Classification functions we have encountered so far

Linear with 1 output Linear with multiple outputs

Lecture 3 - Back Propagation

DD2424
March 24, 2017 Luput: x Output: s = whx + 6 Output: s~ Wx b
Final decision: Final decision:
g(x) = sign(wTx +b) g(x) = argmax s;
J
Classification functions we have encountered so far Computational graph of the multiple linear function

Linear with multiple probabilistic outputs ° Wx 0 ztb a

The computational graph:

o Represents order of computations.

o Displays the dependencies between the computed quantities.

P— cwrn .
o User input,

Final decision: g(x) = argmax p; Computational Graph helps automate gradient computations.
7



How do we learn W, b? Quality measures a.k.a. loss functions we've encountered

Wx ° z+b e

Multi-class SVM loss Cross-entropy loss
T o)

o Assume have labelled training data D = {(x;, ;) }I_,

c
Isvm(s,y) = Y max(0,s; — s, + 1) lee(p,y) = —log(py)

i=1

i
e Set W, b so they correctly & robustly predict labels of the x;'s
o Need then to Classification function Classification function
1. Measure the quality of the prediction’s based on I, b ‘ Wx ‘ 2ib °
2. Find the optimal W, b relative to the quality measure on the
training data. ° d’)
Computational graph of the complete loss function How do we learn W, b?

e Linear scoring function + SOFTMAX + cross-entropy loss

- _ "
where y is the 1-hot response vector induced by the label y. * Assume have labelled training data D = {(x;, i) }ioy

e Set W, b so they correctly & robustly predict labels of the x;'s
o Linear scoring function + multi-class SVM loss  Need then to
1. measure the quality of the prediction’s based on W, b.

2. find an optimal IV, b relative to the quality measure on the
training data.




How do we learn W, b? How do we compute these gradients

e Let [ be the loss function defined by the computational graph. e Let I be the complete loss function defined by the computational
e Find W, b by optimizing graph.

1 * How di fficient! te th dient vect
AP [ > Ux,y,W,b) ow do we ef wae? ly compute the gradient vectors ‘
(x)eD Vil W,b) e pep and Val(x, 5, W.b) | yyen?

® Solve using a variant of mini-batch gradient descent o Answer: Back Propagation
= need to efficiently compute the gradient vectors

Vil 5, Wob) o pep  and Vbl 9, W) yep

ral networks

day’s lecture: Gradient computations in n

e For our learning approach need to be able to compute
gradients efficiently.

o BackProp is algorithm for achieving given the form of many of

our classifiers and loss functions. . . . .
Chain Rule for functions with a scalar input and a scalar output

e BackProp relies on the chain rule applied to the
composition of functions.

e Example: the composition of functions
1(x,y, W, b) = —log(y” softmax(Wx + b))

linear classifier then SOFTMAX then cross-entropy loss



Differentiation of the composition of functions The Chain Rule

e Have two functions g: R — R and f: R — R. e Have functions f,g: R — R and define h : R — R as
o Define h: R — R as the composition of f and g: W)= (fog)(x) = f(g(x))
h(z) = (f o g) (x) = f(g(x))

e How do we compute

o Derivative of h w.r.t. x is given by the Chain Rule.

dh(z) ) e Chain Rule

el dh(z) _ df(y) dg(x)
dz dy dx

where y = g(x)
o Use the chain rule

Example of the Chain Rule in action The composition of n functions

e Have e Have functions fi,...,f, :R—>R
) — 22 ) = sin(z
g(z) =a* (@) = sin(x) o Define function  : R — R as the composition of f;'s
o One composition of these two functions is B(x) = (fao facr 00 f1) (2) = falfucs (- (fil@)) )

h(x) = f(g(x)) = sin(2*)

e According to the chain rule

e Can we compute the derivative

dh(z)
dh(z) _ df(y) dg(x) here ’ ! ?
de— dy dx o )
_ dsin(y) da®
i

= cos(y) 20

= 2z cos(z?) plug in



The composition of n functions The Chain Rule for the composition of n functions

e Have functions fi,...,fn : R =R ‘]L(IL’) = (anfnflo"’Ofl)(ﬁ)‘

o Define function & : R — R as the composition of f;'s © Define

h(@) = (fno far 00 fi) (&) = falfar (- (fi(2)) )

