Lecture 3 - Back Propagation

DD2424

March 24, 2017

Linear with 1 output

Final decision:

 $q(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x} + b)$

Linear with multiple outputs

Final decision:

 $q(\mathbf{x}) = \arg \max s_i$

Classification functions we have encountered so far

Computational graph of the multiple linear function

Final decision: $g(\mathbf{x}) = \arg \max p_i$

The computational graph:

- · Represents order of computations.
- · Displays the dependencies between the computed quantities.
- · User input, parameters that have to be learnt.

Computational Graph helps automate gradient computations.

How do we learn W, b?

Quality measures a.k.a. loss functions we've encountered

- Assume have labelled training data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- Set W, \mathbf{b} so they correctly & robustly predict labels of the \mathbf{x}_i 's
- Need then to
 - 1. Measure the quality of the prediction's based on W, \mathbf{b} .
 - 2. Find the optimal W, \mathbf{b} relative to the quality measure on the training data.

Multi-class SVM loss

Classification function

Computational graph of the complete loss function

How do we learn W, b?

Linear scoring function + SOFTMAX + cross-entropy loss

where v is the 1-hot response vector induced by the label u.

· Linear scoring function + multi-class SVM loss

- Assume have labelled training data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- ullet Set $W, {f b}$ so they correctly & robustly predict labels of the ${f x}_i$'s
- · Need then to
 - 1. measure the quality of the prediction's based on W, b.
 - 2. find an optimal W, \mathbf{b} relative to the quality measure on the training data.

- Let l be the loss function defined by the computational graph.
- Find W, b by optimizing

$$\arg \max_{W, \mathbf{b}} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l(\mathbf{x}, y, W, \mathbf{b})$$

- Solve using a variant of mini-batch gradient descent
 - ⇒ need to efficiently compute the gradient vectors

$$\nabla_W l(\mathbf{x}, y, W, \mathbf{b})|_{(\mathbf{x}, y) \in D}$$
 and $\nabla_{\mathbf{b}} l(\mathbf{x}, y, W, \mathbf{b})|_{(\mathbf{x}, y) \in D}$

Today's lecture: Gradient computations in neural networks

- For our learning approach need to be able to compute gradients efficiently.
- BackProp is algorithm for achieving given the form of many of our classifiers and loss functions.

- BackProp relies on the chain rule applied to the composition of functions.
- · Example: the composition of functions

$$l(\mathbf{x}, y, W, \mathbf{b}) = -\log(\mathbf{y}^T \operatorname{softmax}(W\mathbf{x} + \mathbf{b}))$$

linear classifier then SOFTMAX then cross-entropy loss

- \bullet Let l be the complete loss function defined by the computational graph.
- How do we efficiently compute the gradient vectors

$$\nabla_W l(\mathbf{x}, y, W, \mathbf{b})|_{(\mathbf{x}, y) \in \mathcal{D}}$$
 and $\nabla_{\mathbf{b}} l(\mathbf{x}, y, W, \mathbf{b})|_{(\mathbf{x}, y) \in \mathcal{D}}$?

Answer: Back Propagation

Chain Rule for functions with a scalar input and a scalar output

- Have two functions $g: \mathbb{R} \to \mathbb{R}$ and $f: \mathbb{R} \to \mathbb{R}$.
- Define $h : \mathbb{R} \to \mathbb{R}$ as the composition of f and g:

$$h(x) = \left(f \circ g\right)(x) = f(g(x))$$

· How do we compute

$$\frac{dh(x)}{dx}$$
?

. Use the chain rule.

The composition of n functions

Example of the Chain Rule in action

Have

$$g(x) = x^2$$
, $f(x) = \sin(x)$

· One composition of these two functions is

$$h(x) = f(g(x)) = \sin(x^2)$$

· According to the chain rule

$$\begin{split} \frac{dh(x)}{dx} &= \frac{df(y)}{dy} \frac{dg(x)}{dx} & \leftarrow \text{ where } y = x^2 \\ &= \frac{d\sin(y)}{dy} \frac{dx^2}{dx} \\ &= \cos(y) \, 2x \\ &= 2x \cos(x^2) & \leftarrow \text{ plug in } y = x^2 \end{split}$$

• Have functions $f,g:\mathbb{R}\to\mathbb{R}$ and define $h:\mathbb{R}\to\mathbb{R}$ as

$$h(x) = \left(f \circ g\right)(x) = f(g(x))$$

- Derivative of h w.r.t. x is given by the Chain Rule.
- Chain Rule

$$\frac{dh(x)}{dx} = \frac{df(y)}{dy} \frac{dg(x)}{dx} \quad \text{ where } y = g(x)$$

- Have functions $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R}$
- Define function h : ℝ → ℝ as the composition of f_i's

$$h(x) = (f_n \circ f_{n-1} \circ \cdots \circ f_1)(x) = f_n(f_{n-1}(\cdots (f_1(x))\cdots))$$

· Can we compute the derivative

$$\frac{dh(x)}{dx}$$
 ?

