Lecture 2 - Learning Binary & Multi-class

Classifiers from Labelled Training Data

DD2424

March 23, 2017

Binary classification problem given labelled training data

Have labelled training examples

Given a test example how do we decide its class?

High level solution

Decision Boundary

Learn a decision boundary from the labelled training data.

Compare the test example to the decision boundary.

Technical description of the binary problem

e Have a set of labelled training examples
D ={(x1,41),.-.,(Xn,yn)} with each x; € R, y; € {—1,1}.
e Want to learn from D a classification function

g: R x RP —{-1,1}

input space parameter space
Usually
g(x;0) = sign(f(x;0)) where f:R?xRF - R
e Have to decide on
1. Form of f (a hyperplane?) and

2. How to estimate f's parameters 6 from D.

Learn decision boundary discriminatively

e Set up an optimization of the form (usually)

training error

arg min g ly, f(x;0)) + X R(0)
0 ~——
(x,y)€D X

regularization term

where
- l(y, f(x] @)) is the loss function and measures how well (and
robustly) f(x; @) predicts the label y.

- The training error term measures how well and robustly the
function f(-;0) predicts the labels over all the training data.

- The regularization term measures the complexity of the
function f(-;8).

Usually want to learn simpler functions = less risk of over-fitting.

Comment on Over- and Under-fitting

Example of Over and Under fitting

Bayes’ Optimal Under-fitting Over-fitting

High Bias Low Bias
Low Variance High Variance
-l -

Test Sample

Prediction Error

/

Training Sample

Low High
Model Complexity

Too much fitting = adapt too closely to the training data.

Have a high variance predictor.

This scenario is termed overfitting.

In such cases predictor loses the ability to generalize.

Underfitting

High Bias Low Bias
Low Variance High Variance
-l -

Test Sample

Prediction Error

Training Sample

Low High
Model Complexity

e Low complexity model = predictor may have large bias

e Therefore predictor has poor generalization.

Linear Decision Boundaries

Linear discriminant functions

Linear function for the binary classification problem:
fx;w,b) =wlx+b

where model parameters are w the weight vector and b the bias.

Pros & Cons of Linear classifiers

Pros

e Low variance classifier

e Easy to estimate.
Frequently can set up training so that have an easy optimization

problem.

e For high dimensional input data a linear decision boundary
can sometimes be sufficient.

Cons
e High bias classifier

Often the decision boundary is not well-described by a linear
classifier.

How do we choose & learn the linear classifier?

Given labelled training data:

how do we choose and learn the best hyperplane to
separate the two classes?

Supervised learning of my classifier

Have a linear classifier next need to decide:

1. How to measure the quality of the classifier w.r.t. labelled
training data?

- Choose/Define a loss function.

Most intuitive loss function

0, 1 Loss function
For a single example (x,y) the 0-1

loss is defined as

0 ify=sgn(f(x;0))

. Uy, f(x:0)) = {1 if y # sgn(f(x;0))

0, 1Loss

1 ifyf(x;0)<0

= 0 : (assuming y € {—1,1})

B3 T
y* 1)

{o if y f(x;0) >0

Applied to all training data = count the number of misclassifications.

Not really used in practice as has lots of problems! What are some?

Supervised learning of my classifier

Have a linear classifier next need to decide:

1. How to measure the quality of the classifier w.r.t. labelled
training data?
- Choose/Define a loss function.

2. How to measure the complexity of the classifier?
- Choose/Define a regularization term.

Most common regularization function

Lo regularization

Adding this form of regularization:

- Encourages w not to contain entries with large absolute values.

- or want small absolute values in all entries of w.

Supervised learning of my classifier

Have a linear classifier next need to decide:

1. How to measure the quality of the classifier w.r.t. labelled
training data?

- Choose/Define a loss function.