9; = fnofu10:0f;
e Therefore g1 = h, gn = f, and

e Can we compute the derivative gi=gjnof; forj=1,.., n—1
. o Let y; = f;(y;—1) and yo = x then
' o= g5(y5—1) forj=1,...n
e Yes recursively apply the CHAIN RULE e Apply the Chain Rule:

- Forj=1,2,3,...,n—1
dyn _ dg;(yi-1) _ d(g5+10f5) Wi-1) _ dgj(y;) dfiy;-1)
dy; 1 dyj—1 dyj1 dy; dyj-1
_ dyn _dy;
dy; dyj-1

The Chain Rule for the composition of n functions Summary: Chain Rule for a composition of n functions

Recursively applying this fact gives: . X "
e Have fi,..., f, : R — R and define h as their composition

dh(z) _ dgi(x) Apply b = g1

dv dv ) h(z) = (fno fa-10---0 fi) (x)
_ dlgze H)(@) o e
dx :
d “of » df(a dh(x) _ dfu(yn—r) dfu-r(yn—2)  dfa(yr) dfi(z)
_ dlgs o f2)(w) dh(x) hes o 0y e o G = oy e
dy, dx T Yn—1 Yn—2 Y X
_ dgs(y2) dfa(y1) dfi (2) Aoty chain e & s — Fa(on) _ dyn dynoy dys dyy
dz e ) - dyn—1 dya—z dyi dx
: where y; = (fjo fi—10-0 fi)(@) = f;(yj-1)-
_ dgalyn) dfnalun) | dia(y) (@)
dyn—1 dyn—2 dy1  dx
_ dfnlyn—1) dfn-1(yn-2)  df2(y1) dfi(x) ot
T dya dyn—2 dyy  dx e

where y; = (fjo fi-1 00 fi)(@) = f;(yj-1)-



Summary: Chain Rule for a composition of n functions

e Have fi,..., f, : R — R and define / as their composition
h(z) = (fao fa-10-0 fi) (@)
e Then
dh(x) _ dfn(yn—1) dfn-1(yn—2)  dfa(y1) df1(x)
dx dy,—1 Ay, —2 dy,  dx
dyn  dyn—r  dys dy

= Ayt dyas
where y; = (fj o fi—1 00 fi)(@) = fi(yj—1).

e Remember: As yo =z thenfor j=n—1,n—2,...,0

dyn _ dyn dyjia

dy;  dyjpa dy;

0) _dyn _ dyn dyn—a

dyn dys dy,
dv dyn-y dyn—»

dy, dx

Computation of ‘fty—; relies on:
* Record keeping: Compute and record values of the y;'s.
o lteratively aggregate local gradients.
Forj=n—-1,n,...,1
- Compute local derivative; Y1) — i1
; Vs

- Aggregate:

dyn _ dya dyia

dy;  dyj1 dy;

This is Backprop algorithm given a chain dependency between the y;'s.

Exploit structure to compute gradient

dh(z) _dyn _ dy. dyn

dyz dy
dx Az dyn—y dyn—o

Computation of dn relies on:

dx
* Record keeping: Compute and record values of the y;'s.
o Iteratively aggregate local gradients.
Forj=n—-1,n,...,1
- Compute local derivative: ¥11@) — &1
v; m

- Aggregate:

dyn _ dyn dyji1

dy;  dyj+1 dy;

Exploit structure to compute gradient Compute gradient of i at a point z*

h(z) = (fno fa-r0:0 fi) (x)
Have a value for z = z*
Want to (efficiently) compute

dh(
dx

z=2*
Use the Back-Propagation algorithm.

It consists of a Forward and Backward pass.