The composition of n functions

- Have functions f₁,..., f_n : ℝ → ℝ
- Define function h: R → R as the composition of f_i's

$$h(x) = (f_n \circ f_{n-1} \circ \cdots \circ f_1)(x) = f_n(f_{n-1}(\cdots (f_1(x)) \cdots))$$

· Can we compute the derivative

$$\frac{dh(x)}{dx}$$
 ?

Yes recursively apply the CHAIN RULE

The Chain Rule for the composition of n functions

$$h(x) = (f_n \circ f_{n-1} \circ \cdots \circ f_1)(x)$$

Define

$$g_j = f_n \circ f_{n-1} \circ \cdots \circ f_j$$

• Therefore $q_1 = h$, $q_n = f_n$ and

$$g_{j} = g_{j+1} \circ f_{j}$$
 for $j = 1, ..., n-1$

• Let $y_i = f_i(y_{i-1})$ and $y_0 = x$ then

$$y_n = g_j(y_{j-1})$$
 for $j = 1, \dots, n$

- · Apply the Chain Rule:
 - For $i = 1, 2, 3, \dots, n-1$

$$\begin{split} \frac{dy_n}{dy_{j-1}} &= \frac{dg_j(y_{j-1})}{dy_{j-1}} = \frac{d\left(g_{j+1} \circ f_j\right)(y_{j-1})}{dy_{j-1}} = \frac{dg_{j+1}(y_j)}{dy_j} \frac{df_j(y_{j-1})}{dy_{j-1}} \\ &= \frac{dy_n}{dy_j} \frac{dy_j}{dy_{j-1}} \end{split}$$

The Chain Rule for the composition of n functions

Recursively applying this fact gives:

where $y_i = (f_i \circ f_{i-1} \circ \cdots \circ f_1)(x) = f_i(y_{i-1}).$

Summary: Chain Rule for a composition of n functions

Have f₁,..., f_n: ℝ → ℝ and define h as their composition

$$h(x)=\left(f_{n}\circ f_{n-1}\circ \cdot \cdot \cdot \circ f_{1}\right)(x)$$

Then

$$\frac{dh(x)}{dx} = \frac{df_n(y_{n-1})}{dy_{n-1}} \frac{df_{n-1}(y_{n-2})}{dy_{n-2}} \cdots \frac{df_2(y_1)}{dy_1} \frac{df_1(x)}{dx}$$

$$= \frac{dy_n}{dy_{n-1}} \frac{dy_{n-1}}{dy_{n-2}} \cdot \frac{dy_2}{dy_1} \frac{dy_1}{dx}$$

where
$$y_j = (f_j \circ f_{j-1} \circ \cdots \circ f_1)(x) = f_j(y_{j-1}).$$

$$\frac{dy_n}{dy_j} = \frac{dy_n}{dy_{j+1}} \frac{dy_{j+1}}{dy_j}$$

Have f₁,..., f_n: ℝ → ℝ and define h as their composition

$$h(x) = (f_n \circ f_{n-1} \circ \cdots \circ f_1)(x)$$

Then

$$\begin{split} \frac{dh(x)}{dx} &= \frac{df_n(y_{n-1})}{dy_{n-1}} \frac{df_{n-1}(y_{n-2})}{dy_{n-2}} \cdots \frac{df_2(y_1)}{dy_1} \frac{df_1(x)}{dx} \\ &= \frac{dy_n}{dy_{n-1}} \frac{dy_{n-1}}{dy_{n-2}} \cdots \frac{dy_2}{dy_1} \frac{dy_1}{dx} \end{split}$$

where
$$y_j = (f_j \circ f_{j-1} \circ \cdots \circ f_1)(x) = f_j(y_{j-1}).$$

Remember: As y₀ = x then for j = n − 1, n − 2,..., 0

$$\frac{dy_n}{dy_j} = \frac{dy_n}{dy_{j+1}} \frac{dy_{j+1}}{dy_j}$$

$\frac{dh(x)}{dx} = \frac{dy_n}{dx} = \frac{dy_n}{dy_{n-1}} \cdot \frac{dy_{n-1}}{dy_{n-2}} \cdot \cdot \cdot \cdot \frac{dy_2}{dy_n} \cdot \frac{dy_1}{dx}$

Computation of $\frac{dy_n}{dx}$ relies on:

- Record keeping: Compute and record values of the y_i's.
- Iteratively aggregate local gradients.