2. How to measure the complexity of the classifier?
- Choose/Define a regularization term.

3. How to do estimate the classifier's parameters by optimizing
relative to the above factors?

Example: Squared Error loss

Squared error loss & no regularization

e Learn w,b from D. Find the w,b that minimizes:

L(D,w,b) = Z lsq(y, f(x;w, b))
(y)eD
1

=3 > (Wx+b) —y)’

(x,y)€D

~
Squared error loss

L is known as the sum-of-squares error function.

e The w* b* that minimizes L(D, w,b) is known as the
Minimum Squared Error solution.

e This minimum is found as follows....

Technical interlude: Matrix Calculus

Matrix Calculus

e Have a function f : R? — R that is f(x) =b

e \We use the notation

of
of _ ™
ox 5 ;
8md

o Example: If f(x) =a’x =% | a;z; then

a
of !

8:@ -

aof _
ox

a; —
aq

Matrix Calculus

e Have a function f: R¥4 — R that is f(X) = b with
X e Rdxd

e \We use the notation

of of of

Or11 Ori2 ' Oryg

af of af

af . Oxa1 Oxa2 e Oxaq
aX
of of of

Oz g1 Oz 42 e 0xqq

o Example: If f(X) =a”Xb=3% g 2?21 xi;b; then

a1b1 a1b2 albd

of N of

= a;b; e — ab”
aﬂjij 4% 8X a

adbl adbg adbd

Matrix Calculus

Derivative of a linear function

oxTa
= 1
2 (1)
oalx
= 2
=2 (2)
T
8a8))((b _ b (3)
TxT
da’X"b = bal (4)

0X

Matrix Calculus

Derivative of a quadratic function

oxT Bx T
o (B+ B)x (5)
obTXT Xc T T
T_X(bc +cb’) (6)
T
d(Bx + b)a C(Dx+d) _ BTC(Dx +d) + DTCT(Bx + b)
X
(7)

% = D' Xbc? + DXcb? (8)

End of Technical interlude

Pseudo-Inverse solution
e Can write the cost function as
1 T 2 1 T 2
L(D,w,b) = 5 > (wix+b-y) 3 S (wix —y)
(x,y)€D
where x' = (x©,)T, wy = (w?,b)T

e Writing in matrix notation this becomes

1 1
L(D,w;) = §||XW1 —yl?=s(Xw; —y)" (Xwi —y)

DN = N

(wi X" Xw; —2y" Xwy +yTy)

Pseudo-Inverse solution

e The gradient of L(D,w1) w.r.t. wy:

Ve, L(D,w1) = XTXw; — XTy

e Setting this equal to zero yields X7 Xw; = X"y and
W = XTy

where

1

X'=(xTx)" x7

e XTis called the pseudo-inverse of X. Note that XTX =T
but in general X X £ T.

Simple 2D Example

Decision boundary found by minimizing

quuared error(D7 w, b) - Z (y — (WTX —+ b))2
(x,y)€D

Pseudo-Inverse solution

e The gradient of L(D,w1) w.r.t. wy:
Ve, L(D,w1) = XTXw; — XTy
e Setting this equal to zero yields X7 Xw; = XTy and
W, = XTy
where
xt=(x"x)" x7T

e XTis called the pseudo-inverse of X. Note that XTX =T
but in general X XT £ I.

e If X7 X singular = no unique solution to X7 Xw = XTy.

Technical interlude: Iterative Optimization

Iterative Optimization

e Common approach to solving such unconstrained optimization
problem is iterative non-linear optimization.

x" = arg nvlin f(x)
e Start with an estimate x(%).
e Try to improve it by finding successive new estimates
X(l),X(2),X(3), ... S.t. f(x(l)) Z f(X(z)) Z f(X(S)) Z e

until convergence.

e To find a better estimate at each iteration: Perform the
search locally around the current estimate.

e Such iterative approaches will find a local minima.

Iterative Optimization

Iterative optimization methods alternate between these two steps:

Decide search direction

Choose a search direction based on the local properties of the
cost function.

Line Search

Perform an intensive search to find the minimum along the
chosen direction.

Choosing a search direction: The gradient

The gradient is defined as:

of(x)
o0z

of(x)
Oxo

The gradient points in the
direction of the greatest increase

of f(x).

