Lecture 2 - Learning Binary & Multi-class Classifiers from Labelled Training Data

DD2424

March 23, 2017

Binary classification problem given labelled training data

Have labelled training examples

Given a test example how do we decide its class?

Learn a decision boundary from the labelled training data.

Compare the test example to the decision boundary.

Technical description of the binary problem

Have a set of labelled training examples

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \quad \text{with each } \mathbf{x}_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\}.$$

• Want to learn from $\mathcal D$ a classification function

$$g: \underset{\text{input space}}{\mathbb{R}^d} \times \underset{\text{parameter space}}{\mathbb{R}^p} \to \{-1,1\}$$

Usually

$$g(\mathbf{x}; \boldsymbol{\theta}) = \operatorname{sign}(f(\mathbf{x}; \boldsymbol{\theta}))$$
 where $f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}$

- Have to decide on
 - 1. Form of f (a hyperplane?) and
 - 2. How to estimate f's parameters $\hat{\theta}$ from \mathcal{D} .

Learn decision boundary discriminatively

• Set up an optimization of the form (usually)

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \underbrace{\sum_{(\mathbf{x},y) \in \mathcal{D}} l(y,f(\mathbf{x};\boldsymbol{\theta}))}_{\text{training error}} \, + \, \lambda \quad \underbrace{R(\boldsymbol{\theta})}_{\text{regularization term}}$$

where

- $l(y, f(\mathbf{x} \mid \boldsymbol{\theta}))$ is the **loss function** and measures how well (and robustly) $f(\mathbf{x}; \boldsymbol{\theta})$ predicts the label y.
- The **training error** term measures how well and robustly the function $f(\cdot; \theta)$ predicts the labels over all the training data.
- The **regularization** term measures the *complexity* of the function $f(\cdot; \theta)$.
 - Usually want to learn simpler functions \implies less risk of over-fitting.

Comment on Over- and Under-fitting

Example of Over and Under fitting

Overfitting

- ullet Too much fitting \Longrightarrow adapt too closely to the training data.
- Have a high variance predictor.
- This scenario is termed overfitting.
- In such cases predictor loses the ability to generalize.

Underfitting

- ullet Low complexity model \Longrightarrow predictor may have large bias
- Therefore predictor has poor generalization.

Linear Decision Boundaries

Linear discriminant functions

Linear function for the binary classification problem:

$$f(\mathbf{x}; \mathbf{w}, b) = \mathbf{w}^T \mathbf{x} + b$$

where model parameters are w the weight vector and b the bias.

Pros & Cons of Linear classifiers

Pros

- Low variance classifier
- Easy to estimate.

Frequently can set up training so that have an easy optimization problem.

• For high dimensional input data a linear decision boundary can sometimes be sufficient.

Cons

High bias classifier

Often the decision boundary is not well-described by a linear classifier.

How do we choose & learn the linear classifier?

Given labelled training data:

how do we choose and learn the best **hyperplane** to separate the two classes?

Supervised learning of my classifier

Have a linear classifier next need to decide:

- 1. How to measure the quality of the classifier w.r.t. labelled training data?
 - Choose/Define a loss function.

0. 1 Loss function

For a single example (x, y) the 0-1 loss is defined as

$$l(y, f(\mathbf{x}; \boldsymbol{\theta})) = \begin{cases} 0 & \text{if } y = \text{sgn}(f(\mathbf{x}; \boldsymbol{\theta})) \\ 1 & \text{if } y \neq \text{sgn}(f(\mathbf{x}; \boldsymbol{\theta})) \end{cases}$$
$$= \begin{cases} 0 & \text{if } y f(\mathbf{x}; \boldsymbol{\theta}) > 0 \\ 1 & \text{if } y f(\mathbf{x}; \boldsymbol{\theta}) < 0 \end{cases}$$
$$(\text{assuming } y \in \{-1, 1\})$$

Applied to all training data \implies count the number of misclassifications.

Not really used in practice as has lots of problems! What are some?

Supervised learning of my classifier

Have a linear classifier next need to decide:

- 1. How to measure the quality of the classifier w.r.t. labelled training data?
 - Choose/Define a loss function.
- 2. How to measure the complexity of the classifier?
 - Choose/Define a **regularization** term.

Most common regularization function

L_2 regularization

$$R(\mathbf{w}) = \|\mathbf{w}\|^2 = \sum_{i=1}^d w_i^2$$

Adding this form of regularization:

- Encourages w not to contain entries with large absolute values.
- or want small absolute values in all entries of w.

Supervised learning of my classifier

Have a linear classifier next need to decide:

- 1. How to measure the quality of the classifier w.r.t. labelled training data?
 - Choose/Define a loss function.
- 2. How to measure the complexity of the classifier?
 - Choose/Define a **regularization** term.
- 3. How to do estimate the classifier's parameters by optimizing relative to the above factors?

Example: Squared Error loss

Squared error loss & no regularization

• Learn \mathbf{w}, b from \mathcal{D} . Find the \mathbf{w}, b that minimizes:

$$L(\mathcal{D}, \mathbf{w}, b) = \frac{1}{2} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l_{\text{sq}}(y, f(\mathbf{x}; \mathbf{w}, b))$$
$$= \frac{1}{2} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \underbrace{\left((\mathbf{w}^T \mathbf{x} + b) - y\right)^2}_{\text{Squared error loss}}$$

L is known as the sum-of-squares error function.

- The \mathbf{w}^*, b^* that minimizes $L(\mathcal{D}, \mathbf{w}, b)$ is known as the Minimum Squared Error solution.
- This minimum is found as follows....

