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This paper shows how rewriting logic semantics (RLS) can be used as a computational

logic framework for operational semantic definitions of programming languages. Several

operational semantics styles are addressed: big-step and small-step structural operational

semantics (SOS),modularSOS, reductionsemanticswithevaluationcontexts, continuation-

based semantics, and the chemical abstract machine. Each of these language definitional

styles can be faithfully captured as an RLS theory, in the sense that there is a one-to-one

correspondence between computational steps in the original language definition and com-

putational steps in the corresponding RLS theory. A major goal of this paper is to show

that RLS does not force or pre-impose any given language definitional style, and that its

flexibility and ease of usemakesRLS an appealing framework for exploringnewdefinitional

styles.
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1. Introduction

This paper is part of the rewriting logic semantics (RLS) project (see [57,56] and the references there in). The broad goal

of the project is to develop a tool-supported computational logic framework for modular programming language design,

semantics, formal analysis and implementation, based on rewriting logic [50].

Any logical framework worth its salt should be evaluated in terms of its expressiveness and flexibility. Regarding expres-

siveness, a very pertinent question is: how does RLS express various approaches to operational semantics? In particular,

how well can it express various approaches in the SOS tradition? The goal of this paper is to provide an answer to these

questions. Partial answers, giving detailed comparisons with specific approaches have appeared elsewhere. For example,

[48,91] provide comparisons with standard SOS [70]; [55] compares RLS with both standard SOS and Mosses’ modular

structural operational semantics (MSOS) [65]; and [50] compares RLSwith chemical abstract machine (Cham) semantics [8].

However, no comprehensive comparison encompassingmost approaches in the SOS tradition has been given to date. Tomake

our ideas more concrete, in this paper we use a simple programming language, show how it is expressed in each different

definitional style, and how that style can be faithfully captured as a rewrite theory in the RLS framework. We furthermore

prove correctness theorems showing the faithfulness of the RLS representation for each style. Even thoughwe exemplify the

techniques and proofs with a simple language for concreteness’ sake, the process of representing each definitional style in

RLS and proving the faithfulness of the representation is completely general and mechanical, and in some cases like MSOS
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has already been automated [19]. The range of styles covered includes: big-step (or natural) SOS semantics; small-step SOS

semantics; MSOS semantics; context-sensitive reduction semantics; continuation-based semantics; and Cham semantics.

Concerning flexibility, we show that each language definitional style can be used as a particular definitional methodology

within rewriting logic. It is not our point in this paper to argue whether certain rewriting-logic specific methodologies are

in some ways better or worse than others, but simply to enable the language designer to use his/her favorite techniques

within rewriting logic with the benefit of a unified logic and generic tool support. Other than that, representing a language

definitional style in rewriting logic, does not make that style more flexible: as it will soon become clear once we start

presenting the details, the technique representing it within rewriting logic inherits the same benefits and limitations that

the original definitional style had.

1.1. Challenges

Any logical framework for operational semantics of programming languages has tomeet strong challenges. We list below

some of the challenges that we think any such framework must meet to be successful. We do so in the form of questions

from a skeptical language designer, following each question by our answer on how the RLS framework meets each challenge

question. The full justification of many of our answers will become clearer in the body of the paper.

(1) Q: Can you handle standard SOS?

A: As illustrated in Sections 5 and 6 for our example language, and also shown in [48,91,55] using somewhat different

representations, both big-step and small-step SOS definitions can be expressed as rewrite theories in RLS. Furthermore,

as illustrated in Section 7 for our language, and systematically explained in [55], MSOS definitions can also be faithfully

captured in RLS.

(2) Q: Can you handle context-sensitive reduction?

A: There are two different questions implicit in the above question: (i) how are approaches to reduction semantics

based on evaluation contexts (e.g., [96]) represented as rewrite theories? and (ii) how does RLS support context-sensitive

rewriting in general? We answer subquestion (i) in Section 8, where we illustrate with our example language a general

method tohandle evaluation contexts in RLS. Regarding subquestion (ii), it isworthpointing out that, unlike standard SOS,

because of its congruence rule, rewriting logic is context-sensitive and, furthermore, using frozen operator arguments,

reduction can be blocked on selected arguments (see Section 2). Rewriting logic provides no support for matching the

context inwhich a rewrite rule applies and tomodify that context at will, which is one of themajor strengths of reduction

semantics with evaluation contexts. If that is what one wants to do, then one should use the technique in Section 8

instead.

(3) Q: Can you handle higher-order syntax?

A: Rewriting logic, cannot directly handle higher-order syntax with bindings and reasoning modulo α-conversion.

