the optimization.

• The sub-gradients of this cost function

∇wl(x, y; w, b) =

{
λw − y x if y(wTx + b) > 1

λw otherwise.

∂ l(x, y; w, b)

∂b
=

{
−y if y(wTx + b) > 1

0 otherwise.



Example of decision boundary found

Decision boundary found with SGD by minimizing (λ = .01)

Jhinge(D,w, b) =
λ

2
‖w‖2 +

∑

(x,y)∈D
max

{
0, 1− y(wTx + b)

}

Regularization reduces the influence of outliers

Decision boundaries found by minimizing

Hinge Loss L2 Regularization + Hinge Loss

“L2 Regularization + Hinge Loss” ≡ SVM

SVM’s constrained optimization problem

SVM solves this constrained optimization problem:

min
w,b

(
1

2
wTw + C

n∑

i=1

ξi

)
subject to

yi(w
Txi + b) ≥ 1− ξi for i = 1, . . . , n and

ξi ≥ 0 for i = 1, . . . , n.
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‖β‖
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‖β‖

xTβ + β0 = 0

FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/‖β‖. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗j are on the wrong side of their margin by
an amount ξ∗j = Mξj; points on the correct side have ξ∗j = 0. The margin is
maximized subject to a total budget

P

ξi ≤ constant. Hence
P

ξ∗j is the total
distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN ), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xTβ + β0 = 0}, (12.1)

where β is a unit vector: ‖β‖ = 1. A classification rule induced by f(x) is

G(x) = sign[xTβ + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xTβ+β0 = 0. Since the classes are separable, we can find a function
f(x) = xTβ + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,‖β‖=1

M

subject to yi(x
T
i β + β0) ≥ M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.
We showed that this problem can be more conveniently rephrased as

min
β,β0

‖β‖

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)



Alternative formulation of SVM optimization

SVM solves this constrained optimization problem:

min
w,b

(
1

2
wTw + C

n∑

i=1

ξi

)
subject to

yi(w
Txi + b) ≥ 1− ξi for i = 1, . . . , n and

ξi ≥ 0 for i = 1, . . . , n.

• Let’s look at the constraints:

yi(w
Txi + b) ≥ 1− ξi =⇒ ξi ≥ 1− yi(wTxi + b)

• But ξi ≥ 0 also, therefore

ξi ≥ max
{

0, 1− yi(wTxi + b)
}

Alternative formulation of the SVM optimization

Thus the original constrained optimization problem can be restated
as an unconstrained optimization problem:

min
w,b




1

2
‖w‖2
︸ ︷︷ ︸

Regularization term

+ C

n∑

i=1

max
{

0, 1− yi(wTxi + b)
}

︸ ︷︷ ︸
Hinge loss




and corresponds to the L2 regularization + Hinge loss
formulation!

=⇒ can train SVMs with SGD/mini-batch gradient descent.

Alternative formulation of the SVM optimization

Thus the original constrained optimization problem can be restated
as an unconstrained optimization problem:

min
w,b




1

2
‖w‖2
︸ ︷︷ ︸

Regularization term

+ C

n∑

i=1

max
{

0, 1− yi(wTxi + b)
}

︸ ︷︷ ︸
Hinge loss




and corresponds to the L2 regularization + Hinge loss
formulation!

=⇒ can train SVMs with SGD/mini-batch gradient descent.

From binary to multi-class classification



Example dataset: CIFAR-10

airplane
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bird

cat
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dog

frog
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ship

truck

Example dataset: CIFAR-10

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

CIFAR-10

• 10 classes

• 50,000 training
images

• 10,000 test
images

• Each image has
size 32× 32× 3

Technical description of the multi-class problem

• Have a set of labelled training examples

D = {(x1, y1), . . . , (xn, yn)} with each xi ∈ Rd, yi ∈ {1, . . . , C}.

• Want to learn from D a classification function

g : Rd
↑

input space

× RP
↑

parameter space

→ {1, . . . , C}

Usually

g(x; Θ) = arg max
1≤j≤C

fj(x;θj)

where for j = 1, . . . , C:

fj : Rd × Rp → R

and Θ = (θ1,θ2, . . . ,θC).