Matrix Calculus

- Have a function $f: \mathbb{R}^d \to \mathbb{R}$ that is $f(\mathbf{x}) = b$
- We use the notation

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{pmatrix}$$

• Example: If $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = \sum_{i=1}^d a_i x_i$ then

$$\frac{\partial f}{\partial x_i} = a_i \implies \frac{\partial f}{\partial \mathbf{x}} = \begin{pmatrix} a_1 \\ \vdots \\ a_d \end{pmatrix} = \mathbf{a}$$

Matrix Calculus

- Have a function $f:\mathbb{R}^{d\times d}\to\mathbb{R}$ that is f(X)=b with $X\in\mathbb{R}^{d\times d}$
- We use the notation

$$\frac{\partial f}{\partial X} = \begin{pmatrix} \frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} & \cdots & \frac{\partial f}{\partial x_{1d}} \\ \frac{\partial f}{\partial x_{21}} & \frac{\partial f}{\partial x_{22}} & \cdots & \frac{\partial f}{\partial x_{2d}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_{d1}} & \frac{\partial f}{\partial x_{d2}} & \cdots & \frac{\partial f}{\partial x_{dd}} \end{pmatrix}$$

• Example: If $f(X) = \mathbf{a}^T X \mathbf{b} = \sum_{i=1}^d a_i \sum_{j=1}^d x_{ij} b_j$ then

$$\frac{\partial f}{\partial x_{ij}} = a_i b_j \quad \Longrightarrow \quad \frac{\partial f}{\partial X} = \begin{pmatrix} a_1 b_1 & a_1 b_2 & \dots & a_1 b_d \\ \vdots & \vdots & \vdots & \vdots \\ a_d b_1 & a_d b_2 & \dots & a_d b_d \end{pmatrix} = \mathbf{a} \mathbf{b}^T$$

Matrix Calculus

Derivative of a linear function

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a} \tag{1}$$

$$\frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \tag{2}$$

$$\frac{\partial \mathbf{a}^T X \mathbf{b}}{\partial X} = \mathbf{a} \mathbf{b}^T \tag{3}$$

$$\frac{\partial \mathbf{a}^T X^T \mathbf{b}}{\partial X} = \mathbf{b} \mathbf{a}^T \tag{4}$$

Derivative of a quadratic function

$$\frac{\partial \mathbf{x}^T B \mathbf{x}}{\partial \mathbf{x}} = (B + B^T) \mathbf{x} \tag{5}$$

$$\frac{\partial \mathbf{b}^T X^T X \mathbf{c}}{\partial X} = X(\mathbf{b} \mathbf{c}^T + \mathbf{c} \mathbf{b}^T)$$
 (6)

$$\frac{\partial (B\mathbf{x} + \mathbf{b})^T C(D\mathbf{x} + \mathbf{d})}{\partial \mathbf{x}} = B^T C(D\mathbf{x} + \mathbf{d}) + D^T C^T (B\mathbf{x} + \mathbf{b})$$
(7)

$$\frac{\partial \mathbf{b}^T X^T D X \mathbf{c}}{\partial X} = D^T X \mathbf{b} \mathbf{c}^T + D X \mathbf{c} \mathbf{b}^T$$
 (8)

End of Technical interlude

Pseudo-Inverse solution

• Can write the cost function as

$$\begin{split} L(\mathcal{D}, \mathbf{w}, b) &= \frac{1}{2} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \left(\mathbf{w}^T \mathbf{x} + b - y \right)^2 = \frac{1}{2} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \left(\mathbf{w}_1^T \mathbf{x}' - y \right)^2 \\ \text{where } \mathbf{x}' &= (\mathbf{x}^T, 1)^T, \mathbf{w}_1 = (\mathbf{w}^T, b)^T \end{split}$$

· Writing in matrix notation this becomes

$$L(\mathcal{D}, \mathbf{w}_1) = \frac{1}{2} ||X\mathbf{w}_1 - \mathbf{y}||^2 = \frac{1}{2} (X\mathbf{w}_1 - \mathbf{y})^T (X\mathbf{w}_1 - \mathbf{y})$$
$$= \frac{1}{2} (\mathbf{w}_1^T X^T X \mathbf{w}_1 - 2\mathbf{y}^T X \mathbf{w}_1 + \mathbf{y}^T \mathbf{y})$$

where

$$\mathbf{y} = (y_1, \dots, y_n)^T, \quad \mathbf{w} = (w_1, \dots, w_{d+1})^T, \quad X = \begin{pmatrix} \mathbf{x}_1^t & 1 \\ \vdots & \vdots \\ \mathbf{x}_n^T & 1 \end{pmatrix}$$

Pseudo-Inverse solution

• The gradient of $L(\mathcal{D}, \mathbf{w}_1)$ w.r.t. \mathbf{w}_1 :

$$\nabla_{\mathbf{w}_1} L(\mathcal{D}, \mathbf{w}_1) = X^T X \mathbf{w}_1 - X^T \mathbf{y}$$

• Setting this equal to zero yields $X^T X \mathbf{w}_1 = X^T \mathbf{y}$ and

$$\mathbf{w}_1 = X^{\dagger} \mathbf{y}$$

where

$$X^{\dagger} \equiv \left(X^T X \right)^{-1} X^T$$

• X^{\dagger} is called the **pseudo-inverse** of X. Note that $X^{\dagger}X = I$ but in general $XX^{\dagger} \neq I$.

Simple 2D Example

Decision boundary found by minimizing

$$L_{\text{squared error}}(\mathcal{D}, \mathbf{w}, b) = \sum_{(\mathbf{x}, y) \in \mathcal{D}} (y - (\mathbf{w}^T \mathbf{x} + b))^2$$

• The gradient of $L(\mathcal{D}, \mathbf{w}_1)$ w.r.t. \mathbf{w}_1 :

$$\nabla_{\mathbf{w}_1} L(\mathcal{D}, \mathbf{w}_1) = X^T X \mathbf{w}_1 - X^T \mathbf{y}$$

• Setting this equal to zero yields $X^T X \mathbf{w}_1 = X^T \mathbf{y}$ and

$$\mathbf{w}_1 = X^{\dagger} \mathbf{y}$$

where

$$X^{\dagger} \equiv \left(X^T X \right)^{-1} X^T$$

- X^{\dagger} is called the **pseudo-inverse** of X. Note that $X^{\dagger}X = I$ but in general $XX^{\dagger} \neq I$.
- If X^TX singular \implies no unique solution to $X^TX\mathbf{w} = X^T\mathbf{y}$.