Gradient descent: Method for function minimization

Gradient descent finds the minimum in an iterative fashion by
moving in the direction of steepest descent.

Gradient Descent Minimization

2 1. Start with an arbitrary solution
x(0),

2. Compute the gradient
Ve f (x®).

3. Move in the direction of
steepest descent:

KD — x(®B) _p () p(x9)),

Xy where 1(¥) is the step size.

4. Go to 2 (until convergence).

Gradient descent: Method for function minimization

Gradient descent finds the minimum in an iterative fashion by
moving in the direction of steepest descent.

Local
minimum

Gradient Descent Minimization
Properties

1. Will converge to a local minimum.

2. The local minimum found
depends on the initialization x(¥.

Gradient descent: Method for function minimization

Gradient descent finds the minimum in an iterative fashion by
moving in the direction of steepest descent.

Gradient Descent Minimization
2 Properties

Local
minimum

1. Will converge to a local minimum.

2. The local minimum found
depends on the initialization x(¥.

o
< 0 -
But this is okay
Initial ¢ 1. For convex optimization
guess - minimum problems: local minimum =
global minimum
2
2 0 2 2. For deep networks most

o parameter setting corresponding

to a local minimum are fine.

End of Technical interlude

Gradient descent solution

The error function L(D, wy) could also be minimized wrt w; by
using a gradient descent procedure.

Why?

e This avoids the numerical problems that arise when X7 X is
(nearly) singular.

e |t also avoids the need for working with large matrices.

How

1. Begin with an initial guess w&o) for wy.

2. Update the weight vector by moving a small distance in the
direction =V, L.

Gradient descent solution

Solution

Wgtﬂ) _ Wgt) B n(t)XT(Xwgt) ~y)
o If nY) =5 /t, where 79 > 0, then
° W§0)7W§1)7W52)’ ... converges to a solution of

X(Xw,—y)=0

e Irrespective of whether X7 X is singular or not.

Stochastic gradient descent solution

e Increase the number of updates per computation by
considering each training sample sequentially

WDl 0Tl g

e This is known as the Widrow-Hoff, least-mean-squares
(LMS) or delta rule [Mitchell, 1997].

e More generally this is an application of Stochastic Gradient
Descent.

Technical interlude: Stochastic Gradient Descent

Common Optimization Problem in Machine Learning

e Form of the optimization problem:

J(D,e>=|,§| S Uy, £(x:0)) + AR(6)
(x,y)€D

0" = arg mein J(D,0)

e Solution with gradient descent
1. Start with a random guess 0% for the parameters.

2. Then iterate until convergence

o+ — g(t) _ W(t) VoJ (D, 0)|gw

Given large scale data

If |D| is large
e = computing Vg J(8,D)|,w is time consuming
e — each update of 0" takes lots of computations

e Gradient descent needs lots of iterations to converge as 7
usually small

e — GD takes an age to find a local optimum.

Work around: Stochastic Gradient Descent

e Start with a random solution 8.

e Until convergence fort =1,...
1. Randomly select (x,y) € D.

2. Set DY) = {(x,y)}.

3. Update parameter estimate with

o+l _ g(t) _ n(t) VGJ(D(t)’ 0) o)

Comments about SGD

e When]D)| =1:
Vo J (D! 0)|) a noisy estimate of Vg.J(D,0)|y

e Therefore

|D| noisy update steps in SGD ~ 1 correct update step in GD.
e In practice SGD converges a lot faster then GD.

e Given lots of labelled training data:

Quantity of updates more important than quality of updates!

Best practices for SGD

e Preparing the data
- Randomly shuffle the training examples and zip sequentially
through D.

- Use preconditioning techniques.

e Monitoring and debugging
- Monitor both the training cost and the validation error.

- Check the gradients using finite differences.

- Experiment with learning rates *) using a small sample of the

training set.

Mini-Batch Gradient Descent

e Start with a random guess 09 for the parameters.

e Until convergence fort =1,...
1. Randomly select a subset D) C D s.t. D] = ny (typically
ny ~ 150.)
2. Update parameter estimate with

00D =0~y Vo (DV,0)|

Benefits of mini-batch gradient descent

e Obtain a more accurate estimate of Vg.J(D,0)|,) than in
SGD.

e Still get lots of updates per epoch (one iteration through all the
training data).