Multi-class linear classifier

• Let each fj be a linear function that is

fj(x;θj) = wT
j x + bj

• Define

f(x; Θ) =



f1(x)

...
fC(x)




then

f(x; Θ) = f(x;W,b) = Wx + b

where

W =




wT
1

...
wT
C


 , b =



b1
...
bC




• Note W has size C × d and b is C × 1.



Apply a multi-class linear classifier to an image

• Have a 2D colour image but can flatten it into a 1D vector x

32× 32× 3 3072× 1

flatten image

• Apply classifier: Wx + b to get a score for each class.

+ =

-1.0303 airplane

-1.9567 car

1.6897 bird

0.7249 cat

1.6421 deer

0.8127 dog

1.1707 frog

2.1212 horse

-2.2698 ship

-2.9526 truck







W x b class scores

10× 3072 3072× 1 10× 1 10× 1

Interpreting a multi-class linear classifier

• Learn W,b to classify the images in a dataset.

• Can interpret each row, wj , of W as a template for class j.

• Below is the visualization of each learnt wj for CIFAR-10

airplane car bird cat deer dog frog horse ship truck

Interpreting a multi-class linear classifier

• Each wT
j x + bj = 0 corresponds to a hyperplane, Hj , in Rd.

• sign(wT
j x + bj) tells us which side of Hj the point x lies.

• The score |wT
j x + bj | ∝ the distance of x to Hj .

0
car classifier

deer classifier

airplane classifier

How do we learn W and b?

As before need to

• Specify a loss function (+ a regularization term).

• Set up the optimization problem.

• Perform the optimization.



How do we learn W and b?

As before need to

• Specify a loss function

- must quantify the quality of all the class scores across all the

training data.

• Set up the optimization problem.

• Perform the optimization.

Multi-class loss functions

Multi-class SVM Loss

• Remember have training data

D = {(x1, y1), . . . , (xn, yn)} with each xi ∈ Rd, yi ∈ {1, . . . , C}.

• Let sj be the score of function fj applied to x

sj = fj(x; wj , bj) = wT
j x + bj

• The SVM loss for training example x with label y is

l =
C∑

j=1
j 6=y

max(0, sj − sy + 1)

Multi-class SVM Loss

• sj is the score of function fj applied to x

sj = fj(x; wj , bj) = wT
j x + bj

si − sy

max(0, si − sy + 1)

• SVM loss for training example x with label y is

l =

C∑

j=1
j 6=y

max(0, sj − sy + 1)



Calculate the multi-class SVM loss for a CIFAR image

input: x output label loss

s = Wx + b y = 8 l =
10∑
j=1
j 6=y

max(0, sj − sy + 1)

Scores

airplane -0.3166

car -0.6609

bird 0.7058

cat 0.8538

deer 0.6525

dog 0.1874

frog 0.6072

horse 0.5134

ship -1.3490

truck -1.2225

s = Wx+ b

Calculate the multi-class SVM loss for a CIFAR image

input: x output label loss

s = Wx + b y = 8 l =
10∑
j=1
j 6=y

max(0, sj − sy + 1)

Scores Compare to horse score

airplane -0.3166 0.1701

car -0.6609 -0.1743

bird 0.7058 1.1925

cat 0.8538 1.3405

deer 0.6525 1.1392

dog 0.1874 0.6741

frog 0.6072 1.0938

horse 0.5134 1.0000

ship -1.3490 -0.8624

truck -1.2225 -0.7359

s = Wx+ b s− s8 + 1

Calculate the multi-class SVM loss for a CIFAR image

input: x output label loss

s = Wx + b y = 8 l =
10∑
j=1
j 6=y

max(0, sj − sy + 1)

Scores Compare to horse score Keep badly performing classes

airplane -0.3166 0.1701 0.1701

car -0.6609 -0.1743 0

bird 0.7058 1.1925 1.1925

cat 0.8538 1.3405 1.3405

deer 0.6525 1.1392 1.1392

dog 0.1874 0.6741 0.6741

frog 0.6072 1.0938 1.0938

horse 0.5134 1.0000 1.0000

ship -1.3490 -0.8624 0

truck -1.2225 -0.7359 0

s = Wx+ b s− s8 + 1 max(0, s− s8 + 1)

Loss for x: 5.4723

Problem with the SVM loss

Given W and b then

• Response for one training example

f(x;W,b) = Wx + b = s

• loss for x

l(x, y,W,x) =
C∑

j=1
j 6=y

max(0, sj − sy + 1)

• Loss over all the training data

L(D,W,b) =
1

|D|
∑

(x,y)∈D
l(x, y,W,b)

Have found a W s.t. L = 0. Is this W unique?