Iterative Optimization

 Common approach to solving such unconstrained optimization problem is iterative non-linear optimization.

$$\mathbf{x}^* = \arg\min_{\forall \mathbf{x}} \ f(\mathbf{x})$$

- Start with an estimate $\mathbf{x}^{(0)}$.
- Try to improve it by finding successive new estimates $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \dots$ s.t. $f(\mathbf{x}^{(1)}) \geq f(\mathbf{x}^{(2)}) \geq f(\mathbf{x}^{(3)}) \geq \cdots$ until convergence.
- To find a better estimate at each iteration: Perform the search locally around the current estimate.
- Such iterative approaches will find a local minima.

Iterative Optimization

Iterative optimization methods alternate between these two steps:

Decide search direction

Choose a search direction based on the local properties of the cost function.

Line Search

Perform an intensive search to find the minimum along the chosen direction.

Choosing a search direction: The gradient

The gradient is defined as:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) \equiv \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_d} \end{pmatrix}$$

The gradient points in the direction of the greatest increase of $f(\mathbf{x})$.

Gradient descent: Method for function minimization

Gradient descent finds the minimum in an iterative fashion by moving in the direction of steepest descent.

Gradient Descent Minimization

- 1. Start with an arbitrary solution $\mathbf{x}^{(0)}$.
- 2. Compute the gradient $\nabla_{\mathbf{x}} f(\mathbf{x}^{(k)})$.
- 3. Move in the direction of steepest descent:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \eta^{(k)} \nabla_{\mathbf{x}} f(\mathbf{x}^{(k)}).$$

where $\eta^{(k)}$ is the step size.

4. Go to 2 (until convergence).

Gradient descent: Method for function minimization

Gradient descent finds the minimum in an iterative fashion by moving in the direction of steepest descent.

Gradient Descent Minimization Properties

- 1. Will converge to a local minimum.
- 2. The local minimum found depends on the initialization $\mathbf{x}^{(0)}$.

But this is okay

- For convex optimization problems: local minimum ≡ global minimum
- For deep networks most parameter setting corresponding to a local minimum are fine.

Gradient descent: Method for function minimization

Gradient descent finds the minimum in an iterative fashion by moving in the direction of steepest descent.

Gradient Descent Minimization Properties

- 1. Will converge to a local minimum.
- 2. The local minimum found depends on the initialization $\mathbf{x}^{(0)}$.

But this is okay

- For convex optimization problems: local minimum ≡ global minimum
- For deep networks most parameter setting corresponding to a local minimum are fine.

End of Technical interlude

Gradient descent solution

The error function $L(\mathcal{D}, \mathbf{w}_1)$ could also be minimized wrt \mathbf{w}_1 by using a **gradient descent procedure**.

Why?

- This avoids the numerical problems that arise when X^TX is (nearly) singular.
- It also avoids the need for working with large matrices.

How

- 1. Begin with an initial guess $\mathbf{w}_1^{(0)}$ for \mathbf{w}_1 .
- 2. Update the weight vector by moving a small distance in the direction $-\nabla_{\mathbf{w}_1} L$.

Solution

$$\mathbf{w}_{1}^{(t+1)} = \mathbf{w}_{1}^{(t)} - \eta^{(t)} X^{T} (X \mathbf{w}_{1}^{(t)} - \mathbf{y})$$

- If $\eta^{(t)} = \eta_0/t$, where $\eta_0 > 0$, then
- $\mathbf{w}_1^{(0)}, \mathbf{w}_1^{(1)}, \mathbf{w}_1^{(2)}, \dots$ converges to a solution of

$$X^T(X\mathbf{w}_1 - \mathbf{y}) = \mathbf{0}$$

• Irrespective of whether X^TX is singular or not.

Stochastic gradient descent solution

 Increase the number of updates per computation by considering each training sample sequentially

$$\mathbf{w}_{1}^{(t+1)} = \mathbf{w}_{1}^{(t)} - \eta^{(t)} (\mathbf{x}_{i}^{T} \mathbf{w}_{1}^{(t)} - y_{i}) \mathbf{x}_{i}$$

- This is known as the Widrow-Hoff, least-mean-squares (LMS) or delta rule [Mitchell, 1997].
- More generally this is an application of Stochastic Gradient Descent.

Common Optimization Problem in Machine Learning

Form of the optimization problem:

$$J(\mathcal{D}, \boldsymbol{\theta}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l(y, f(\mathbf{x}; \boldsymbol{\theta})) + \lambda R(\boldsymbol{\theta})$$

$$\theta^* = \arg\min_{\boldsymbol{\theta}} J(\mathcal{D}, \boldsymbol{\theta})$$

- Solution with gradient descent
 - 1. Start with a random guess $\theta^{(0)}$ for the parameters.
 - 2. Then iterate until convergence

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} |\nabla_{\boldsymbol{\theta}} J(\mathcal{D}, \boldsymbol{\theta})|_{\boldsymbol{\theta}^{(t)}}$$

If $|\mathcal{D}|$ is large

- ullet \implies computing $abla_{m{ heta}} J(m{ heta}, \mathcal{D})|_{m{ heta}^{(t)}}$ is time consuming
- ullet each update of $oldsymbol{ heta}^{(t)}$ takes lots of computations
- \bullet Gradient descent needs lots of iterations to converge as η usually small
- ⇒ GD takes an age to find a local optimum.

Work around: Stochastic Gradient Descent

- Start with a random solution $\theta^{(0)}$.
- Until convergence for $t = 1, \dots$
 - 1. Randomly select $(\mathbf{x}, y) \in \mathcal{D}$.
 - 2. Set $\mathcal{D}^{(t)} = \{(\mathbf{x}, y)\}.$
 - 3. Update parameter estimate with

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} \left. \nabla_{\boldsymbol{\theta}} J(\mathcal{D}^{(t)}, \boldsymbol{\theta}) \right|_{\boldsymbol{\theta}^{(t)}}$$

Comments about SGD

- When $|\mathcal{D}^{(t)}|=1$: $\nabla_{\boldsymbol{\theta}}J(\mathcal{D}^{(t)},\boldsymbol{\theta})|_{\boldsymbol{\theta}^{(t)}} \text{ a noisy estimate of } \nabla_{\boldsymbol{\theta}}J(\mathcal{D},\boldsymbol{\theta})|_{\boldsymbol{\theta}^{(t)}}$
- Therefore $|\mathcal{D}| \mbox{ noisy update steps in SGD} \approx 1 \mbox{ correct update step in GD}.$
- In practice SGD converges a lot faster then GD.
- Given lots of labelled training data:
 Quantity of updates more important than quality of updates!