Back-Propagation for chains: Forward Pass Back-Propagation for chains: Backward Pass

oo o ats O=C)=()=" ==

Compute local f; gradients and aggregate:
Evaluate h(z*) and keep track of the intermediary results o Setg—1.
e Compute yi = fi(z*). e forj=nmn—1,..,2
e forj=23,....n g:gxm
v = fiy-1) dyj—1

f f
o Keep a record of yi,..., v a ! @

oo
Note: g = 7

Yi-1=Yiog

V1=

_ dfs (w)
=9x T

® Then %

Problem 1: But what if | don't have a chain? Problem 1a: And when a regularization term is added..

e This computational graph is not a chain.

e This computational graph is not a chain.

e Some nodes have multiple parents.
e Some nodes have multiple parents and others multiple

o The function represented by graph is children.

I(x,y,W,b) = *IOE(YTSOftmEX(‘/VX +b)) e The function represented by graph is
J(x,y, W, b,\) = —log(y” Softmax(Wx + b)) + A Y W},

ij



e This computational graph is not a chain.

e Some nodes have multiple parents and others multiple
children.

e The function represented by graph is

J(x,y,W,b,\) = —log(y” Softmax(Wx + b)) + A Z w2
i

e How is the back-propagation algorithm defined in these cases?

Issues we need to sort

o Back-propagation when the computational graph is not a
chain.

o Derivative computations when the inputs and outputs are not
scalars.

e The function represented by graph:

J(x,y, W, b,\) = —log(y” Softmax(Wx + b)) + A > W,
]

e Nearly all of the inputs and intermediary outputs are vectors
or matrices.

o How are the derivatives defined in this case?

Issues we need to sort o

e Back-propagation when the computational graph is not a
chain.

o Derivative computations when the inputs and outputs are not
scalars.

o Will address these issues now. First the derivatives of vectors.



Chain Rule for vector input and output

o Have two functions g : RY — R™ and f: R™ — R°.
o Define  : RY — RC as the composition of f and g:
Chain Rule for functions with vector inputs and vector outputs h(x) = (fog) (x) = flg(x))

o Consider

Oh(x)
Ox

e How is it defined and computed?

e What's the chain rule for vector valued functions?

Chain Rule for vector input and output

Chain Rule for vector input and scalar output

o Let y = h(x) where each h : RY = R€ then The cost functions we will examine usually have a scalar output

o om o LetxeRY, f:RY 5> R™and g: R™ - R
o B v = (%)
Ohx) _ By _ oo 4—this is a Jacobian matrix s =g(2)
B = B : : acobian matrix =g
oue o The Chain Rule says gradient of output w.r.t. input
5 ﬁ_(ﬂ )
and is a matrix of size ¢ X d. ax Ezn Dzq
is given by a gradient times a Jacobian:
. . s ds Oz
— LR Rm LRm s Re _ %oz
o Chain Rule says if h = fog (g:R! — R™ and f: R™ — R¢) then %= o2 x
Nt
Oh(x) _dy _dy oz D md
ox  Ox Oz ox

where
where z = g(x) and y = f(z).

e Both f% (¢ xm) and 22 (m x d) defined slly to & o




o intermediary vector inputs and scalar

More gen

o fi:RYSR™, f,:RT 5 R™ and g : R* 5 R (n = my +ma) o fi:RT 5 R™ fori=1,....tand g:R" 5 R (n=my+---+m)

21 = f1(x), 22 = fa(x) 2 = fi(x), fori=1,..., t
s = g(a1,22) = 9(v) wherev:(z‘). s=9(@,-.2:)
22 © Consequence of the Chain Rule
® Chain Rule says gradient of the output w.r.t. the input
9s 05 95
Rl )
is given by: e Computational graph interpretation. Let C. be the children nodes of s
ds _ 9s Ov then
Ix  Ov, Ox
=
Xn nxd
But
‘ i .
as v B s
Ed
o5 _dsov_ 05 om | 05 om
Ox  Ov Ox  dz Ox Dzy 0%
~— ~—
Ixmy mixd  1xmy maxd
Issues we need to sort of
Back-propagation for non-chain computational graphs
o Back-propagation when the computational graph is not a

chain.

e Derivative computations when the inputs and outputs are not
scalars. v/

o Will now describe Back-prop for non-chains.



e Have node y.