However, it iswell known that higher-order syntax admits first-order representations, such as explicit substitution calculi

and de Bruijn numbers, e.g., [1,7,82]. However, the granularity of computations is changed in these representations; for

example, a single β-reduction step now requires additional rewrites to perform substitutions. In rewriting logic, because

computation steps happen in equivalence classes modulo equations, the granularity of computation remains the same,

because all explicit substitution steps are equational. Furthermore, using explicit substitution calculi such as CINNI [82],

all this can be done automatically, keeping the original higher-order syntax not only for λ-abstraction, but also for any

other name-binding operators.

(4) Q:What about continuations?

A: Continuations [34,71] are traditionally understood as higher-order functions. Using the above-mentioned explicit

calculi they can be represented in a first-order way. In Section 9, we present an alternative view of continuations that is

intrinsically first-order in the style of, e.g., Wand [95], and prove a theorem showing that, for our language, first-order

continuation semantics and context-sensitive reduction semantics are equivalent as rewrite theories in RLS. We also

emphasize that in a computational logical framework, continuations are not just a means of implementing a language,

but can be used to actually define the semantics of a language.

(5) Q: Can you handle concurrency?

A: One of the strongest points of rewriting logic is precisely that it is a logical framework for concurrency that can nat-

urally express many different concurrency models and calculi [51,49]. Unlike standard SOS, which forces an interleaving

semantics, true concurrency is directly supported.We illustrate this in Section 10,wherewe explain howCham semantics

is a particular style within RLS.

(6) Q: How expressive is the framework?

A: RLS is truly a framework, which does not force on the user any particular definitional style. This is illustrated in

this paper by showing how quite different definitional styles can be faithfully captured in RLS. Furthermore, as already

mentioned, RLS can express a wide range of concurrent languages and calculi very naturally, without artificial encodings.

Finally, real-time and probabilistic systems can likewise be naturally expressed [2,54,67].

(7) Q: Is anything lost in translation?

A: This is a very important question, because the worth of a logical framework does not just depend on whether

something can be represented “in principle”, but on howwell it is represented. The key point is to have a very small repre-
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sentational distance between what is represented and the representation. Turing machines have a huge representational

distance and are not very useful for semantic definitions exactly for that reason. Typically, RLS representations havewhat

we call “ε-representational distance”, that is, what is represented and its representation differ at most in inessential

details. In this paper, we show that all the RLS representations for the different definitional styles we consider have this

feature. In particular, we show that the original computations are represented in a one-to-one fashion. Furthermore, the

good features of each style are preserved. For example, the RLS representation of MSOS is as modular as MSOS itself.

(8) Q: Is the framework purely operational?

A: Although RLS definitions are executable in a variety of systems supporting rewriting, rewriting logic itself is a

complete logic with both a computational proof theory and a model-theoretic semantics. In particular, any rewrite

theory has an initial model, which provides inductive reasoning principles to prove properties. What this means for RLS

representations of programming languages is that they have both an operational rewriting semantics, and amathematical

model-theoretic semantics. For sequential languages, this model-theoretic semantics is an initial-algebra semantics. For

concurrent languages, it is a truly concurrent initial-model semantics. In particular, this initial model has an associated

Kripke structure in which temporal logic properties can be both interpreted and model-checked [53].

(9) Q:What about performance?

A: RLS as such is a mathematical framework, not bound to any particular rewrite engine implementation. However,

because of the existence of a range of high-performance systems supporting rewriting, RLS semantic definitions can

directly be used as interpreters when executed in such systems. Performancewill then depend on both the system chosen

and the particular definitional style used. The RLS theory might need to be slightly adapted to fit the constraints of some

of the systems. In Section 11, we present experimental performance results for the execution of mechanically generated

interpreters from RLS definitions for our example language using various systems for the different styles considered.

Generally speaking, these performance figures are very encouraging and show that good performance interpreters

can be directly obtained from RLS semantic definitions. Although for this paper, we have used hand-made (though

mechanical) translations to the presented implementation languages, we envision a toolkit which would use RLS as a

common framework for different definitional styles having as back-ends multiple execution languages.

1.2. Benefits

Our skeptical language designer could still say,

So what? What do I need a logical framework for?

It may be appropriate to point out that he/she is indeed free to choose, or not choose, any framework. However, using RLS

brings some intrinsic benefits that might, after all, not be unimportant to him/her.

Besides the benefits already mentioned in our answers to questions in Section 1.1, one obvious benefit is that, since

rewriting logic is a computational logic, and there are state-of-the-art system implementations supporting it, there is no

gap between an RLS operational semantics definition and an implementation. This is an obvious advantage over the typical

situation inwhich one gives a semantics to a language on paper following one ormore operational semantics styles, and then,

to “execute” it, one implements an interpreter for the desired language following “in principle” its operational semantics,

but using one’s favorite programming language and specific tricks and optimizations for the implementation. This creates a

nontrivial gap between the formal operational semantics of the language and its implementation.