Best practices for SGD

Preparing the data

- Randomly shuffle the training examples and zip sequentially through $\mathcal{D}.$
- Use preconditioning techniques.

Monitoring and debugging

- Monitor both the training cost and the validation error.
- Check the gradients using finite differences.
- Experiment with learning rates $\boldsymbol{\eta}^{(t)}$ using a small sample of the training set.

Mini-Batch Gradient Descent

- Start with a random guess $\theta^{(0)}$ for the parameters.
- Until convergence for $t = 1, \dots$
 - 1. Randomly select a subset $\mathcal{D}^{(t)}\subset\mathcal{D}$ s.t. $|\mathcal{D}^{(t)}|=n_b$ (typically $n_b\approx 150$.)
 - 2. Update parameter estimate with

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} \left. \nabla_{\boldsymbol{\theta}} J(\mathcal{D}^{(t)}, \boldsymbol{\theta}) \right|_{\boldsymbol{\theta}^{(t)}}$$

Benefits of mini-batch gradient descent

- Obtain a more accurate estimate of $\nabla_{\pmb{\theta}} J(\mathcal{D}, \pmb{\theta})|_{\pmb{\theta}^{(t)}}$ than in SGD.
- Still get lots of updates per epoch (one iteration through all the training data).

What learning rate?

- Issues with setting the learning rate $\eta^{(t)}$?
 - Larger η 's \implies potentially faster learning but with the risk of less stable convergence.
 - Smaller η 's \implies slow learning but stable convergence.

Strategies

- Constant: $\eta^{(t)} = .01$
- Decreasing: $\eta^{(t)} = 1/\sqrt{t}$
- Lots of recent algorithms dealing with this issue

Will describe these algorithms in the near future.

End of Technical interlude

Squared Error loss $+ L_2$ regularization

Add an L_2 regularization term (a.k.a. ridge regression)

Add a regularization term to the loss function

$$J_{\text{ridge}}(\mathcal{D}, \mathbf{w}, b) = \frac{1}{2} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l_{\text{sq}}(y, \mathbf{w}^T \mathbf{x} + b) + \lambda ||\mathbf{w}||^2$$
$$= \frac{1}{2} ||X\mathbf{w} + b\mathbf{1} - \mathbf{y}||^2 + \lambda ||\mathbf{w}||^2$$

where $\lambda > 0$ and small and X is the data matrix

$$X = \begin{pmatrix} \leftarrow & \mathbf{x}_1^T & \rightarrow \\ \leftarrow & \mathbf{x}_2^T & \rightarrow \\ & \vdots & \\ \leftarrow & \mathbf{x}_n^T & \rightarrow \end{pmatrix}$$

Solving Ridge Regression: Centre the data to simplify

• Add a regularization term to the loss function

$$J_{\mathsf{ridge}}(\mathcal{D}, \mathbf{w}, b) = \frac{1}{2} \|X\mathbf{w} + b\mathbf{1} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|^2$$

• Let's centre the input data

$$X_c = \begin{pmatrix} \leftarrow & \mathbf{x}_{c,1}^T & \rightarrow \\ \leftarrow & \mathbf{x}_{c,2}^T & \rightarrow \\ & \vdots & \\ \leftarrow & \mathbf{x}_{c,n}^T & \rightarrow \end{pmatrix} \quad \text{where } \mathbf{x}_{c,i} = \mathbf{x}_i - \boldsymbol{\mu}_{\mathbf{x}}$$

$$\implies X_c^T \mathbf{1} = \mathbf{0}.$$

• Optimal bias with centered input X_c (does not depend on \mathbf{w}^*) is:

$$\begin{split} \frac{\partial J_{\mathsf{ridge}}}{\partial b} &= b \mathbf{1}^T \mathbf{1} + \mathbf{w}^T X_c^T \mathbf{1} - \mathbf{1}^T \mathbf{y} \\ &= b \mathbf{1}^T \mathbf{1} - \mathbf{1}^T \mathbf{y} \\ \implies b^* &= 1/n \sum_{i=1}^n y_i = \bar{y}. \end{split}$$

Solving ridge regression: Optimal weight vector

Add a regularization term to the loss function

$$J_{\mathsf{ridge}}(\mathcal{D}, \mathbf{w}) = \frac{1}{2} \|X_c \mathbf{w} + \bar{y} \mathbf{1} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|^2$$

• Compute the gradient of J_{ridge} w.r.t. w

$$\frac{\partial J_{\mathsf{ridge}}}{\partial \mathbf{w}} = \left(X_c^T X_c + \lambda I_d \right) \mathbf{w} - X_c^T \mathbf{y}$$

Set to zero to get

$$\mathbf{w}^* = \left(X_c^T X_c + \lambda I_d\right)^{-1} X_c^T \mathbf{y}$$

• $(X_c^TX_c + \lambda I_d)$ has a unique inverse even if $X_c^TX_c$ is singular.

Simple 2D Example

Ridge Regression decision boundaries as λ is varied

Solving ridge regression: Optimal weight vector

• Add a regularization term to the loss function

$$J_{\mathsf{ridge}}(\mathcal{D}, \mathbf{w}) = \frac{1}{2} \|X_c \mathbf{w} + \bar{y} \mathbf{1} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|^2$$

• Compute the gradient of J_{ridge} w.r.t. w

$$\frac{\partial J_{\mathsf{ridge}}}{\partial \mathbf{w}} = \left(X_c^T X_c + \lambda I_d \right) \mathbf{w} - X_c^T \mathbf{y}$$

Set to zero to get

$$\mathbf{w}^* = \left(X_c^T X_c + \lambda I_d\right)^{-1} X_c^T \mathbf{y}$$

- $(X_c^T X_c + \lambda I_d)$ has a unique inverse even if $X_c^T X_c$ is singular.
- If d is large \implies have to invert a very large matrix.