For
$$j = n - 1, n, ..., 1$$

- Compute local derivative: $\frac{df_{j+1}(y_j)}{dy_i} = \frac{dy_{j+1}}{dy_j}$
- Aggregate:

$$\frac{dy_n}{dy_j} = \frac{dy_n}{dy_{j+1}} \frac{dy_{j+1}}{dy_j}$$

Remember
$$\frac{dy_n}{dy_{j+1}} = \frac{dy_n}{dy_{n-1}} \frac{dy_{n-1}}{dy_{n-2}} \cdot \cdot \cdot \cdot \frac{dy_{j+2}}{dy_{j+1}}$$

Exploit structure to compute gradient

Compute gradient of h at a point x^*

$$\frac{dh(x)}{dx} = \frac{dy_n}{dx} = \frac{dy_n}{dy_{n-1}} \frac{dy_{n-1}}{dy_{n-2}} \cdots \frac{dy_2}{dy_1} \frac{dy_1}{dx}$$

Computation of $\frac{dy_n}{dx}$ relies on:

- Record keeping: Compute and record values of the y_i's.
- · Iteratively aggregate local gradients.

For
$$j = n - 1, n, ..., 1$$

- Compute local derivative: df_{j+1}(y_j)/dy_i = dy_{j+1}/dy_i
- Aggregate:

$$\frac{dy_n}{dy_j} = \frac{dy_n}{dy_{j+1}} \frac{dy_{j+1}}{dy_j}$$

Remember
$$\frac{dy_n}{dy_{j+1}} = \frac{dy_n}{dy_{n-1}} \frac{dy_{n-1}}{dy_{n-2}} \cdot \cdot \cdot \cdot \frac{dy_{j+2}}{dy_{j+1}}$$

Remember
$$\frac{dy_{j+1}}{dy_{j+1}} = \frac{dy_{n-1}}{dy_{n-1}} \frac{dy_{n-2}}{dy_{j+1}} \cdots \frac{dy_{j+1}}{dy_{j+1}}$$

$$h(x) = (f_n \circ f_{n-1} \circ \cdots \circ f_1)(x)$$

- Have a value for x = x*
- · Want to (efficiently) compute

$$\frac{dh(x)}{dx}\Big|_{x=x^*}$$

- Use the Back-Propagation algorithm.
- · It consists of a Forward and Backward pass.

Back-Propagation for chains: Forward Pass

Back-Propagation for chains: Backward Pass

Evaluate $h(x^*)$ and keep track of the intermediary results

- Compute y₁* = f₁(x*).
- for j = 2, 3, ..., n

$$y_j^* = f_j(y_{j-1}^*)$$

• Keep a record of y_1^*, \dots, y_n^* .

x f_1 y_1 f_2 y_2 f_3 f_{n-1} y_{n-1} f_n f_n

Compute local f_i gradients and aggregate:

- Set g = 1.
- for $i = n, n 1, \dots, 2$

$$g=g\times \left.\frac{d\!f_j(y_{j-1})}{dy_{j-1}}\right|_{y_{j-1}=y_{j-1}^*}$$

$$\underbrace{\begin{pmatrix} y_{j-1} \\ g \times \frac{\partial f_j(y_{j-1})}{\partial y_{j-1}} \end{pmatrix}}_{g \times \frac{\partial f_j(y_{j-1})}{\partial y_{j-1}}} \underbrace{\begin{pmatrix} y_j \\ y_j \end{pmatrix}}_{g = \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial y_j}} \underbrace{\begin{pmatrix} y_{j+1} \\ y_{j+1} \end{pmatrix}}_{g \times \frac{\partial y_0}{\partial$$

Note:
$$g = \frac{dy_n}{dy_{j-1}}\Big|_{y_{j-1}=y_n^*}$$

• Then $\left.\frac{dh(x)}{dx}\right|_{x=x^*}=g\times \left.\frac{d\!f_1(x)}{dx}\right|_{x=x^*}$

Problem 1: But what if I don't have a chain?

- This computational graph is not a chain.
- · Some nodes have multiple parents.
- · The function represented by graph is

$$l(\mathbf{x}, \mathbf{y}, W, \mathbf{b}) = -\log(\mathbf{y}^T \mathsf{Softmax}(W\mathbf{x} + \mathbf{b}))$$

Problem 1a: And when a regularization term is added..

- This computational graph is not a chain.
- Some nodes have multiple parents and others multiple children.
- The function represented by graph is $J(\mathbf{x},\mathbf{y},W,\mathbf{b},\lambda) = -\log(\mathbf{y}^T \mathsf{Softmax}(W\mathbf{x}+\mathbf{b})) + \lambda \sum_{i,i} W_{i,j}^2$
 - How is the back-propagation algorithm defined in these cases

Problem 1a: And when a regularization term is added...

- · This computational graph is not a chain.
- Some nodes have multiple parents and others multiple children.
- The function represented by graph is $J(\mathbf{x},\mathbf{y},W,\mathbf{b},\lambda) = -\log(\mathbf{y}^T \mathsf{Softmax}(W\mathbf{x}+\mathbf{b})) + \lambda \sum_{i,j} W_{i,j}^2$
- · How is the back-propagation algorithm defined in these cases?