What learning rate?

e Issues with setting the learning rate 1(1)?

- Larger n's = potentially faster learning but with the risk of
less stable convergence.
- Smaller n’'s = slow learning but stable convergence.

e Strategies
- Constant: n) = .01
- Decreasing: ™) =1//t

e Lots of recent algorithms dealing with this issue

Will describe these algorithms in the near future.

End of Technical interlude

Squared Error loss + L, regularization

Add an L, regularization term (a.k.a. ridge regression)

e Add a regularization term to the loss function

1
Jridge(D7 w, b) = 5 Z lsq(yv WTX + b) +)\||W||2
(x,y)€D
1 2 2
= 5 IIXw + 61 —y[I” + Allw

where A > 0 and small and X is the data matrix

—
—

Solving Ridge Regression: Centre the data to simplify

e Add a regularization term to the loss function
1
Jridge(D, W, b) = §||Xw + b1 —y||* + A|w]?

e Let's centre the input data

X.= } where Xc; = X; — by

= XI1=o0.
e Optimal bias with centered input X, (does not depend on w*) is:

aJridge
b

=pT1+wix'1 -1y
=b0T1-1"Ty
= b =1/nY 1 vi=1.

Solving ridge regression: Optimal weight vector

Add a regularization term to the loss function

1 _
Jridge(Dﬂw) = §||XCW + yl - y||2 +)\HW||2

Compute the gradient of Jige W.r.t. w

aJ ridge
ow

= (XX +Ma)w— Xy

Set to zero to get

w* = (XIX, + M) Xy

(XT X, + M) has a unique inverse even if X! X, is singular.

Simple 2D Example

Ridge Regression decision boundaries as A is varied

Solving ridge regression: Optimal weight vector

Add a regularization term to the loss function

1 _
Jrsee (D W) = S || Xew + 51 — y[[* + A w]?

Compute the gradient of Jigge W.r.t. w

6Jridge

el (XX +Ma)w— Xy

Set to zero to get

~1
wh = (XCTXC + /\Id) XCTy
(XT X, + A,) has a unique inverse even if X X, is singular.

If d is large = have to invert a very large matrix.

Solving ridge regression: lteratively

e The gradient-descent update step is

wtt) = w®) _p [(XZXC + M) w®) — XTy}

C

e The SGD update step for sample (x,y) is

WD = wl o [= p) (= 1) T+ M) w® = (x =)y

Hinge Loss

The Hinge loss

l(x7 Y, W, b) = Imax {07 1 — y(WTX + b)}

hinge loss

8 6 4 -2 0 2 4 6 8

e This loss is not differentiable but is convex.

e Correctly classified examples sufficiently far from the decision
boundary have zero loss.

e — have a way of choosing between classifiers that correctly
classify all the training examples.

Technical interlude: Sub-gradient

Subgradient of a function

e g is a subgradient of f at x if

fy) > fx) +g'(y-x) Vy

e 1D example:

f(2)

F@) + 91 (@ — 1)
“ S @2) + 95 (2 = w2)
£ S @) gy (@ =)

:Lil . :gg
- g2, g3 are subgradients at xo;

- g1 is a subgradient at ;.

Subgradient of a function

e Set of all subgradients of f at x is called the subdifferential of
f at x, written 0f(x)

e 1D example:

@) = |a| o (x)

e If f is convex and differentiable: V f(x) a subgradient of f at x.

End of Technical interlude

The Hinge loss

e Find w,b that minimize

Lhi"ge(D’Wv b) = Z max {07 1- y(WTX + b)}
(x,y)€D

Hinge Loss

e Can use stochastic gradient descent to do the optimization.

e The (sub-)gradients of the hinge-loss are

—yx ify(wlix+b) <1

Vwl(X,y;w,b) =
(e, y) {0 otherwise.

l(x,y;w,b) {—y if y(wix+0) <1
ob N

0 otherwise.