Solving ridge regression: Iteratively

• The gradient-descent update step is

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \left[\left(X_c^T X_c + \lambda I_d \right) \mathbf{w}^{(t)} - X_c^T \mathbf{y} \right]$$

• The SGD update step for sample (x, y) is

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \left[\left((\mathbf{x} - \boldsymbol{\mu}_x)(\mathbf{x} - \boldsymbol{\mu}_x)^T + \lambda I_d \right) \mathbf{w}^{(t)} - (\mathbf{x} - \boldsymbol{\mu}_x) y \right]$$

$$l(\mathbf{x}, y; \mathbf{w}, b) = \max \{0, 1 - y(\mathbf{w}^T \mathbf{x} + b)\}\$$

- This loss is not differentiable but is convex.
- Correctly classified examples *sufficiently* far from the decision boundary have zero loss.
- ⇒ have a way of choosing between classifiers that correctly classify all the training examples.

Subgradient of a function

• g is a **subgradient** of f at x if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{y}$$

• 1D example:

- g_2, g_3 are subgradients at x_2 ;
- q_1 is a subgradient at x_1 .

Subgradient of a function

• Set of all subgradients of f at \mathbf{x} is called the subdifferential of f at \mathbf{x} , written $\partial f(\mathbf{x})$

1D example:

• If f is convex and differentiable: $\nabla f(\mathbf{x})$ a subgradient of f at \mathbf{x} .

End of Technical interlude

Find w, b that minimize

$$L_{\text{hinge}}(\mathcal{D}, \mathbf{w}, b) = \sum_{(\mathbf{x}, y) \in \mathcal{D}} \underbrace{\max \left\{ 0, 1 - y(\mathbf{w}^T \mathbf{x} + b) \right\}}_{\text{Hinge Loss}}$$

- Can use stochastic gradient descent to do the optimization.
- The (sub-)gradients of the hinge-loss are

$$\begin{split} \nabla_{\mathbf{w}} l(\mathbf{x}, y; \mathbf{w}, b) &= \begin{cases} -y \, \mathbf{x} & \text{if } y(\mathbf{w}^T \mathbf{x} + b) < 1 \\ 0 & \text{otherwise.} \end{cases} \\ \frac{\partial \, l(\mathbf{x}, y; \mathbf{w}, b)}{\partial b} &= \begin{cases} -y & \text{if } y(\mathbf{w}^T \mathbf{x} + b) < 1 \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Example of decision boundary found

Decision boundary found by minimizing with SGD

$$L_{\text{hinge}}(\mathcal{D}, \mathbf{w}, b) = \sum_{(\mathbf{x}, y) \in \mathcal{D}} \max \{0, 1 - y(\mathbf{w}^T \mathbf{x} + b)\}$$

L_2 Regularization + Hinge Loss

L_2 regularization + Hinge loss

Find w, b that minimize

$$J_{\text{svm}}(\mathcal{D}, \mathbf{w}, b) = \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{(\mathbf{x}, y) \in \mathcal{D}} \underbrace{\max \left\{ 0, 1 - y(\mathbf{w}^T \mathbf{x} + b) \right\}}_{\text{Hinge Loss}}$$

- Can use stochastic gradient descent to do the optimization.
- The sub-gradients of this cost function

$$\nabla_{\mathbf{w}} l(\mathbf{x}, y; \mathbf{w}, b) = \begin{cases} \lambda \mathbf{w} - y \, \mathbf{x} & \text{if } y(\mathbf{w}^T \mathbf{x} + b) < 1 \\ \lambda \mathbf{w} & \text{otherwise.} \end{cases}$$

$$\frac{\partial l(\mathbf{x}, y; \mathbf{w}, b)}{\partial b} = \begin{cases} -y & \text{if } y(\mathbf{w}^T \mathbf{x} + b) < 1\\ 0 & \text{otherwise.} \end{cases}$$

Example of decision boundary found

Decision boundary found with SGD by minimizing ($\lambda = .01$)

$$J_{\mathsf{hinge}}(\mathcal{D}, \mathbf{w}, b) = \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{(\mathbf{x}, y) \in \mathcal{D}} \; \max \left\{ 0, 1 - y(\mathbf{w}^T \mathbf{x} + b) \right\}$$

Regularization reduces the influence of *outliers*

Decision boundaries found by minimizing

Hinge Loss

 L_2 Regularization + Hinge Loss

" L_2 Regularization + Hinge Loss" \equiv SVM

SVM's constrained optimization problem

SVM solves this constrained optimization problem:

$$\min_{\mathbf{w},b} \left(\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^n \xi_i \right) \quad \text{subject to}$$

$$y_i(\mathbf{w}^T\mathbf{x}_i+b) \geq 1-\xi_i \text{ for } i=1,\ldots,n$$
 and $\xi_i \geq 0 \text{ for } i=1,\ldots,n.$

Alternative formulation of SVM optimization

SVM solves this constrained optimization problem:

$$\begin{split} \min_{\mathbf{w},b} \; \left(\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^n \xi_i \right) \quad \text{subject to} \\ y_i(\mathbf{w}^T \mathbf{x}_i + b) &\geq 1 - \xi_i \; \text{ for } i = 1, \dots, n \quad \text{and} \\ \xi_i &\geq 0 \; \text{ for } i = 1, \dots, n. \end{split}$$

Let's look at the constraints:

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i \implies \xi_i \ge 1 - y_i(\mathbf{w}^T\mathbf{x}_i + b)$$

• But $\xi_i \geq 0$ also, therefore

$$\left[\xi_i \geq \max\left\{0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)\right\}\right]$$

Alternative formulation of the SVM optimization

Thus the original constrained optimization problem can be restated as an **unconstrained optimization problem**:

$$\min_{\mathbf{w},b} \left(\underbrace{\frac{1}{2} \|\mathbf{w}\|^2}_{\text{Regularization term}} + C \sum_{i=1}^{n} \underbrace{\max \left\{ 0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b) \right\}}_{\text{Hinge loss}} \right)$$

and corresponds to the L_2 regularization + Hinge loss formulation!

⇒ can train SVMs with SGD/mini-batch gradient descent.