Issues we need to sort out

- Back-propagation when the computational graph is not a chain.
- Derivative computations when the inputs and outputs are not scalars
- Will address these issues now. First the derivatives of vectors.

Problem 2: Don't have scalar inputs and outputs

· The function represented by graph:

$$J(\mathbf{x},\mathbf{y},W,\mathbf{b},\lambda) = -\log(\mathbf{y}^T\mathsf{Softmax}(W\mathbf{x}+\mathbf{b})) + \lambda \sum_{i,j} W_{i,j}^2$$

- Nearly all of the inputs and intermediary outputs are vectors or matrices.
- · How are the derivatives defined in this case?

Issues we need to sort out

- Back-propagation when the computational graph is not a chain.
- Derivative computations when the inputs and outputs are not scalars.
- Will address these issues now. First the derivatives of vectors.

Chain Rule for functions with vector inputs and vector outputs

Chain Rule for vector input and output

- Have two functions $g: \mathbb{R}^d \to \mathbb{R}^m$ and $f: \mathbb{R}^m \to \mathbb{R}^c$.
- Define $h: \mathbb{R}^d \to \mathbb{R}^c$ as the composition of f and g:

$$h(\mathbf{x}) = (f \circ q)(\mathbf{x}) = f(q(\mathbf{x}))$$

Consider

$$\frac{\partial h(\mathbf{x})}{\partial \mathbf{x}}$$

- · How is it defined and computed?
- What's the chain rule for vector valued functions?

Chain Rule for vector input and output

• Let $\mathbf{y} = h(\mathbf{x})$ where each $h: \mathbb{R}^d o \mathbb{R}^c$ then

$$\frac{\partial h(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_d} \\ \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_2}{\partial x_d} \\ \vdots & \vdots & \vdots \\ \frac{\partial y_L}{\partial x_1} & \cdots & \frac{\partial y_L}{\partial x_d} \end{bmatrix} \leftarrow \text{this is a Jacobian matrix}$$

and is a matrix of size $c \times d$.

• Chain Rule says if $h = f \circ g \left(g: \mathbb{R}^d \to \mathbb{R}^m \text{ and } f: \mathbb{R}^m \to \mathbb{R}^e\right)$ then $\frac{\partial h(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{z}} = \frac{\partial \mathbf{y}}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{x}}$ where $\mathbf{z} = g(\mathbf{x})$ and $\mathbf{y} = f(\mathbf{z})$.

• Both
$$\frac{\partial \mathbf{y}}{\partial \mathbf{z}}$$
 $(c \times m)$ and $\frac{\partial \mathbf{z}}{\partial \mathbf{x}}$ $(m \times d)$ defined slly to $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$.

Chain Rule for vector input and scalar output

The cost functions we will examine usually have a scalar output

- Let $\mathbf{x} \in \mathbb{R}^d$, $f: \mathbb{R}^d \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}$
 - z = f(x)s = g(z)
- The Chain Rule says gradient of output w.r.t. input

$$\frac{\partial s}{\partial u} = \begin{pmatrix} \frac{\partial s}{\partial x_1} & \cdots & \frac{\partial s}{\partial x_d} \end{pmatrix}$$

is given by a gradient times a Jacobian:

$$\frac{\partial s}{\partial \mathbf{x}} = \underbrace{\frac{\partial s}{\partial \mathbf{z}}}_{1 \times m} \underbrace{\frac{\partial \mathbf{z}}{\partial \mathbf{x}}}_{m \times d}$$

where

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial z_1} & \cdots & \frac{\partial z_1}{\partial x_d} \\ \frac{\partial z_2}{\partial x_1} & \cdots & \frac{\partial z_2}{\partial x_d} \\ \vdots & \vdots & \vdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_d} \end{pmatrix}$$

•
$$f_1: \mathbb{R}^d \to \mathbb{R}^{m_1}, f_2: \mathbb{R}^d \to \mathbb{R}^{m_2}$$
 and $g: \mathbb{R}^n \to \mathbb{R}$ $(n = m_1 + m_2)$
 $\mathbf{z}_1 = f_1(\mathbf{x}),$ $\mathbf{z}_2 = f_2(\mathbf{x})$

$$s = g(\mathbf{z}_1, \mathbf{z}_2) = g(\mathbf{v})$$
 where $\mathbf{v} = \begin{pmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{pmatrix}$.