No

Let W1 = αW and b1 = αb where α > 1 then

• Response for one training example

f(x;W1,b) = W1x + b1 = s′ = α(Wx + b)

• Loss for (x, y) w.r.t. W1 and b1

l(x, y,W1,b1) =
C∑

j=1
j 6=y

max(0, s′j − s′y + 1)

= max(0, α(wT
j x + bj −wT

y x− by) + 1)

= max(0, α(sj − sy) + 1)

= 0 as by definition sj − sy < −1 and α > 1

• Thus the total loss L(D,W1,b1) is 0.

Solution: Weight regularization

L(D,W,b) =
1

|D|
∑

(x,y)∈D

C∑

j=1
j 6=y

max(0, fj(x;W,b)− fy(x;W,b) + 1) + λR(W )

Commonly used Regularization

Name of regularization Mathematical def. of R(W )

L2
∑

k

∑
lW

2
k,l

L1
∑

k

∑
l |Wk,l|

Elastic Net
∑

k

∑
l

(
βW 2

k,l + |Wk,l|
)

Cross-entropy Loss

Probabilistic interpretation of scores

Let pj be the probability that input x has label j:

PY |X(j | x) = pj

• For x our linear classifier outputs scores for each class:

s = Wx + b

• Can interpret scores, s, as:

unnormalized log probability for each class.

=⇒
sj = log p′j

where αp′j = pj and α =
∑
p′j .

=⇒

PY |X(j | x) = pj =
exp(sj)∑
k exp(sk)



Softmax operation

• This transformation is known as

Softmax(s) =
exp(sj)∑
k exp(sk)

1 2 3 4 5 6 7 8 9 10
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Softmax operation

• This transformation is known as

Softmax(s) =
exp(sj)∑
k exp(sk)
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−1

0

1

2

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

x Softmax(x)

Softmax classifier: Log likelihood of the training data

• Given probabilistic model: Estimate its parameters by
maximizing the log-likelihood of the training data.

θ∗ = arg max
θ

1

|D|
∑

(x,y)∈D
logPY |X(y | x;θ)

= arg min
θ
− 1

|D|
∑

(x,y)∈D
logPY |X(y | x;θ)

• Given probabilistic interpretation of our classifier, the negative
log-likelihood of the training data is

− 1

|D|
∑

(x,y)∈D
log

(
exp(sy)∑C
k=1 exp(sk)

)

where s = Wx + b.

Softmax classifier: Log likelihood of the training data

• Given probabilistic model: Estimate its parameters by
maximizing the log-likelihood of the training data.

θ∗ = arg max
θ

1

|D|
∑

(x,y)∈D
logPY |X(y | x;θ)

= arg min
θ
− 1

|D|
∑

(x,y)∈D
logPY |X(y | x;θ)

• Given probabilistic interpretation of our classifier, the negative
log-likelihood of the training data is

− 1

|D|
∑

(x,y)∈D
log

(
exp(sy)∑C
k=1 exp(sk)

)

where s = Wx + b.



Softmax classifier + cross-entropy loss

• Given the probabilistic interpretation of our classifier, the
negative log-likelihood of the training data is

L(D,W,b) = − 1

|D|
∑

(x,y)∈D
log

(
exp(sy)∑C
k=1 exp(sk)

)

where s = Wx + b.

• Can also interpret this in terms of the cross-entropy loss:

L(D,W,b) =
1

|D|
∑

(x,y)∈D
− log

(
exp(sy)∑C
k=1 exp(sk)

)

︸ ︷︷ ︸
cross-entropy loss for (x, y)

=
1

|D|
∑

(x,y)∈D
l(x, y,W,b)

Cross-entropy loss

• p the probability vector the network assigns to x for each class

p = SOFTMAX (Wx + b)

py

− log(py)

• Cross-entropy loss for training example x with label y is

l = − log(py)

Calculate the cross-entropy loss for a CIFAR image

input: x output label loss

s = Wx + b y = 8 l = − log
(

exp(sy)∑
exp(sk)

)