A second, related benefit, is the possibility of rapid prototyping of programming language designs. That is, since language

definitions can be directly executed, the language designer can experiment with various new features of a language by

just defining them, eliminating the overhead of having to implement them as well in order to try them out. As experi-

mentally shown in Section 11, the resulting prototypes can have reasonable performance, sometimes faster than that of

well-engineered interpreters.

A broader, third benefit, of which the above two are special cases, is the availability of generic tools for: (i) syntax; (ii)

execution; and (iii) formal analysis. The advantages of generic execution tools have been emphasized above. Regarding (i),

languages such asAsf+Sdf [87] andMaude [23] support user-definable syntax for RLS theories,which for language designhas

two benefits. First, it gives a prototype parser for the defined language essentially for free; and second, the language designer

can use directly the concrete syntax of the desired language features, instead of the more common, but harder to read,

abstract syntax tree (AST) representation. Regarding (iii), there is a wealth of theorem proving and model checking tools

for rewriting/equational-based specifications, which can be used directly to prove properties about language definitions.

The fact that these formal analysis tools are generic, should not fool one into thinking that they must be inefficient. For

example, the LTL model checkers obtained for free in Maude from the RLS definitions of Java and the JVM compare favorably

in performance with state-of-the-art Java model checkers [31,33].

A fourth benefit comes from the availability in RLS of what we call the “abstraction dial”, which can be used to reach a

good balance between abstraction and computational observability in semantic definitions. The point iswhich computational

granularity is appropriate. A small-step semantics opts for very fine-grained computations. But this is not necessarily the

only or the best option for all purposes. The fact that an RLS theory’s axioms include both equations and rewrite rules

provides the useful “abstraction dial”, because rewriting takes placemodulo the equations. That is, computations performed
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by equations are abstracted out and become invisible. This hasmany advantages, as explained in [57]. For example, for formal

analysis it can provide a huge reduction in search space for model checking purposes, which is one of the reasons why the

Java model checkers described in [31,33] perform so well. For language definition purposes, this again has many advantages.

For example, in Sections 6 and 5, we use equations to define the semantic infrastructure (stores, etc.) of SOS definitions;

in Section 8 equations are also used to hide the extraction and application of evaluation contexts, which are “meta-level”

operations, carrying no computationalmeaning; in Section 9, equations are also used to decompose the evaluation tasks into

their corresponding subtasks; finally, in Sections 7 and 10, equations of associativity and commutativity are used to achieve,

respectively, modularity of language definitions, and true concurrency in chemical-soup-like computations. The point in all

these cases is always the same: to achieve the right granularity of computations.

1.3. Outline of the paper

The remainder of this paper is organized as follows. Section 2 presents basic concepts of rewriting logic and recalls its

deduction rules and its relationship with equational logic and term rewriting. Section 3 introduces a simple imperative

language that will be used in the rest of the paper to discuss the various definitional styles and their RLS representations.

Section 4 gathers some useful facts about the algebraic representation of stores. Section 5 addresses the first operational

semantics style that we consider in this paper, the big-step semantics. Section 6 discusses the small-step SOS, followed

by Section 7 which discusses modular SOS. Sections 8 and 9 show how reduction semantics with evaluation contexts

and continuation-based semantics can respectively be faithfully captured as RLS theories, as well as results discussing the

relationships between these two interesting semantics. Section 10 presents the Cham semantics. Section 11 shows that the

RLS theories corresponding to the various definitional styles provide relatively efficient interpreters to the defined languages

when executed on systems that provide support for term rewriting. Finally, Section 12 discusses some related work and

Section 13 concludes the paper.

2. Rewriting logic

Rewriting logic [50] is a computational logic that can be efficiently implemented and that has good properties as a general

and flexible logical and semantic framework, in which a wide range of logics and models of computation can be faithfully

represented [48]. In particular, for programming language semantics it provides the RLS framework, of which we emphasize

the operational semantics aspects in this paper (for the mathematical aspects of RLS see [56,57]).

Two key points to explain are: (i) how rewriting logic combines equational logic and traditional term rewriting; and

(ii) what the intuitive meaning of a rewrite theory is all about. A rewrite theory is a triple R = (�,E,R) with � a signature

of function symbols, E a set of (possibly conditional) �-equations, and R a set of �-rewrite rules which in general may be

conditional, with conditions involving both equations and rewrites. That is, a rule in R can have the general form

(∀X) t −→ t′ if

⎛
⎝∧

i

ui = u′i

⎞
⎠ ∧

⎛
⎝∧

j

wj −→ w′j

⎞
⎠

Alternatively, such a conditional rule could be displayed with an inference-rule-like notation as

(∧
i ui = u′

i

) ∧
(∧

j wj −→ w′
j

)

t −→ t′

Therefore, the logic’s atomic sentences are of two kinds: equations and rewrite rules. Equational theories and traditional

term rewriting systems then appear as special cases. An equational theory (�,E) can be faithfully represented as the rewrite

theory (�,E,∅); and a term rewriting system (�,R) can likewise be faithfully represented as the rewrite theory (�,∅,R).