Example of decision boundary found

Decision boundary found by minimizing with SGD

Liinge(D, W, b) = Z max {0,1 —y(w'x+b)}
(x,y)€D

L, Regularization + Hinge Loss

Lo regularization + Hinge loss

e Find w,b that minimize

A
Jom(D, W, b) = 5HWH? + > max{0,1-y(w'x+b)}
(x,y)€D

Hinge Loss

e Can use stochastic gradient descent to do the optimization.

e The sub-gradients of this cost function

Mw —yx ify(wlix+b) <1

Vwl(x,y;w,b) =
(e y) {)\W otherwise.

ob

Alx,y;w,b) |-y ify(wix+b) <1
0 otherwise.

Example of decision boundary found

Decision boundary found with SGD by minimizing (A = .01)

A
Jhinge(D,w,b):§||w||2+ > max{0,1-y(w'x+b)}
(x,y)€D

Regularization reduces the influence of outliers

Decision boundaries found by minimizing

Hinge Loss Lo Regularization 4+ Hinge Loss

“Ls Regularization + Hinge Loss” = SVM

SVM's constrained optimization problem

SVM solves this constrained optimization problem:
1 n
rggl <2WTW +C ; &) subject to
yi(wal-wLb) >1-¢ fori=1,...,n and
& >0 fori=1,...,n.

Alternative formulation of SVM optimization

SVM solves this constrained optimization problem:

(1 g < :
151‘,1}71 <2w W+CZI&> subject to
P

yilwlx; +b)>1—¢ fori=1,...,n and
& >0 fori=1,...,n.

e Let's look at the constraints:

p(wWwixi+b)>1-¢ = &§21-y(w'xi+0b)

e But & > 0 also, therefore

[gi > maX{O,l—yi(WTxi+b)}]

Alternative formulation of the SVM optimization

Thus the original constrained optimization problem can be restated
as an unconstrained optimization problem:

min %HWHZ + CZmax {0,1—yi(WTxi+b)}J

w,b -
N—— i=1
Regularization term

Vv
Hinge loss

and corresponds to the Lo regularization + Hinge loss
formulation!

Alternative formulation of the SVM optimization

Thus the original constrained optimization problem can be restated
as an unconstrained optimization problem:

. 1 2 ¥ T
min §||vv|| + CZmax{O,l—yi(w xi+b)}1

N—— i=1
Regularization term

Vv
Hinge loss

and corresponds to the Lo regularization + Hinge loss
formulation!

= can train SVMs with SGD/mini-batch gradient descent.

From binary to multi-class classification

(@)
i
1
<
—
O
i
[}
0
[0}
-
[}
o]
2
o
£
L)
X
Ll

INs-EFESERD o
PNEAFxENT
o - VS
INBEINECNEE
NiifLEeEgdEm™
NE-—EXEex™ 4
FOESEERERESN
NNOIE-SIEENE
HATEESO SHA
SASABEDETE

1

Q2
g)
g g 9 k
o el o0 () o, 3]
5 S ® 8 9) <) o 3 £
5}] Q o] o] L=} < %) -

o
%]
00
£ 2 X
c o N
P - 1
[bt o T %
b + - c
uw oYy ov =
m 2oL oY =™
) O 9 g 9w S e
o o o
[T ° ° ° °
®)

IVMsEdEaaEla
PHEAFxsERN TS
5 - SIS
INEIRECNEE
it EEsEN™
NAE-~EREex™ a
rFOiEGEEREES
NNOE-ERENE
HAMEESS S04
sAEABEDETE

(@)
i
1
<
—
O
o
[}
0
[0}
-
[}
o]
2
o
£
L)
X
Ll

]

airplane
automobil

°
£l
8

frog
truck

+© Q &0 2
) 19 S
g - 3 2 %

Technical description of the multi-class problem

e Have a set of labelled training examples
D= {(x1,41),.-.,(Xn,yn)} with each x; € R y; € {1,...,C}.
e Want to learn from D a classification function

g: R x R S {1,...,C}

input space parameter space

Usually
;0) = (x; 6,
9(x;©) = arg max, fi(x;0;)
where for j =1,...,C:
fi :RYxRP 5 R

and ® = (01,92, . . .,00).