Alternative formulation of the SVM optimization

Thus the original constrained optimization problem can be restated as an **unconstrained optimization problem**:

$$\min_{\mathbf{w},b} \left(\underbrace{\frac{1}{2} \|\mathbf{w}\|^2}_{\text{Regularization term}} + C \sum_{i=1}^{n} \underbrace{\max \left\{ 0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b) \right\}}_{\text{Hinge loss}} \right)$$

and corresponds to the L_2 regularization + Hinge loss formulation!

⇒ can train SVMs with SGD/mini-batch gradient descent.

Example dataset: CIFAR-10

Example dataset: CIFAR-10

CIFAR-10

- 10 classes
- 50,000 training images
- 10,000 test images
- Each image has size $32 \times 32 \times 3$

Technical description of the multi-class problem

• Have a set of labelled training examples

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$$
 with each $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{1, \dots, C\}$.

ullet Want to learn from ${\mathcal D}$ a classification function

$$g: \underset{\text{input space}}{\mathbb{R}^d} \times \underset{\text{parameter space}}{\mathbb{R}^P} \to \{1, \dots, C\}$$

Usually

$$g(\mathbf{x}; \mathbf{\Theta}) = \arg \max_{1 \le i \le C} f_j(\mathbf{x}; \boldsymbol{\theta}_j)$$

where for $j = 1, \ldots, C$:

$$f_i: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}$$

and $\Theta = (\theta_1, \theta_2, \dots, \theta_C)$.

Multi-class linear classifier

• Let each f_i be a linear function that is

$$f_j(\mathbf{x}; \boldsymbol{\theta}_j) = \mathbf{w}_j^T \mathbf{x} + b_j$$

Define

$$f(\mathbf{x}; \mathbf{\Theta}) = \begin{pmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_C(\mathbf{x}) \end{pmatrix}$$

then

$$f(\mathbf{x}; \mathbf{\Theta}) = f(\mathbf{x}; W, \mathbf{b}) = W\mathbf{x} + \mathbf{b}$$

where

$$W = \begin{pmatrix} \mathbf{w}_1^T \\ \vdots \\ \mathbf{w}_C^T \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_C \end{pmatrix}$$

• Note W has size $C \times d$ and b is $C \times 1$.

Apply a multi-class linear classifier to an image

Have a 2D colour image but can flatten it into a 1D vector x

• Apply classifier: Wx + b to get a score for each class.

Interpreting a multi-class linear classifier

- Learn W, b to classify the images in a dataset.
- Can interpret each row, \mathbf{w}_{j} , of W as a template for class j.
- Below is the visualization of each learnt \mathbf{w}_i for CIFAR-10

Interpreting a multi-class linear classifier

- Each $\mathbf{w}_i^T \mathbf{x} + b_j = 0$ corresponds to a hyperplane, H_j , in \mathbb{R}^d .
- $sign(\mathbf{w}_{i}^{T}\mathbf{x} + b_{j})$ tells us which side of H_{j} the point \mathbf{x} lies.
- The score $|\mathbf{w}_j^T \mathbf{x} + b_j| \propto$ the distance of \mathbf{x} to H_j .

How do we learn W and \mathbf{b} ?

As before need to

- Specify a loss function (+ a regularization term).
- Set up the optimization problem.
- Perform the optimization.

How do we learn W and b?

As before need to

- Specify a loss function
 - must quantify the quality of all the class scores across all the training data.
- Set up the optimization problem.
- Perform the optimization.

• Remember have training data

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$$
 with each $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{1, \dots, C\}$.

• Let s_j be the score of function f_j applied to ${\bf x}$

$$s_j = f_j(\mathbf{x}; \mathbf{w}_j, b_j) = \mathbf{w}_j^T \mathbf{x} + b_j$$

• The SVM loss for training example x with label y is

$$l = \sum_{\substack{j=1\\j \neq y}}^{C} \max(0, s_j - s_y + 1)$$

Multi-class SVM Loss

• s_i is the score of function f_i applied to \mathbf{x}

$$s_j = f_j(\mathbf{x}; \mathbf{w}_j, b_j) = \mathbf{w}_j^T \mathbf{x} + b_j$$

ullet SVM loss for training example ${f x}$ with label y is

$$l = \sum_{\substack{j=1\\ j \neq y}}^{C} \max(0, s_j - s_y + 1)$$

Calculate the multi-class SVM loss for a CIFAR image

input: x

output

label

loss

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}$$
 $y = 8$

$$y = 8$$

 $l = \sum_{\substack{j=1\\j \neq y}}^{10} \max(0, s_j - s_y + 1)$

Scores

airplane -0.3166-0.6609car bird 0.70580.8538 cat 0.6525deer dog 0.1874frog 0.6072horse 0.5134 ship -1.3490truck -1.2225

s = Wx + b

Calculate the multi-class SVM loss for a CIFAR image

input: x

output

label

loss

$$\mathbf{s} = W\mathbf{x} + \mathbf{b} \qquad y = 8$$

$$l = \sum_{\substack{j=1\\j \neq y}}^{10} \max(0, s_j - s_y + 1)$$

	Scores	Compare to horse score
airplane	-0.3166	0.1701
car	-0.6609	-0.1743
bird	0.7058	1.1925
cat	0.8538	1.3405
deer	0.6525	1.1392
dog	0.1874	0.6741
frog	0.6072	1.0938
horse	0.5134	1.0000
ship	-1.3490	-0.8624
truck	-1.2225	-0.7359
	$\mathbf{s} = W\mathbf{x} + \mathbf{b}$	$s - s_8 + 1$

Calculate the multi-class SVM loss for a CIFAR image

input: x

output

label

loss

$$\mathbf{s} = W\mathbf{x} + \mathbf{b} \qquad y = 8$$

$$y = 8$$

$$l = \sum_{\substack{j=1\\j\neq y}}^{10} \max(0, s_j - s_y + 1)$$

	Scores	Compare to horse score	Keep badly performing classes
airplane	-0.3166	0.1701	0.1701
car	-0.6609	-0.1743	0
bird	0.7058	1.1925	1.1925
cat	0.8538	1.3405	1.3405
deer	0.6525	1.1392	1.1392
dog	0.1874	0.6741	0.6741
frog	0.6072	1.0938	1.0938
horse	0.5134	1.0000	1.0000
ship	-1.3490	-0.8624	0
truck	-1.2225	-0.7359	0
	$\mathbf{s} = W\mathbf{x} + \mathbf{b}$	$s - s_8 + 1$	$\max(0, \mathbf{s} - s_8 + 1)$

Loss for x: 5.4723

Problem with the SVM loss

Given W and \mathbf{b} then

• Response for one training example

$$f(\mathbf{x}; W, \mathbf{b}) = W\mathbf{x} + \mathbf{b} = \mathbf{s}$$

loss for x

$$l(\mathbf{x}, y, W, \mathbf{x}) = \sum_{\substack{j=1\\j \neq y}}^{C} \max(0, s_j - s_y + 1)$$

· Loss over all the training data

$$L(\mathcal{D}, W, \mathbf{b}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l(\mathbf{x}, y, W, \mathbf{b})$$

Have found a W s.t. L=0. Is this W unique?