Of course, if the equations of an equational theory (�,E) are confluent, there is another useful representation, namely, as

the rewrite theory (�,∅,−→E ), where
−→
E are the rewrite rules obtained by orienting the equations E as rules from left to right.

This representation is at the basis of much work in term rewriting, but by implicitly suggesting that rewrite rules are just

an efficient technique for equational reasoning it can blind us to the fact that rewrite rules can have a much more general

non-equational semantics. This is the whole raison d’être of rewriting logic. In rewriting logic a rewrite theory R = (�,E,R)

axiomatizes a concurrent system, whose states are elements of the algebraic data type axiomatized by (�,E), that is, they are

E-equivalence classes of ground �-terms, and whose atomic transitions are specified by the rules R. The inference system

of rewriting logic described below then allows us to derive as proofs all the possible concurrent computations of the system

axiomatized by R, that is, concurrent computation and rewriting logic deduction coincide.

Rewriting logic deduction

The inference rules below assume a typed setting, in which (�,E) is a membership equational theory [52] having sorts

(denoted s,s′,s′′, etc.), subsort inclusions, and kinds (denoted k,k′,k′′, etc.), which gather together connected components of
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Fig. 1. Visual representation of rewriting logic deduction.

sorts. Kinds allow error terms like 3/0, which has a kind but no sort. Similar inference rules can be given for untyped or

simply typed (many-sorted) versions of the logic. Given R = (�,E,R), the sentences that R proves are universally quantified

rewrites of the form (∀X) t −→ t′, with t,t′ ∈ T�(X)k , for some kind k, which are obtained by finite application of the following

rules of deduction:

• Reflexivity. For each t ∈ T�(X),
(∀X) t −→ t

• Equality. (∀X) u −→ v E � (∀X)u = u′ E � (∀X)v = v′
(∀X) u′ −→ v′

• Congruence. For each f : s1, . . . ,sn −→ s in �, with ti ∈ T�(X)si , 1 ≤ i ≤ n, and with t′
jl
∈ T�(X)sjl

, 1 ≤ l ≤ m,

(∀X) tj1 −→ t′
j1

. . . (∀X) tjm −→ t′
jm

(∀X) f (t1, . . . ,tj1 , . . . ,tjm , . . . ,tn) −→ f (t1, . . . ,t
′
j1
, . . . ,t′

jm
, . . . ,tn)

• Replacement. For each θ : X −→ T�(Y) and for each rule in R of the form

(∀X) t −→ t′ if

⎛
⎝∧

i

ui = u′i

⎞
⎠ ∧

⎛
⎝∧

j

wj −→ w′j

⎞
⎠

(∧
x(∀Y) θ(x) −→ θ ′(x)

) ∧ (∧
i(∀Y) θ(ui) = θ(u′

i
)
) ∧

(∧
j(∀Y) θ(wj) −→ θ(w′

j
)
)

(∀Y) θ(t) −→ θ ′(t′)

where θ ′ is the new substitution obtained from the original substitution θ by some possibly complex rewriting of each

θ(x) to some θ ′(x) for each x ∈ X .

• Transitivity.
(∀X) t1 −→ t2 (∀X) t2 −→ t3

(∀X) t1 −→ t3

We can visualize the above inference rules as in Fig. 1.

The notation R � t −→ t′ states that the sequent t −→ t′ is provable in the theory R using the above inference rules.

Intuitively, we should think of the inference rules as different ways of constructing all the (finitary) concurrent computations
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of the concurrent system specified by R. The “Reflexivity” rule says that for any state t there is an idle transition in which

nothing changes. The “Equality” rule specifies that the states are in fact equivalence classes modulo the equations E. The

“Congruence” rule is a very general form of “sideways parallelism”, so that each operator f can be seen as a parallel state

constructor, allowing its arguments to evolve in parallel. The “Replacement” rule supports a different form of parallelism,

which could be called “parallelism under one’s feet”, since besides rewriting an instance of a rule’s left-hand side to the

corresponding right-hand side instance, the state fragments in the substitution of the rule’s variables can also be rewritten.

Finally, the “Transitivity” rule allows us to build longer concurrent computations by composing them sequentially.