Multi-class linear classifier

e Let each f; be a linear function that is

fj(X; 01) = W]TX + bj

e Define
fi1(x)
fx0)=1
fo(x)
then
f(x:0) = f(x;W.,b) =Wx +b
where
W,’IT by
W = I b=
wg be

e Note W hassize C xdand bis C x 1.

Apply a multi-class linear classifier to an image

e Have a 2D colour image but can flatten it into a 1D vector x

flatten image

32x32x3 3072 x 1

e Apply classifier: Wx + b to get a score for each class.
| I -1.0303 airplane

-1.9567 car
1.6897 bird
0.7249 cat
+ — 1.6421 deer
0.8127 dog
1.1707 frog
21212 horse

-2.2698 ship
-2.9526 truck

class scores

L o | (T
m i

w X

10 x 3072 3072 x 1 10 x 1 10x1

Interpreting a multi-class linear classifier

e Learn W, b to classify the images in a dataset.
e Can interpret each row, w;, of W as a template for class j.

e Below is the visualization of each learnt w; for CIFAR-10

airplane bird deer frog horse ship truck

EEANEDNES

Interpreting a multi-class linear classifier

e Each w;‘»rx + b; = 0 corresponds to a hyperplane, Hj, in R,
* sign(w] x + b;) tells us which side of H; the point x lies.

e The score |ijx + b;| o the distance of x to H;.

SN
=
- =

- "
i
=i

car classifier
airplane classifier .
» =

deer classifier

/ﬁ\ﬂ

How do we learn W and b?

As before need to

e Specify a loss function (4 a regularization term).
e Set up the optimization problem.

e Perform the optimization.

How do we learn W and b?

As before need to

e Specify a loss function

- must quantify the quality of all the class scores across all the
training data.

e Set up the optimization problem.

e Perform the optimization.

Multi-class loss functions

Multi-class SVM Loss

e Remember have training data
D ={(x1,41);--.,(Xn,yn)} with each x; € R% y; € {1,...,C}.
e Let s; be the score of function f; applied to x
sj = fj(x;wj,b5) = WJTX + b
e The SVM loss for training example x with label y is
c
[= Zmax(o, sj— 8y +1)

Jj=1
J#Y

Multi-class SVM Loss

e s; is the score of function f; applied to x
S = fj(X; W, b]) = W?X + bj

max(0,s; — sy + 1)

/|

e SVM loss for training example x with label y is

Si — Sy

C

I = Zmax(o, sj— sy +1)
j=1
J#y

Calculate the multi-class SVM loss for a CIFAR image

input: x output label loss

10
s=Wx+b y=28 l:jzlmaX(QSj—Sy—‘rl)
i#y
Scores

airplane -0.3166

car -0.6609

bird 0.7058

cat 0.8538

deer 0.6525

dog 0.1874

frog 0.6072

horse 0.5134

ship -1.3490

truck -1.2225

s=Wx+b

Calculate the multi-class SVM loss for a CIFAR image

airplane

car
bird
cat
deer
dog
frog
horse
ship
truck

output

s=Wx+b

Scores

-0.3166
-0.6609
0.7058
0.8538
0.6525
0.1874
0.6072
0.5134
-1.3490
-1.2225

s=Wx+b

label loss
10

y=8 l:Zlmax(Qsj—sy—i—l)
_7:
i#y

Compare to horse score

0.1701
-0.1743
1.1925
1.3405
1.1392
0.6741
1.0938
1.0000
-0.8624
-0.7359

s—sg+1

Calculate the multi-class SVM loss for a CIFAR image

airplane

car
bird
cat
deer
dog
frog
horse
ship
truck

output

s=Wx+b

Scores

-0.3166
-0.6609
0.7058
0.8538
0.6525
0.1874
0.6072
0.5134
-1.3490
-1.2225

s=Wx+b

Loss for x: 5.4723

label

y=28

Compare to horse score

0.1701
-0.1743
1.1925
1.3405
1.1392
0.6741
1.0938
1.0000
-0.8624
-0.7359

s—sg+1

loss

10

=) max(0,s; — sy +1)
j=1
i#y

Keep badly performing classes

0.1701
0

1.1925
1.3405
1.1392
0.6741
1.0938
1.0000
0

0

max(0,s — sg + 1)