Let $W_1 = \alpha W$ and $\mathbf{b}_1 = \alpha \mathbf{b}$ where $\alpha > 1$ then

• Response for one training example

$$f(\mathbf{x}; W_1, \mathbf{b}) = W_1 \mathbf{x} + \mathbf{b}_1 = \mathbf{s}' = \alpha(W\mathbf{x} + \mathbf{b})$$

• Loss for (\mathbf{x},y) w.r.t. W_1 and \mathbf{b}_1

$$\begin{split} l(\mathbf{x}, y, W_1, \mathbf{b}_1) &= \sum_{\substack{j=1\\j \neq y}}^{C} \max(0, s_j' - s_y' + 1) \\ &= \max(0, \alpha(\mathbf{w}_j^T \mathbf{x} + b_j - \mathbf{w}_y^T \mathbf{x} - b_y) + 1) \\ &= \max(0, \alpha(s_j - s_y) + 1) \\ &= 0 \quad \text{as by definition } s_j - s_y < -1 \text{ and } \alpha > 1 \end{split}$$

• Thus the total loss $L(\mathcal{D}, W_1, \mathbf{b}_1)$ is 0.

Solution: Weight regularization

$$L(\mathcal{D}, W, \mathbf{b}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \sum_{j=1 \atop i \neq j}^{C} \max(0, f_j(\mathbf{x}; W, \mathbf{b}) - f_y(\mathbf{x}; W, \mathbf{b}) + 1) + \lambda R(W)$$

Commonly used Regularization

Name of regularization	
L_2	$\sum_{k}\sum_{l}W_{k,l}^{2}$
L_1	$\sum_k \sum_l W_{k,l} $
Elastic Net	$\sum_{k} \sum_{l} \left(\beta W_{k,l}^2 + W_{k,l} \right)$

Cross-entropy Loss

Probabilistic interpretation of scores

Let p_i be the probability that input x has label j:

$$P_{Y|\mathbf{X}}(j \mid \mathbf{x}) = p_i$$

• For x our linear classifier outputs scores for each class:

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}$$

• Can interpret scores, s, as:

unnormalized log probability for each class.

$$\Longrightarrow$$

$$s_j = \log p_j'$$

where $\alpha p_j' = p_j$ and $\alpha = \sum p_j'$.

$$\Longrightarrow$$

$$P_{Y|\mathbf{X}}(j \mid \mathbf{x}) = p_j = \frac{\exp(s_j)}{\sum_k \exp(s_k)}$$

This transformation is known as

$$\mathsf{Softmax}(\mathbf{s}) = \frac{\exp(s_j)}{\sum_k \exp(s_k)}$$

Softmax operation

• This transformation is known as

$$\mathsf{Softmax}(\mathbf{s}) = \frac{\exp(s_j)}{\sum_k \exp(s_k)}$$

Softmax classifier: Log likelihood of the training data

• **Given probabilistic model**: Estimate its parameters by maximizing the log-likelihood of the training data.

$$\theta^* = \arg \max_{\boldsymbol{\theta}} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log P_{Y|\mathbf{X}}(y \mid \mathbf{x}; \boldsymbol{\theta})$$
$$= \arg \min_{\boldsymbol{\theta}} - \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log P_{Y|\mathbf{X}}(y \mid \mathbf{x}; \boldsymbol{\theta})$$

 Given probabilistic interpretation of our classifier, the negative log-likelihood of the training data is

$$-\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x},y)\in\mathcal{D}} \log \left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)} \right)$$

where $\mathbf{s} = W\mathbf{x} + \mathbf{b}$.

Softmax classifier: Log likelihood of the training data

• **Given probabilistic model**: Estimate its parameters by maximizing the log-likelihood of the training data.

$$\theta^* = \arg \max_{\boldsymbol{\theta}} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log P_{Y|\mathbf{X}}(y \mid \mathbf{x}; \boldsymbol{\theta})$$
$$= \arg \min_{\boldsymbol{\theta}} - \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log P_{Y|\mathbf{X}}(y \mid \mathbf{x}; \boldsymbol{\theta})$$

• Given probabilistic interpretation of our classifier, the negative log-likelihood of the training data is

$$-\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x},y)\in\mathcal{D}} \log \left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)} \right)$$

where $\mathbf{s} = W\mathbf{x} + \mathbf{b}$.

Softmax classifier + cross-entropy loss

 Given the probabilistic interpretation of our classifier, the negative log-likelihood of the training data is

$$L(\mathcal{D}, W, \mathbf{b}) = -\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \log \left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)} \right)$$

where $\mathbf{s} = W\mathbf{x} + \mathbf{b}$.