A somewhat more general version of rewriting logic [15] allows rewrite theories of the form R = (�,E ∪ A,R,φ), where the

additional component φ is a function assigning to each function symbol f ∈ � with n arguments a subset φ(f ) ⊆ {1, . . . ,n}
of those argument positions that are frozen, that is, positions under which rewriting is forbidden. The above inference

rules can then be slightly generalized. Specifically, the Congruence rule is restricted to non-frozen positions {j1, . . . ,jm},
and the substitution θ ′ in the Replacement rule should only differ from θ for variables x in non-frozen positions. The

generalized form R = (�,E ∪ A,R,φ), makes possible a more expressive control of the possibility of rewriting under con-

texts already supported by the Congruence rule; that is, it endows rewrite theories with flexible context-sensitive rewriting

capabilities.1

Note that, in general, a proof R � t −→ t′ does not represent an atomic step, but can represent a complex concurrent

computation. In some of the mathematical proofs that we will give to relate different operational semantics definitions, it

will be easier to work with a “one step” rewrite relation→1, defined on ground terms. This relation is just the special case

in which: (i) Transitivity is excluded; (ii) m = 1 in the Congruence rule (only one rewrite below); and (iii) Replacement is

restricted, so that no rewriting of the substitution θ to θ ′ is allowed; and (iv) there is exactly one application of Replacement.

The relation→≤1 is defined by allowing either one or no applications of Replacement in the last condition. Similarly, one

can define relations→n (or→≤n) by controlling the number of applications of the Transitivity rule. However, it should be

noted that rewriting logic does not have a builtin “one-step” rewrite relation, that being the reason for which we need a

methodology to encode “one step”-based formalisms such as SOS semantics. The “one-step” relation we define above is only

at the deduction level and is introduced solely to help our proofs.

The whole point of RLS is then to define the semantics of a programming language L as a rewrite theory RL. RLS uses the
fact that rewriting logic deduction is performedmodulo the equations in RL to faithfully capture the desired granularity of a

language’s computations. This is achieved bymaking rewriting rules all intended computational steps, while using equations

for convenient equivalent structural transformations of the state, or auxiliary “infrastructure” computations, which should

not be regarded as computation steps. Note that this does not preclude performing also equational simplification with

equations. That is, the set E of equations in a rewrite theory can often be fruitfully decomposed as a disjoint union E = E0 ∪ A,
whereA is a set of structural axioms, such as associativity, commutativity and identity of some function symbols, and E0 is a set

of equations that are confluent and terminating modulo the axioms A. A rewrite engine supporting rewriting modulo A will

then execute both the equations E0 and the rules Rmodulo A by rewriting. Under a condition called coherence [92], this form

of execution then provides a complete inference system for the given rewrite theory (�,E,R). However, both conceptually

and operationally, the execution of rules R and equations E0 must be separated. Conceptually, what we are rewriting with

R are E-equivalence classes, so that the E0-steps become invisible. Operationally, the execution of rules R and equations E0
must be kept separate for soundness reasons. This is particularly apparent in the case of executing conditional equations and

rules: for a conditional equation it would be unsound to use rules in R to evaluate its condition; and for a conditional rule it

would likewise be unsound to use rules in R to evaluate the equational part of its condition.

There are many systems that either specifically implement term rewriting efficiently, so-called as rewrite engines, or

support termrewriting aspart of amore complex functionality. Anyof these systemscanbeusedas anunderlyingplatform for

execution and analysis of programming languages defined using the techniques proposed in this paper. Without attempting

to be exhaustive, we here only mention (alphabetically) some engines that we are more familiar with, noting that many

functional languages and theorem provers provide support for term rewriting as well: Asf+Sdf [87], CafeOBJ [28], Elan [9],

Maude [22], OBJ [38], and Stratego [93]. Some of these engines can achieve remarkable speeds on today’s machines, in the

order of tens of millions of rewrite steps per second.

3. A simple imperative language

To illustrate the various operational semantics styles, we have chosen a small imperative language having arithmetic and

boolean expressions with side effects (increment expression), short-circuited boolean operations, assignment, conditional,

while loop, sequential composition, blocks, and halt. The syntax of the language is depicted in Table 1.

The semantics of ++x is that of incrementing the value of x in the store and then returning the new value. The increment

is done at the moment of evaluation, not after the end of the statement as in C/C++. Also, we assume short-circuit semantics

for boolean operations.

1 We will not consider this general version. The interested reader is referred to [15].
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Table 1

A small imperative language.