Problem with the SVM loss

Given W and b then

e Response for one training example
f(x;W,b)=Wx+b=s

e loss for x

I(x,y, W,x) = ZmaxOs]—sy 1)
J#y
e Loss over all the training data
1
— l W,b
D > %y, W,b)

(x,y)€D

L(D,W,b) =

Have found a W s.t. L = 0. Is this W unique?

Let W7 = oW and b; = ab where o > 1 then

e Response for one training example
f(x;Wi,b) =Wix+ by =5 = a(Wx +b)

e Loss for (x,y) w.r.t. Wj and by

C
l(X,y, Wl)bl) = ZmaX(O,SQ — S;/y + 1)

Jj=1
J#y

Tx—b,)+1)

= max(0, oz(ijx +bj —w,

=max(0,a(s; — sy) + 1)
=0 as by definition s; — s, < =1 and o > 1

e Thus the total loss L(D, W1, by) is 0.

Solution: Weight regularization

C
LOOWb) = = 33 max(0, £;(x: W b) — £,(x: W, b) + 1) + AR(W)

|2 | (x =1
W)ED]
i#y

Commonly used Regularization

Name of regularization Mathematical def. of R(1V)
Ly Sk Wiy
Ly >k 221 Wil

Elastic Net Dok 2l (ﬂWkQ,l + |Wk,l|)

Cross-entropy Loss

Probabilistic interpretation of scores

Let p; be the probability that input x has label j:
Pyix(j | x) = pj
e For x our linear classifier outputs scores for each class:
s=Wx+b

e Can interpret scores, s, as:
unnormalized log probability for each class.

5j = logp}
where ap’; = p; and a = 3" pj.
—

Pyx(j | x) =p; = Ze;;(;j&k)

Softmax operation

e This transformation is known as

exp(s;)
Softmax(s) = =———
21 exXp(sk)
1 1
0.5+ b 0.5+ b
L \ ‘ ‘] Lo (. [(.
0 ‘ ‘ ‘ ‘ 0
—0.5 R —0.5 |- R
e s a5 61 s 9w e s i 5 61 s 90

x Softmax(x)

Softmax operation

e This transformation is known as

Softmax(s) = exp(sy)

e exp(sk)

0.5 1 N

—05 4

x Softmax(x)

Softmax classifier: Log likelihood of the training data

¢ Given probabilistic model: Estimate its parameters by
maximizing the log-likelihood of the training data.

0" = = argmax o Z log Py x (y | x;0)
|D|
(x,y)€D

. 1
= argmin — @ Z log Pyx(y | x;6)
(x,y)€D

Softmax classifier: Log likelihood of the training data

¢ Given probabilistic model: Estimate its parameters by
maximizing the log-likelihood of the training data.

0" = arg max

Y log Pyix(y | x;0)
(x,y)€D

. 1
= argmin — @ Z log Pyx(y | x;6)
(x,y)€D

IDI

e Given probabilistic interpretation of our classifier, the negative
log-likelihood of the training data is

oy [_exp(s,))
’D’ ;eD (Zko—lexp(sk)

where s = Wx + b.