• Chain Rule says gradient of the output w.r.t. the input

$$\frac{\partial s}{\partial x_i} = \begin{pmatrix} \frac{\partial s}{\partial x_1} & \cdots & \frac{\partial s}{\partial x_d} \end{pmatrix}$$

is given by:

$$\frac{\partial s}{\partial \mathbf{x}} = \underbrace{\frac{\partial s}{\partial \mathbf{v}}}_{1 \times n} \underbrace{\frac{\partial \mathbf{v}}{\partial \mathbf{x}}}_{n \times d}$$

But

$$\frac{\partial s}{\partial \mathbf{v}} = \begin{pmatrix} \frac{\partial s}{\partial \mathbf{z}_1} & \frac{\partial s}{\partial \mathbf{z}_2} \end{pmatrix} \quad \text{and} \quad \frac{\partial \mathbf{v}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial \mathbf{z}_1}{\partial \mathbf{x}} \\ \frac{\partial \mathbf{z}_2}{\partial \mathbf{x}} \end{pmatrix}$$

 \Longrightarrow

$$\frac{\partial s}{\partial \mathbf{x}} = \frac{\partial s}{\partial \mathbf{v}} \ \frac{\partial \mathbf{v}}{\partial \mathbf{x}} = \underbrace{\frac{\partial s}{\partial \mathbf{z}_1}}_{1 \times m_1} \underbrace{\frac{\partial \mathbf{z}_1}{\partial \mathbf{x}}}_{m_1 \times d} + \underbrace{\frac{\partial s}{\partial \mathbf{z}_2}}_{1 \times m_2} \underbrace{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}}}_{m_2 \times d}$$

Issues we need to sort out

- Back-propagation when the computational graph is not a chain.
- Derivative computations when the inputs and outputs are not scalars. ✓
- Will now describe Back-prop for non-chains.

• $f_i: \mathbb{R}^d \to \mathbb{R}^{m_i}$ for $i = 1, \dots, t$ and $g: \mathbb{R}^n \to \mathbb{R}$ $(n = m_1 + \dots + m_t)$ $\mathbf{z}_i = f_i(\mathbf{x}), \quad \text{for } i = 1, \dots, t$

 $s = g(z_1, ..., z_n)$

Consequence of the Chain Rule

$$\frac{\partial s}{\partial \mathbf{x}} = \sum_{i=1}^{t} \frac{\partial s}{\partial \mathbf{z}_i} \frac{\partial \mathbf{z}_i}{\partial \mathbf{x}}$$

 \bullet Computational graph interpretation. Let \mathcal{C}_s be the children nodes of s then

$$\frac{\partial s}{\partial \mathbf{x}} = \sum_{\mathbf{z} \in \mathcal{C}_s} \frac{\partial s}{\partial \mathbf{z}} \ \frac{\partial \mathbf{z}}{\partial \mathbf{x}}$$

Back-propagation for non-chain computational graphs

D G is the computational graph

- Have node y.
- Denote the set of \mathbf{y} 's children nodes by $C_{\mathbf{y}}$ and their values by

$$V_{\mathcal{C}_{\mathbf{y}}} = \{\mathbf{z}.\mathsf{value} \mid \mathbf{z} \in \mathcal{C}_{\mathbf{y}}\}$$

ullet Given $V_{\mathcal{C}_{\mathbf{v}}}$ can now apply the function $f_{\mathbf{z}}$

procedure EVAULATEGRAPHFN(G)

$$\mathbf{y}.\mathsf{value} = f_{\mathbf{y}}(V_{\mathcal{C}_{\mathbf{y}}})$$

- Consider node W in the above graph. Its children are $\{{\bf z},r\}.$ Applying the chain rule

$$\frac{\partial J}{\partial W} = \frac{\partial J}{\partial r} \frac{\partial r}{\partial W} + \frac{\partial J}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial W}$$

• In general for node c with children specified by $\mathcal{C}_c\colon$

$$\frac{\partial J}{\partial \mathbf{c}} = \sum_{\mathbf{u} \in C_c} \frac{\partial J}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{c}}$$

Pseudo-Code for the Generic Forward Pass

Generic Forward Pass

Order in which nodes are evaluated

Order in which nodes are evaluated

Generic Forward Pass

Generic Forward Pass

Order in which nodes are evaluated

Order in which nodes are evaluated

Generic Forward Pass

Order in which nodes are evaluated

Order in which nodes are evaluated

Pseudo-Code for the Generic Backward Pass

D Compute the Jacobian of for w.r.t. each child node

 $\triangleright \frac{\partial f_{\mathbf{x}}(C_{\mathbf{x}})}{\partial f_{\mathbf{x}}(C_{\mathbf{x}})} = \frac{\partial \mathbf{x}}{\partial f_{\mathbf{x}}(C_{\mathbf{x}})}$