AExp ::= Var | Int | AExp +AExp | AExp -AExp | AExp *AExp |
AExp /AExp | ++Var

BExp ::= Bool | AExp <=AExp | AExp >=AExp | AExp ==AExp |
BExp andBExp | BExp orBExp | notBExp

Stmt ::= skip | Var :=AExp | Stmt ; Stmt | { Stmt } |
ifBExp then Stmt else Stmt | whileBExp Stmt | haltAExp

Pgm ::= Stmt .AExp

This BNF syntax is entirely equivalent to an algebraic order-sorted signature having one (mixfix) operation definition per

production, terminals giving the name of the operation and non-terminals the arity. For example, the production defining

if-then-else can be seen as an algebraic operation

if_then_else_ : BExp× Stmt× Stmt→ Stmt

We will use the following conventions for variables throughout the remainder of the paper: X ∈ Var, A ∈ AExp, B ∈ BExp,

St ∈ Stmt, P ∈ Pgm, I ∈ Int, T ∈ Bool = {true,false}, any of them primed or indexed.

The next sections will use this simple language and will present definitions in various operational semantics styles (big-

step, small-step SOS, MSOS, reduction using evaluation contexts, continuation-based, and Cham), as well the corresponding

RLS representation of each definition. We will also characterize the relation between the RLS representations and their

corresponding definitional style counterparts, pointing out some strengths and weaknesses for each style. The reader is

referred to [44,70,65,96,8] for further details on the described operational semantics styles.

Weassumeequational definitions for basic operations onbooleans and integers, and assume that any other theory defined

in the rest of this paper includes them. One of the reasons why we wrapped booleans and integers in the syntax is precisely

to distinguish them from the corresponding values, and thus to prevent the “builtin” equations from reducing expressions

like 3+ 5 directly in the syntax (we wish to have full control over the computational granularity of the language), since our

RLS representations aim to have the same computational granularity of each of the different styles represented.

4. Store

Unlike in various operational semantics, which usually abstract stores as functions, in rewriting logic we explicitly define

the store as an algebraic datatype: a store is a set of bindings from variables to values, together with two operations on

them, one for retrieving a value, another for setting a value.We show that well-formed stores correspond to partially defined

functions. Having this abstraction in place, we can regard them as functions for all practical purposes from now on.

To define the store, we assume a pairing “binding” constructor “_ �→ _”, associating values to variables,2 and an associative

and commutative union operation “_ _” with ∅ as its identity to put together such bindings. The equational definition EStore
of operations _[_] to retrieve the value of a variable in the store and _[_← _] to update the value of a variable is given by the

following equations, that operate modulo the associativity and commutativity of _ _

(S X �→ I)[X] = I

(S X �→ I)[X ′] = S[X ′] if X /= X ′
(S X �→ I)[X ← I′] = S X �→ I′
(S X �→ I)[X ′ ← I′] = S[X ′ ← I′] X �→ I if X /= X ′
∅[X ← I] = X �→ I

Note the X /= X appearing as a condition is not a negative condition, but rather a Boolean predicate, which can be

equationally defined for any constructor-based type such as the type of variables, for example. Since these definitions

are equational, from a rewriting logic semantic point of view they are invisible: transitions are performed modulo these

equations. This way we can maintain a coarser computational granularity, while making use of auxiliary functions defined

using equations. Although it might seem that, by using built-ins as integers and names, one cannot guarantee the existence

of the initial model, notice that all the “built-ins” appearing in these definitions (names, booleans, integers) are definable as

initial models of corresponding equational theories. And indeed, when performing formal proofs, one will make use of these

equational definitions of the so-called built-ins. A store s is well formed if EStore � s = x1 �→ i1, . . . ,xn �→ in for some xj ∈ Var

and ij ∈ Int, for all 1 ≤ j ≤ n, such that xi /= xj for any i /= j. We say that a store s is equivalent to a finite partial function

σ : Var ◦→ Int, written s � σ , if s is well formed and behaves as σ , that is, if for any x ∈ Var,i ∈ Int, σ(x) = i iff EStore � s[x] = i.

We recall that, given a store-function σ , σ [i/x] is defined as the function mapping x to i and other variables y to σ(y).

2 In general, one would have both an environment, and a store, with variables mapped to locations in the environment, and locations mapped to values

in the store. However, for the sake of brevity, and given the simplicity of our example language, we do not use environments and map variables directly to

values in the store.
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Proposition 1. Let x,x′ ∈ Var,i,i′ ∈ Int,s,s′ ∈ Store and finite partial functions σ ,σ ′ : Var ◦→ Int.

(1) ∅ �⊥ where ⊥ is the function undefined everywhere.

(2) (s x �→ i) � σ implies that s � σ [⊥ /x] where σ [⊥ /x] is defined as σ restricted to Dom(σ ) \ {x}.
(3) If s � σ then also s[x← i] � σ [i/x].

Proof.

(1) Trivial, since EStore �� ∅[x] = i for any x ∈ Var,i ∈ Int.