Results that we need

o Denote the set of y's children nodes by Cy and their values by

Ve, = {z.value | z € Cy }

e Given Ve, can now apply the function f,

yovalue = fy (V)

Pseudo-Code for the Generic Forward Pass

procedure EVAULATEGRAPHEN(G)
S = GetStartNodes(G)
fors € 5 do
ComputeBranch(s, G)
end for
end procedure

procedure COMPUTEBRANCI(s, G)
Ps = GetParents(s, G)
for each n € Py do
if In.computed then
Cn = GetChildren(n, G)

B G is the computational graph

B> a start node has no children and its value is already set

b recursive fn evaluating nodes.

B Try to evaluate each parent node
D Unless parent is already computed

if CheckAllINodesComputed(Cn) then © Or not all children of parent are computed

Ja = GetNodeFn(n)
n.value = fu(Cn)
n.computed = true
ComputeBranch(n, G)
end if
end if
end for
end procedure

Results that we need but already know

o Consider node W in the above graph. Its children are {z,r}.

Applying the chain rule

91 01 or
oW ar oW

dJ Oz
Dz OW

e In general for node c with children specified by Ce:

aJ

>

ueCe

2J ou
u de

Generic Forward Pass

Identify Start Nodes

procedure EVAULATEGIAPHFN(G) & 6t compstns
5 = GetStarthodes(G)
fors S do
ComputeBranch(s, G)

end for
end procedure:

procedure ConruTeBrANCH(s, G)
P, = GetParents(s, G)
for cach u & P, do
if tn.computed then
€a = GetChidren(n, G)
i CheckAlINodesComputed|(C,) then
(n)

= fa(Ca)
omputed = true
ComputeBranch(n, G)

endif

end procedure



Generic Forward Pass

Order in which nodes are evaluated

IWIF

procedure EAVLATEGRAPIFN(G) & cio e -
S = GetStarthlodes(G) . = GetParents(s, G
fors ¢ 5 do for each n & 7. do
ComputeBranch(s, G) if In.computed the
end for GetChildren(n, G
end procedure if CheckAlINodesComputed(C.) then
Jn = GetNodeFn(n)

end for
end procedure

Generic Forward Pass

Order in which nodes are evaluated

.'< . oets™) . Lo

racsurs BAMTATEGIARIFN() s

= GetStarthlodes(G) P, = GetParents(s. )
forscSd for each n & P. do
ComputeBranchs, G) i In.computed then
end for €a = GetChidren(n, G)
end procedure i CheckaNodeCompue o) thn

end for
end procedure

Generic Forward Pass Generic Forward Pass

Order in which nodes are evaluated

I

procedure EAVLATEGRAPHFN(G) & i e compsis st
S - GetStarthlodes(G) P — GetParents(s,

fors ¢ 5 do [t
ComputeBranch(s, G) if In.computed then
end for Ca — GetChidren(n, G
end procedure if CheckAliNodesComputed(C,) then
etNodeFn(n)
e = flC)
Comprtranchin, 6)
end if
end if

end for
end procedure:

Order in which nodes are evaluated

procedure EVAULATEGRAPIEN(G) 5 G e conut
©)

S-

procedure CoNpUTEBRANCH(S, G)
e (s, G)

fors S do for cach 1 ¢ P do
ComputeBranchs, G) i In computed then
end for etChildren(n, G)
end procedure i CheckAllNodesComputed|(C,) then
1 = GetNodeFr

nvalue = fo(Ca)

computed  true
ComputeBranch(n, G)
endif
end if

end for
end procedure



Order in which nodes are evaluated

W

procedure ConrUTERRANCH(s, G)
" = GetParents(s. G)

procedure EVAULATEGIAPIFN(G) & o
s )

procedure EAVLATEGRAPIFN(G) & c. procedure CoMpUTEBIANCH(S, G)
S = GetStarthlodes(G) P. = GetParents(s, G) Starthodes(G;
fors =5 do for each n & 7. do s €S do for each n & P. do

if In.computed the ComputeBranchs, G) i In.computed then
end for c,

C, = GetChildren(n, G)
if CheckAlINodesComputed(C.) then end procedure
NodeF(n)