Scores

airplane -0.3166

car -0.6609

bird 0.7058

cat 0.8538

deer 0.6525

dog 0.1874

frog 0.6072

horse 0.5134

ship -1.3490

truck -1.2225

s = Wx+ b

Calculate the cross-entropy loss for a CIFAR image

input: x output label loss

s = Wx + b y = 8 l = − log
(

exp(sy)∑
exp(sk)

)

Scores exp(Scores)

airplane -0.3166 0.7354

car -0.6609 0.5328

bird 0.7058 2.0203

cat 0.8538 2.3583

deer 0.6525 1.9303

dog 0.1874 1.2080

frog 0.6072 1.8319

horse 0.5134 1.7141

ship -1.3490 0.2585

truck -1.2225 0.2945

s = Wx+ b exp(s)



Calculate the cross-entropy loss for a CIFAR image

input: x output label loss

s = Wx + b y = 8 l = − log
(

exp(sy)∑
exp(sk)

)

Scores exp(Scores) Normalized scores

airplane -0.3166 0.7354 0.0571

car -0.6609 0.5328 0.0414

bird 0.7058 2.0203 0.1568

cat 0.8538 2.3583 0.1830

deer 0.6525 1.9303 0.1498

dog 0.1874 1.2080 0.0938

frog 0.6072 1.8319 0.1422

horse 0.5134 1.7141 0.1330

ship -1.3490 0.2585 0.0201

truck -1.2225 0.2945 0.0229

s = Wx+ b exp(s)
exp(s)∑
k
exp(sk)

Loss for x: 2.0171

Cross-entropy loss

Cross-entropy loss

l(x, y,W,b) = − log

(
exp(sy)∑C
k=1 exp(sk)

)

Questions

• What is the minimum possible value of l(x, y,W,b)?

• What is the max possible value of l(x, y,W,b)?

• At initialization all the entries of W are small =⇒ all sk 6= 0.
What is the loss?

• A training point’s input value is changed slightly. What happens to
the loss?

• The log of zero is not defined. Could this be a problem?

Learning the parameters: W,b

• Have training data D.

• Have scoring function:

s = f(x;W,b) = Wx + b

• We have a choice of loss functions

lsoftmax(x, y,W,b) = − log

(
exp(sy)∑C
k=1 exp(sk)

)

lsvm(x, y,W,b) =

C∑

j=1
j 6=y

max(0, sj − sy + 1)

• Complete training loss

L(W,b;D) =
1

|D|
∑

(x,y)∈D
lsoftmax(svm)(W,b; x, y) + λR(W )

Learning the parameters: W,b

• Learning W,b corresponds to solving the optimization problem

W ∗,b∗ = arg min
W,b

L(D,W,b)

where

L(D,W,b) =
1

|D|
∑

(x,y)∈D
lsoftmax(svm)(x, y,W,b) + λR(W )

• Know how to solve this! Mini-batch gradient descent.

• To implement mini-batch gradient descent need

- to compute gradient of the loss lsoftmax(svm)(x, y,W,b)
and R(W )

- Set the hyper-parameters of the mini-batch gradient
descent procedure.



Learning the parameters: W,b

• Learning W,b corresponds to solving the optimization problem

W ∗,b∗ = arg min
W,b

L(D,W,b)

where

L(D,W,b) =
1

|D|
∑

(x,y)∈D
lsoftmax(svm)(x, y,W,b) + λR(W )

• Know how to solve this! Mini-batch gradient descent.

• To implement mini-batch gradient descent need

- to compute gradient of the loss lsoftmax(svm)(x, y,W,b)
and R(W )

- Set the hyper-parameters of the mini-batch gradient
descent procedure.

Learning the parameters: W,b

• Learning W,b corresponds to solving the optimization problem

W ∗,b∗ = arg min
W,b

L(D,W,b)

where

L(D,W,b) =
1

|D|
∑

(x,y)∈D
lsoftmax(svm)(x, y,W,b) + λR(W )

• Know how to solve this! Mini-batch gradient descent.

• To implement mini-batch gradient descent need

- to compute gradient of the loss lsoftmax(svm)(x, y,W,b)
and R(W )

- Set the hyper-parameters of the mini-batch gradient
descent procedure.

Next Lecture

We will cover how to compute these gradients using
back-propagation.