(2) Let σ ′ be such that s � σ ′. We will prove that Dom(σ ′) = Dom(σ ) \ {x} and for any x′ ∈ Dom(σ ′), σ ′(x) = σ(x). Consider an

arbitrary x′. If x′ = x, thenEStore �� s[x′] = i′ for any i′, sinceotherwisewewouldhaveEStore � s = s′ x �→ i′which contradicts

the well formedness of s x �→ i; therefore, σ ′ is not defined on x′. If x′ /= x, then EStore � s[x′] = (s x �→ i)[x′], therefore σ ′ is
defined on x′ iff σ is defined on x′, and if so σ ′(x′) = σ(x′).

(3) Suppose s � σ . We distinguish two cases—if σ is defined on x or if it is not. If it is, then let us say that σ(x) = i′; in that case

wemust have that EStore � s[x] = i′ which can only happen if EStore � s = s′ x �→ i′, whence EStore � s[x← i] = s′ x �→ i. Let

x′ be an arbitrary variable in Var. If x′ = x then

EStore � (s[x← i])[x′] = (s′ x �→ i)[x′] = i

If x′ /= x then

EStore � (s[x← i])[x′] = (s′ x �→ i)[x′] = s′[x′] = (s′ x �→ i′)[x′] = s[x′]
If σ is not defined for x, it means that EStore �� s[x] = i for any i, whence EStore �� s = s′ x �→ i. If EStore � s = ∅ then we are

done, since EStore � (x �→ i)[x′] = i′ iff x = x′ and i = i′. If EStore �� s = ∅, it must be that EStore � s = x1 �→ i1 . . . xn �→ in with

xi /= x. This leads to EStore � s[x← i] = · · · = (x1 �→ i1 . . . xi �→ ii)[x← i](xi+1 �→ ii+1 . . . xn �→ in) = · · · = ∅[x← i]s = (x �→
i)s = s(x �→ i). �

In the following, we will use symbols S, S′, S1,. . ., to denote variables of type Store.

5. Big-step operational semantics

Introduced as natural semantics in [44], also named relational semantics in [60], or evaluation semantics, big-step se-

mantics is “themost denotational” of the operational semantics. One can view big-step definitions as definitions of functions

interpreting each language construct in an appropriate domain.

Big-step semantics can be easily represented within rewriting logic. For example, consider the big-step rule defining

integer division

〈A1,σ 〉 ⇓ 〈I1,σ1〉,〈A2,σ1〉 ⇓ 〈I2,σ2〉
〈A1/A2,σ 〉 ⇓ 〈I1/IntI2,σ2〉

, if I2 /= 0

This rule can be automatically translated into the rewrite rule

〈A1/A2,S〉 → 〈I1/IntI2,S2〉 if 〈A1,S〉 → 〈I1,S1〉 ∧ 〈A2,S1〉 → 〈I2,S2〉 ∧ I2 /= 0

The complete big-step operational semantics definition for our simple language, except its halt statement (which is

discussed at the endof this section),whichwe callBigStep, is presented in Table 2.We choose to exclude from thepresentation

the semantics for constructs entirely similar to the ones presented, such as “−”, “*”, “/”, and “or”. To give a rewriting logic

theory for the big-step semantics, one needs to first define the various configuration constructs, which are assumed by

default in BigStep, as corresponding operations extending the signature. Then one can define the rewrite theory RBigStep
corresponding to the big-step operational semantics BigStep entirely automatically as shown by Table 3. Note that, because

the rewriting relation is reflexive, we did not need to add the reflexivity rules for boolean and integer values.

Due to the one-to-one correspondence between big-step rules in BigStep and rewrite rules in RBigStep, it is easy to prove

by induction on the length of derivations the following result:

Proposition 2. For any p ∈ Pgm and i ∈ Int, the following are equivalent:
(1) BigStep � 〈p〉 ⇓ 〈i〉
(2) RBigStep � 〈p〉 →1 〈i〉

Proof. A first thing to notice is that, since all rules involve configurations, rewriting can only occur at the top, thus the

general application of term rewriting under contexts is disabled by the definitional style. Another thing to notice here is
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Table 2

The BigStep language definition.