J = GetResultNode(G)> node with the value of cost function BackOp(J, G)D Start the Backward-nass end procedure procedure BACKOP(s. G) $P_s = GetParents(s, G)$ if $\mathcal{P}_s = \emptyset$ then > At the result node s.Grad = 1if AllGradientsComputed(P_n) then \triangleright Have computed all $\frac{\partial J}{\partial \mathbf{p}}$ where $\mathbf{p} \in \mathcal{P}_{\mathbf{s}}$ e Grad - 0 for each $p \in P_s$ do s.Grad += p.Grad * p.s.Jacobian $\triangleright \frac{\partial J}{\partial \mathbf{x}} += \frac{\partial J}{\partial \mathbf{p}} \frac{\partial \mathbf{p}}{\partial \mathbf{x}}$ end for s GradComputed = true

procedure PerformBackPass(G)

for each $c \in C_s$ do

end for

end procedure

BackOn(c. G)

s.c.Jacobian = $\frac{\partial f_s(C_s)}{\partial z}$

Generic Backward Pass: Order of computations

Identify Result Node

Generic Backward Pass: Order of computations

Compute Gradient of current node

Compute Jacobian of current node w.r.t. its child

Generic Backward Pass: Order of computations

Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child

Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child

Compute Gradient of current node

Generic Backward Pass: Order of computations

Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child

Compute Gradient of current node

Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child

Compute Gradient of current node

Generic Backward Pass: Order of computations

Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child

Compute Gradient of current node

Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child

Compute Gradient of current node

Generic Backward Pass: Order of computations

Generic Dackward Fass. Order of computations

Generic Backward Pass: Order of computations

Compute Jacobian of current node w.r.t. its child

Compute Gradient of current node

Issues we need to sort out

Example of the chain rule in action

- Back-propagation when the computational graph is not a chain. ✓
- \bullet Derivative computations when the inputs and outputs are not scalars. \checkmark
- · Let's now compute some gradients!

Compute gradients for

linear scoring function + SOFTMAX + cross-entropy loss + Regularization

- · Assume the forward pass has been completed.
- \implies value for every node is known.

Generic Backward Pass: Gradient of current node

Generic Backward Pass: Order of computations

Compute Gradient of node J

$$\frac{\partial J}{\partial J} = 1$$

Compute Jacobian of node J w.r.t. its child r

$$\frac{\partial J}{\partial r} = \lambda$$

Generic Backward Pass: Order of computations

Compute Gradient of node r

$$\frac{\partial J}{\partial r} = \frac{\partial J}{\partial J} \frac{\partial J}{\partial r} = \lambda$$

Compute Jacobian of node r w.r.t. its child W

$$\frac{\partial r}{\partial W} = ?$$

Compute Jacobian of node J w.r.t. its child l

Derivative of a scalar w.r.t. a matrix

Generic Backward Pass: Compute Jacobian

$r = \sum_{i,j} W_{ij}^2$

- Jacobian to compute: ## =
- \bullet The individual derivatives: $\frac{\partial r}{\partial W_{ij}} = 2W_{ij}$
- · Putting it together in matrix notation

$$\frac{\partial r}{\partial W} = 2W$$

Generic Backward Pass: Order of computations

$$\frac{\partial J}{\partial l}=1$$

Generic Backward Pass: Order of computations

Compute Gradient of node l

$$\frac{\partial J}{\partial l} = \frac{\partial J}{\partial J} \frac{\partial J}{\partial l} = 1$$

Compute Jacobian of node l w.r.t. its child ${\bf p}$

- The Jacobian we want to compute: $\frac{\partial l}{\partial \mathbf{p}} = \begin{pmatrix} \frac{\partial l}{\partial p_1}, & \frac{\partial l}{\partial p_2}, & \cdots & , \frac{\partial l}{\partial p_C} \end{pmatrix}$
- The individual derivatives: $\frac{\partial l}{\partial p_i} = -\frac{y_i}{\mathbf{y}^T \mathbf{p}}$ for $i = 1, \dots, C$
- Putting it together:

$$\frac{\partial l}{\partial \mathbf{p}} = -\frac{\mathbf{y}^T}{\mathbf{y}^T \mathbf{p}}$$

Generic Backward Pass: Order of computations

Compute Gradient of node p

Generic Backward Pass: Order of computations

Compute Jacobian of node p w.r.t. its child s

- The Jacobian we need to compute: $\frac{\partial p}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial p_1}{\partial x_1} & \cdots & \frac{\partial p_1}{\partial x_C} \\ \vdots & \vdots & \vdots \\ \frac{\partial p_C}{\partial x_C} & \cdots & \frac{\partial p_C}{\partial x_C} \end{pmatrix}$
- The individual derivatives:

$$\frac{\partial p_i}{\partial s_j} = \begin{cases} p_i(1 - p_i) & \text{if } i = j \\ -p_i p_j & \text{otherwise} \end{cases}$$

• Putting it together in vector notation: $\frac{\partial \mathbf{p}}{\partial a} = \text{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^T$