Can also interpret this in terms of the cross-entropy loss:

$$L(\mathcal{D}, W, \mathbf{b}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \underbrace{-\log\left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)}\right)}_{\text{cross-entropy loss for } (\mathbf{x}, y)}$$
$$= \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l(\mathbf{x}, y, W, \mathbf{b})$$

ullet p the probability vector the *network* assigns to ${\bf x}$ for each class

$$\mathbf{p} = \mathsf{SOFTMAX}\left(W\mathbf{x} + \mathbf{b}\right)$$

• Cross-entropy loss for training example x with label y is

$$l = -\log(p_u)$$

Calculate the cross-entropy loss for a CIFAR image

input: x

output

label

loss

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}$$

$$y = 8$$

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}$$
 $y = 8$ $l = -\log\left(\frac{\exp(s_y)}{\sum \exp(s_k)}\right)$

Scores

airplane -0.3166-0.6609car 0.7058 bird 0.8538 cat 0.6525deer dog 0.1874frog 0.6072 0.5134 horse ship -1.3490truck -1.2225

$$s = Wx + b$$

Calculate the cross-entropy loss for a CIFAR image

input:	\mathbf{x}
	-

output

label loss

$$\mathbf{s} = W\mathbf{x}$$

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}$$
 $y = 8$

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}$$
 $y = 8$ $l = -\log\left(\frac{\exp(s_y)}{\sum \exp(s_k)}\right)$

	Scores	exp(Scores
airplane	-0.3166	0.7354
car	-0.6609	0.5328
bird	0.7058	2.0203
cat	0.8538	2.3583
deer	0.6525	1.9303
dog	0.1874	1.2080
frog	0.6072	1.8319
horse	0.5134	1.7141
ship	-1.3490	0.2585
truck	-1.2225	0.2945
	$\mathbf{s} = W\mathbf{x} + \mathbf{b}$	$\exp(\mathbf{s})$

Calculate the cross-entropy loss for a CIFAR image

inp	ut: :	X
	-	-
P	47	
	h	11

output	label	loss
--------	-------	------

$$\mathbf{s} = W\mathbf{x} + \mathbf{b}$$
 $y = 8$ $l = -\log\left(\frac{\exp(s_y)}{\sum \exp(s_k)}\right)$

	Scores	$\exp(Scores)$	Normalized scores
airplane	-0.3166	0.7354	0.0571
car	-0.6609	0.5328	0.0414
bird	0.7058	2.0203	0.1568
cat	0.8538	2.3583	0.1830
deer	0.6525	1.9303	0.1498
dog	0.1874	1.2080	0.0938
frog	0.6072	1.8319	0.1422
horse	0.5134	1.7141	0.1330
ship	-1.3490	0.2585	0.0201
truck	-1.2225	0.2945	0.0229
	$\mathbf{s} = W\mathbf{x} + \mathbf{b}$	$\exp(\mathbf{s})$	$\frac{\exp(\mathbf{s})}{\sum_{k} \exp(s_k)}$

Loss for x: 2.0171

Cross-entropy loss

$$l(\mathbf{x}, y, W, \mathbf{b}) = -\log\left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)}\right)$$

Questions

- What is the minimum possible value of $l(\mathbf{x}, y, W, \mathbf{b})$?
- What is the max possible value of $l(\mathbf{x}, y, W, \mathbf{b})$?
- At initialization all the entries of W are small \implies all $s_k \neq 0$. What is the loss?
- A training point's input value is changed slightly. What happens to the loss?
- The log of zero is not defined. Could this be a problem?

- Have training data \mathcal{D} .
- Have scoring function:

$$\mathbf{s} = f(\mathbf{x}; W, \mathbf{b}) = W\mathbf{x} + \mathbf{b}$$

We have a choice of loss functions

$$l_{\text{softmax}}(\mathbf{x}, y, W, \mathbf{b}) = -\log\left(\frac{\exp(s_y)}{\sum_{k=1}^{C} \exp(s_k)}\right)$$
$$l_{\text{svm}}(\mathbf{x}, y, W, \mathbf{b}) = \sum_{\substack{j=1\\j\neq y}}^{C} \max(0, s_j - s_y + 1)$$

Complete training loss

$$L(W, \mathbf{b}; \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l_{\mathsf{softmax}(\mathsf{svm})}(W, \mathbf{b}; \mathbf{x}, y) + \lambda R(W)$$

Learning the parameters: W, \mathbf{b}

ullet Learning $W, {f b}$ corresponds to solving the optimization problem

$$W^*, \mathbf{b}^* = \arg\min_{W, \mathbf{b}} L(\mathcal{D}, W, \mathbf{b})$$

where

$$L(\mathcal{D}, W, \mathbf{b}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l_{\mathsf{softmax}(\mathsf{svm})}(\mathbf{x}, y, W, \mathbf{b}) + \lambda R(W)$$

- Know how to solve this! Mini-batch gradient descent.
- To implement mini-batch gradient descent need
 - to compute gradient of the loss $l_{\text{softmax(svm)}}(\mathbf{x}, y, W, \mathbf{b})$ and R(W)
 - Set the hyper-parameters of the mini-batch gradient descent procedure.

Learning the parameters: W, \mathbf{b}

ullet Learning $W, {f b}$ corresponds to solving the optimization problem

$$W^*, \mathbf{b}^* = \arg\min_{W, \mathbf{b}} L(\mathcal{D}, W, \mathbf{b})$$

where

$$L(\mathcal{D}, W, \mathbf{b}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l_{\mathsf{softmax}(\mathsf{svm})}(\mathbf{x}, y, W, \mathbf{b}) + \lambda R(W)$$

- Know how to solve this! Mini-batch gradient descent.
- To implement mini-batch gradient descent need
 - to compute gradient of the loss $l_{\text{softmax(svm)}}(\mathbf{x}, y, W, \mathbf{b})$ and R(W)
 - Set the hyper-parameters of the mini-batch gradient descent procedure.

Learning the parameters: W, \mathbf{b}

• Learning W, \mathbf{b} corresponds to solving the optimization problem

$$W^*, \mathbf{b}^* = \arg\min_{W, \mathbf{b}} L(\mathcal{D}, W, \mathbf{b})$$

where

$$L(\mathcal{D}, W, \mathbf{b}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l_{\mathsf{softmax}(\mathsf{svm})}(\mathbf{x}, y, W, \mathbf{b}) + \lambda R(W)$$

- Know how to solve this! Mini-batch gradient descent.
- To implement mini-batch gradient descent need
 - to compute gradient of the loss $l_{\mathsf{softmax}(\mathsf{svm})}(\mathbf{x},y,W,\mathbf{b})$ and R(W)
 - Set the hyper-parameters of the mini-batch gradient descent procedure.

Next Lecture

We will cover how to compute these gradients using back-propagation.