ComputeBranch(s, G)

end for
n.computed ~ true

end procedure

i

1. computed = true

ComputeBranch(n, G) ComputeBranch(n, G)

end if endif
end if end if
end for end for
end procedure end procedure

Pseudo-Code for the Generic Backward Pass Generic Backward Pass: Order of compu

procedure PERFORMBACKPASS(G) B
J = GetResultNode(G) b node with the value of cost function Identify Result Node
BackOp(J, G) & Start the Bacoward-pass

end procedure

procedure BACKOP(s, G)

Pq = GetParents(s, G)
if Py =0 then B At the result node
s.Grad = 1
end if
if AllGradientsComputed(Ps) then > Have computed all 3L where p € Py
s.Grad =
for each p € Py do
5.Grad += p.Grad * p.s.Jacobian > 9 et )
end for e
s.GradComputed = true o e
end if
for each ¢ € Cs do 1> Compute the Jacobian of f5 w.r.t. each child node i sobion
s.c.Jacobian = 2f=(Cs) b 2s(Cs) _ 9s s - e
BackOp(c, G) i
end for o
et

end procedure



Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

Compute Gradient of current node Compute Jacobian of current node w.r.t. its child

Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

Compute Gradient of current node Compute Jacobian of current node w.r.t. its child

>< :Anglv’pl

oftmax(s)




Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child Compute Gradient of current node

Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child Compute Gradient of current node

w[uuax(s)( jfwwp; Liar




Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child Compute Gradient of current node

Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child Compute Gradient of current node




Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child Compute Gradient of current node

Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child Compute Gradient of current node




Issues we need to sort out Example of the chain rule in action

Compute gradients for

e Back-propagation when the computational graph is not a
chain. v

linear scoring function + SOFTMAX + cross-entropy loss +

e Derivative computations when the inputs and outputs are not Regularization

scalars. v/ o Assume the forward pass has been completed.
e Let's now compute some gradients! e = value for every node is known.
Generic Backward Pass: Gradient of current node Generic Backward Pass: Order of computations
Compute Gradient of node .J Compute Jacobian of node J w.r.t. its child r

21
4

0=}
®/®
3




Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

Compute Gradient of node r Compute Jacobian of node 7 w.r.t. its child W

or
0J _0J9J _ ow
or  dJor Derivative of a scalar w.r.t. a matrix

Generic Backward Pass: Compute Jacobian Generic Backward Pass: Order of computations

Compute Jacobian of node J w.r.t. its child |

oy 2

( T B

e Jacobian to compute:

5y 5
TWer  TWes

® The individual derivatives:

2W; aJ
o Putting it together in matrix notation ol
or ,
oW



Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

Compute Jacobian of node ! w.r.t. its child p

0 24+b mnm(s;mg(y"'..; 14

© O

I

Compute Gradient of node [

& /6

w2
= —log(y"p
)

® The Jacobian we want to compute: 5’;", = (% %, ,%)
a1 _019] _ o The individual derivatives: 2 =~ fori=1,..., c
al o o Putting it together:
oy
p y'p
Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

. Compute Jacobian of node .r.t. its child
Compute Gradient of node p Py ' pwrt ha s

. (s)Of.“mfm o 0 O O 02
P — exp(s)/ (17 exp(s))
O e w

o2 o
= —log(y"p) o The Jacobian we need to compute: 42 — ( ]
aJ  aJ ol o The individual derivatives:
op ~ dlop P pi(l—pi) ifi=j
op Ol op o _
9 otherwise

 Putting it together in vector notation: 22 = diag(p) — pp”



Generic Backward Pass: Order of computations

Generic Backward Pass: Order of computations

Compute Gradient of node s Compute Jacobian of node s w.r.t. its child b

® The Jacobian we need to compute: 3

1 ifi=j
0 otherwise

® The individual derivatives:

e In vector notation: 22 = Ic © matr

Generic Backward Pass: Order of computations Generic Backward Pass: Order of computations