Generic Backward Pass: Order of computations

Compute Gradient of node s

Compute Jacobian of node ${\bf s}$ w.r.t. its child ${\bf b}$

- The Jacobian we need to compute: $\frac{\partial x}{\partial b} = \begin{pmatrix} \frac{\partial x_1}{\partial b_1} & \cdots & \frac{\partial x_1}{\partial b_C} \\ \vdots & \vdots & \vdots \\ \frac{\partial x_C}{\partial b_C} & \cdots & \frac{\partial x_C}{\partial b_C} \end{pmatrix}$
- $\bullet \ \ \text{The individual derivatives:} \ \ \frac{\partial s_i}{\partial bj} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{otherwise} \end{cases}$
- In vector notation: $\frac{\partial \mathbf{s}}{\partial \mathbf{b}} = I_C$ \leftarrow the identity matrix of size $C \times C$

Generic Backward Pass: Order of computations

Generic Dackward Fass. Order of computation

Compute Gradient of node b

radient needed for mini-batch g.d.training as b parameter of the model
$$\rightarrow \frac{\partial J}{\partial \mathbf{b}} = \frac{\partial J}{\partial \mathbf{s}} \frac{\partial \mathbf{s}}{\partial \mathbf{b}}$$

Generic Backward Pass: Order of computations

Compute Jacobian of node s w.r.t. its child z

- The Jacobian we need to compute: $\frac{\partial x}{\partial z} = \begin{pmatrix} \frac{\partial x_1}{\partial z_1} & \cdots & \frac{\partial x_1}{\partial z_C} \\ \vdots & \vdots & \vdots \\ \frac{\partial z_C}{\partial z_1} & \cdots & \frac{\partial z_C}{\partial z_C} \end{pmatrix}$
- The individual derivatives: $\frac{\partial s_i}{\partial z_j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- In vector notation: $\frac{\partial \mathbf{s}}{\partial \mathbf{z}} = I_C \leftarrow$ the identity matrix of size $C \times C$

Generic Backward Pass: Order of computations

Compute Gradient of node z

$$\frac{\partial J}{\partial \mathbf{z}} = \frac{\partial J}{\partial \mathbf{s}} \frac{\partial \mathbf{s}}{\partial \mathbf{z}}$$

Compute Jacobian of node z w.r.t. its child W

- No consistent definition for "Jacobian" of vector w.r.t. matrix.
- Instead re-arrange W (C × d) into a vector vec(W) (Cd × 1)

$$W = \begin{pmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \vdots \\ \mathbf{w}_C^T \end{pmatrix} \quad \text{then} \quad \text{vec}(W) = \begin{pmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \vdots \\ \mathbf{w}_C \end{pmatrix}$$

Then

$$\mathbf{z} = \left(I_C \otimes \mathbf{x}^T\right) \text{ vec}(W)$$
where \otimes denotes the **Kronecker product** between two matrices.

Generic Backward Pass: Order of computations

Generic Backward Pass: Order of computations

Compute Jacobian of node z w.r.t. its child W

- $\bullet \ \, \text{Let} \ \, \mathbf{v} = \text{vec}(W). \ \, \text{Jacobian to compute:} \ \, \frac{\partial \mathbf{r}}{\partial \mathbf{v}} = \begin{pmatrix} \frac{\partial z_1}{\partial v_1} & \cdots & \frac{\partial z_1}{\partial v_{dC}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial z_C}{\partial v_{dC}} & \cdots & \frac{\partial z_C}{\partial v_{dC}} \end{pmatrix}$ $\bullet \ \ \text{The individual derivatives:} \ \frac{\partial z_i}{\partial v_j} = \begin{cases} x_{j-(i-1)d} & \text{if } (i-1)d+1 \leq j \leq id \\ 0 & \text{otherwise} \end{cases}$
- In vector notation: ^{∂z}/_{∂x} = I_C ⊗ x^T

Compute Gradient of node W

gradient needed for learning
$$\rightarrow \frac{\partial J}{\partial \text{vec}(W)} = \frac{\partial J}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \text{vec}(W)} + \frac{\partial J}{\partial r} \frac{\partial r}{\partial \text{vec}(W)}$$

 $= (g_1 \mathbf{x}^T \ g_2 \mathbf{x}^T \ \cdots \ g_C \mathbf{x}^T) + 2\lambda \text{ vec}$

if we set $g = \frac{\partial J}{\partial x}$

Aggregating the Gradient computations

Compute Gradient of node W

$$z = Wx = (I_C \otimes x^T) \text{vec}(W)$$

Can convert

$$\frac{\partial J}{\partial \text{vec}(W)} = (g_1 \mathbf{x}^T \quad g_2 \mathbf{x}^T \quad \cdots \quad g_C \mathbf{x}^T) + 2\lambda \text{vec}(W)^T$$