Softmax classifier + cross-entropy loss

e Given the probabilistic interpretation of our classifier, the
negative log-likelihood of the training data is

L(D,Wb) =~ 37 log (W)
St \Z exp(sk)
where s = Wx + b.
e Can also interpret this in terms of the cross-entropy loss:

L(D,W,b):’;’ Y —log (;Xp(sy)>

(x,y)€D Zk:l eXp(Sk)

~
cross-entropy loss for (x,y)

1
=D Z l(x,y, W,b)

(x,y)€D

Cross-entropy loss

e p the probability vector the network assigns to x for each class

p = SOFTMAX (Wx + b)

4 —log(py)

:py

e Cross-entropy loss for training example x with label y is

I = —log(py)

Calculate the cross-entropy loss for a CIFAR image

input:

X output label loss

s=Wx+b y=28 l=—log (—ftigj(ilﬂ

Scores
airplane -0.3166
car -0.6609
bird 0.7058
cat 0.8538
deer 0.6525
dog 0.1874
frog 0.6072
horse 0.5134
ship -1.3490
truck -1.2225

s=Wx+b

Calculate the cross-entropy loss for a CIFAR image

input: x output label loss
_ _ _ exp(sy)

S—WX+b y—8 l—-lOg(m)
Scores exp(Scores)

airplane -0.3166 0.7354

car -0.6609 0.5328

bird 0.7058 2.0203

cat 0.8538 2.3583

deer 0.6525 1.9303

dog 0.1874 1.2080

frog 0.6072 1.8319

horse 0.5134 1.7141

ship -1.3490 0.2585

truck -1.2225 0.2945

s=Wx+b exp(s)

Calculate the cross-entropy loss for a CIFAR image

input: x output label loss
_ _ _ _ exp(sy)
s=Wx+Db y=28 l= log(zexp(sk))
Scores exp(Scores) Normalized scores
airplane -0.3166 0.7354 0.0571
car -0.6609 0.5328 0.0414
bird 0.7058 2.0203 0.1568
cat 0.8538 2.3583 0.1830
deer 0.6525 1.9303 0.1498
dog 0.1874 1.2080 0.0938
frog 0.6072 1.8319 0.1422
horse 0.5134 1.7141 0.1330
ship -1.3490 0.2585 0.0201
truck -1.2225 0.2945 0.0229
s=Wx+b exp(s) R
= p > expon)

Loss for x: 2.0171

Cross-entropy loss

Cross-entropy loss

I(x,y,W,b) = — 1o eXp(Sy))
(x,y) g<zkc:1exp(sk)

Questions
e What is the minimum possible value of I(x,y, W, b)?
e What is the max possible value of I(x,y, W,b)?

e At initialization all the entries of W are small = all s # 0.
What is the loss?

e A training point's input value is changed slightly. What happens to
the loss?

e The log of zero is not defined. Could this be a problem?

Learning the parameters: W, b

Have training data D.
Have scoring function:

s=f(x;W,b) =Wx+Db

We have a choice of loss functions

eXP(sy)
lsoftmax (%, 4, W, b) = —log | — ¥ —
s S exp(sk)

C
lsvm(Xv Y, W, b) = Z maX(O, S5 — Sy + 1)

j=1
J#y
Complete training loss
1
L(W7 b; D) = W Z lsoftmax(svm)(W’ b; X, y) +)‘R(W)

(x,y)€D

Learning the parameters: W, b

e Learning W, b corresponds to solving the optimization problem

W* b* = argmin L(D, W, b)
W.,b

where
1

Z lsoftmax(svm)(xv y, W, b) + AR(W)
(x,y)eD

Learning the parameters: W, b

e Learning W, b corresponds to solving the optimization problem

W* b* = argmin L(D, W, b)
W.,b

where
1

Z lsoftmax(svm)(xv y, W, b) + AR(W)
(x,y)eD

e Know how to solve this! Mini-batch gradient descent.

Learning the parameters: W, b

e Learning W, b corresponds to solving the optimization problem

W*,b* = argmin L(D, W,b)
W.,b

where
1

Z lsoftmax(svm)(xv y, W, b) + AR(W)
(x,y)eD

e Know how to solve this! Mini-batch gradient descent.

e To implement mini-batch gradient descent need
- to compute gradient of the 10ss lsoftmax(svm) (X, ¥ W, b)
and R(W)
- Set the hyper-parameters of the mini-batch gradient
descent procedure.

Next Lecture

We will cover how to compute these gradients using
back-propagation.