Compute Gradient of node b Compute Jacobian of node s w.r.t. its child z

) “lp | : )
’ 28
ke

® The Jacobian we need to compute: 2= —
& B
aJ 0J 0s The individual derivati N 1 ifi=j
gradient needed for mini-batch g.d.training as b parameter of the model > —— = —— —— ) e individual derivatives: %t =
e db ~ 0s Ob = ;
0 otherwise

e In vector notation: 2t = I matri



Generic Backward Pass: Order of computations

Compute Gradient of node z

m...mjs)@M L
©/0

os_osos
9z s 0z

Generic Backward Pass: Order of computations

Compute Jacobian of node z w.r.t. its child W

Generic Backward Pass: Order of computations

Compute Jacobian of node z w.r.t. its child W

® No consistent definition for “Jacobian" of vector w.r.t. matrix.

T
fl wi
wh w2

W= then vec(W) =
T we.
Wk e

® Then

(Ic ® xT) vec(W)

where & denotes the Kronecker product between two matrices.

Generic Backward Pass: Order of computations

Compute Gradient of node W

® Let v = vec(W). Jacobian to compute: 2z =

Eon

Tj—(i-na f(i-1d+1<j<id

® The individual derivatives:

0 otherwise

® In vector notation: 22 = Ic @ x"

‘ z=Wx = (Ic @ x") vec(W) ‘

s 9] _ 9] s a1 or
e i i+ e = S o e B e
= (x" gx" o gox") + 2hvec(W)”

if we set g = 22,



Generic Backward Pass: Order of computations Aggregating the Gradient computations

Compute Gradient of node 1V

linear scoring function + SOFTMAX + cross-entropy loss + Regularization

o,
8=5 =
5 o
Can convert g g,cl = (*yT) o
aJ T T ™ 7 f;? y'p 3
dvec(W) — (T gax® oo goxT) + 2 vec(W) g« g% =g (diag(p) - pp7> —
(where g = 22) from a vector (1 x C'd) back to a 2D matrix (C' x d): ae EZ*Z A
aix”
a.J gx”
97 _ + 20 = gTxT + 22w Then
o 2 0L _ 7T 4o
goxT e ow &
Aggregating the Gradient computations Gradient Computations for a mini-batch

* Have explicitly described the gradient computations for one training
example (x,y)

® In general, want to compute the gradients of the cost function for a

mini-batch D.
J(D,W,b) = L(D, W, b) + A|W||*
linear scoring function + SOFTMAX + cross-entropy loss + Regularization = % z I(x, y, W, b) + A[W||?
Pl Sen
1. Let
v’ P
8=y (d\'as<p) - pp ) o The gradients we need to compute are
2. The gradient of J w.r.t. the bias vector is the 1 x d vector 9J(D.W.b) _ OL(D.W.b) , oy\y L 0(xy, W.b) o\
aw aw D] 4~ aw
BJ = (x,y)eD
b , P ,
9J(D,W,b) _ OL(D,W,b) _ 1 A(x,y,W,b)
3. The gradient of J w.r.t. the weight matrix W is the ¢ x d matrix T = T = W T
(x,y)eD
A _ r.T oz
S =g X 2



Gradient Computations for a mini-batc

linear scoring function + SOFTMAX + cross-entropy loss + Regularization

® Compute gradients of [ w.r.t. W, b for each (x,y) € D*):
- Set all entries in 2L and 2L to zero.
- for (x,y) € D)

Let
g = — o (diag(p) — pp")
yip
2. Add gradient of I w.r.t. b computed at (x,y
oL
b t=g

3. Add gradient of I w.r.t. IV computed at (x,y)

oL .-
t=g"x
aW
- Divide by the number of entries in D(*):
aL oL
= DW), 2 ip

w /=12 a5 /= 1P
© Add the gradient for the regularization term

aJ _ 9L aJ _ 9L

aw—aw T T