(where $g = \frac{\partial J}{\partial x}$) from a vector (1 × Cd) back to a 2D matrix (C × d):

$$\frac{\partial J}{\partial W} = \begin{pmatrix} g_1 \mathbf{x}^T \\ g_2 \mathbf{x}^T \\ \vdots \\ g_C \mathbf{x}^T \end{pmatrix} + 2\lambda W = \mathbf{g}^T \mathbf{x}^T + 2\lambda W$$

linear scoring function + SOFTMAX + cross-entropy loss + Regularization

$$\begin{split} \mathbf{g} &= \frac{\partial J}{\partial l} = 1 \\ \mathbf{g} &\leftarrow \mathbf{g} \frac{\partial l}{\partial \mathbf{p}} = \left(-\frac{\mathbf{y}^T}{\mathbf{y}^T \mathbf{p}} \right) &\leftarrow \frac{\partial J}{\partial \mathbf{p}} \\ \mathbf{g} &\leftarrow \mathbf{g} \frac{\partial \mathbf{p}}{\partial \mathbf{p}} = \mathbf{g} \left(\mathrm{diag}(\mathbf{p}) - \mathbf{p} \mathbf{p}^T \right) &\leftarrow \frac{\partial J}{\partial \mathbf{s}} \\ \mathbf{g} &\leftarrow \mathbf{g} \frac{\partial \mathbf{p}}{\partial \mathbf{s}} = \mathbf{g} I_C &\leftarrow \frac{\partial J}{\partial \mathbf{s}} \end{split}$$

Then

$$\frac{\partial J}{\partial \mathbf{b}} = \mathbf{g} \qquad \qquad \frac{\partial J}{\partial W} = \mathbf{g}^T \mathbf{x}^T + 2\lambda W$$

Aggregating the Gradient computations

$\frac{\partial J}{\partial \theta} = \frac{\partial J}{\partial \theta} \frac{\partial \phi}{\partial \theta} + \frac{\partial J}{\partial \theta} \frac{\partial \phi}{\partial \theta}$

linear scoring function + SOFTMAX + cross-entropy loss + Regularization

1. Let

$$g = -\frac{y^T}{v^T p} \left(diag(p) - pp^T \right)$$

2. The gradient of J w.r.t. the bias vector is the $1 \times d$ vector

$$\frac{\partial J}{\partial \mathbf{b}} = \mathbf{g}$$

3. The gradient of J w.r.t. the weight matrix W is the $c \times d$ matrix $\frac{\partial J}{\partial W} = \mathbf{g}^T \mathbf{x}^T + 2\lambda W$

Gradient Computations for a mini-batch

- · Have explicitly described the gradient computations for one training example (\mathbf{x}, y) .
- . In general, want to compute the gradients of the cost function for a mini-hatch D

$$\begin{split} J(\mathcal{D}, W, \mathbf{b}) &= L(\mathcal{D}, W, \mathbf{b}) + \lambda \|W\|^2 \\ &= \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l(\mathbf{x}, y, W, \mathbf{b}) + \lambda \|W\|^2 \end{split}$$

The gradients we need to compute are

$$\frac{\partial J(\mathcal{D}, W, \mathbf{b})}{\partial W} = \frac{\partial L(\mathcal{D}, W, \mathbf{b})}{\partial W} + 2\lambda W = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \frac{\partial l(\mathbf{x}, y, W, \mathbf{b})}{\partial W} + 2\lambda W$$

$$\frac{\partial J(\mathcal{D}, W, \mathbf{b})}{\partial \mathbf{b}} = \frac{\partial L(\mathcal{D}, W, \mathbf{b})}{\partial \mathbf{b}} = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \frac{\partial l(\mathbf{x}, y, W, \mathbf{b})}{\partial \mathbf{b}}$$

Gradient Computations for a mini-batch

linear scoring function + SOFTMAX + cross-entropy loss + Regularization

- Compute gradients of l w.r.t. W.b for each (x, y) ∈ D^(t):

- Set all entries in
$$\frac{\partial L}{\partial \mathbf{b}}$$
 and $\frac{\partial L}{\partial W}$ to zero.
- for $(\mathbf{x},y)\in\mathcal{D}^{(t)}$
1. Let

$$\mathbf{g} = -\frac{\mathbf{y}^T}{\mathbf{v}^T \mathbf{p}} \left(\mathsf{diag}(\mathbf{p}) - \mathbf{p} \mathbf{p}^T \right)$$

2. Add gradient of l w.r.t. b computed at (x, y)

$$\frac{\partial L}{\partial \mathbf{b}} += \mathbf{g}$$

3. Add gradient of
$$l$$
 w.r.t. W computed at (\mathbf{x},y)
$$\frac{\partial L}{\partial W} += \mathbf{g}^T \mathbf{x}^T$$

- Divide by the number of entries in $\mathcal{D}^{(t)}$:

$$\frac{\partial L}{\partial W} /= |\mathcal{D}^{(t)}|,$$
 $\frac{\partial L}{\partial \mathbf{b}} /= |\mathcal{D}^{(t)}|$

· Add the gradient for the regularization term

$$\frac{\partial J}{\partial W} = \frac{\partial L}{\partial W} + 2\lambda W, \qquad \frac{\partial J}{\partial \mathbf{b}} = \frac{\partial L}{\partial \mathbf{b}}$$