Types of configurations: 〈Int,Store〉, 〈Bool,Store〉, 〈AExp,Store〉,
〈BExp,Store〉, 〈Stmt,Store〉, 〈Pgm〉, 〈Int〉.·

〈I,σ 〉 ⇓ 〈I,σ 〉
·

〈X ,σ 〉 ⇓ 〈σ(X),σ 〉
·

〈++X ,σ 〉 ⇓ 〈I,σ [I/X]〉 , if I = σ(X)+ 1

〈A1,σ 〉 ⇓ 〈I1,σ1〉, 〈A2,σ1〉 ⇓ 〈I2,σ2〉
〈A1 + A2,σ 〉 ⇓ 〈I1 +Int I2,σ2〉

·
〈T ,σ 〉 ⇓ 〈T ,σ 〉

〈A1,σ 〉 ⇓ 〈I1,σ1〉, 〈A2,σ1〉 ⇓ 〈I2,σ2〉
〈A1<=A2,σ 〉 ⇓ 〈(I1 ≤Int I2),σ2〉
〈B1,σ 〉 ⇓ 〈true,σ1〉, 〈B2,σ1〉 ⇓ 〈T ,σ2〉

〈B1 and B2,σ 〉 ⇓ 〈T ,σ2〉
〈B1,σ 〉 ⇓ 〈false,σ1〉

〈B1 and B2,σ 〉 ⇓ 〈false,σ1〉
〈B,σ 〉 ⇓ 〈T ,σ ′〉

〈not B,σ 〉 ⇓ 〈not (T),σ ′〉

·
〈skip,σ 〉 ⇓ 〈σ 〉
〈A,σ 〉 ⇓ 〈I,σ ′〉

〈X:=A,σ 〉 ⇓ 〈σ ′[I/X]〉
〈St1,σ 〉 ⇓ 〈σ ′′〉, 〈St2,σ ′′〉 ⇓ 〈σ ′〉

〈St1; St2,σ 〉 ⇓ 〈σ ′〉
〈St,σ 〉 ⇓ 〈σ ′〉
〈{St},σ 〉 ⇓ 〈σ ′〉

〈B,σ 〉 ⇓ 〈true,σ1〉, 〈St1,σ1〉 ⇓ 〈σ2〉
〈if B then St1 else St2,σ 〉 ⇓ 〈σ2〉
〈B,σ 〉 ⇓ 〈false,σ1〉, 〈St2,σ1〉 ⇓ 〈σ2〉
〈if B then St1 else St2,S〉 ⇓ 〈σ2〉

〈B,σ 〉 ⇓ 〈false,σ ′〉
〈while B St,σ 〉 ⇓ 〈σ ′〉

〈B,σ 〉 ⇓ 〈true,σ1〉, 〈St,σ1〉 ⇓ 〈σ2〉, 〈while B St,σ2〉 ⇓ 〈σ ′〉
〈while B St,σ 〉 ⇓ 〈σ ′〉

〈St, ⊥〉 ⇓ 〈σ 〉, 〈A,σ 〉 ⇓ 〈I,σ ′〉
〈St.A〉 ⇓ 〈I〉

that all configurations in the right hand sides are normal forms, thus the transitivity rule for rewriting logic also becomes

inapplicable. Suppose s ∈ Store and σ : Var ◦→ Int such that s � σ . We prove the following statements:

(1) BigStep � 〈a,σ 〉 ⇓ 〈i,σ ′〉 iff RBigStep � 〈a,s〉 →1 〈i,s′〉 and s′ � σ ′,
for any a ∈ AExp,i ∈ Int,σ ′ : Var ◦→ Int and s′ ∈ Store.

(2) BigStep � 〈b,σ 〉 ⇓ 〈t,σ ′〉 iff RBigStep � 〈b,s〉 →1 〈t,s′〉 and s′ � σ ′,
for any b ∈ AExp,t ∈ Bool,σ ′ : Var ◦→ Int and s′ ∈ Store.

(3) BigStep � 〈st,σ 〉 ⇓ 〈σ ′〉 iff RBigStep � 〈st,s〉 →1 〈s′〉 and s′ � σ ′,
for any st ∈ Stmt,σ ′ : Var ◦→ Int and s′ ∈ Store.

(4) BigStep � 〈p〉 ⇓ 〈i〉 iff RBigStep � 〈p〉 →1 〈i〉,
for any p ∈ Pgm and i ∈ Int.

Each can be proved by induction on the size of the derivation tree. To avoid lengthy and repetitive details, we discuss the

corresponding proof of only one language construct in each category:

(1) BigStep � 〈x++,σ 〉 ⇓ 〈i,σ [i/x]〉 iff
i = σ(x)+ 1 iff

EStore ⊆ RBigStep � i = s[x] + 1 iff

RBigStep � 〈x++,s〉 →1 〈i,s[x← i]〉.
This completes the proof, since s[x← i] � σ [i/x], by 3 in Proposition 1.
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Table 3

RBigStep rewriting logic theory.

〈X ,S〉 → 〈S[X],S〉
〈++X ,S〉 → 〈I,S[X <∼ I]〉 if I = S[X] + 1

〈A1 + A2,S〉 → 〈I1 +Int I2,S2〉 if 〈A1,S〉 → 〈I1,S1〉 ∧ 〈A2,S1〉 → 〈I2,S2〉
〈A1<=A2,S〉 → 〈(I1 ≤Int I2),S2〉 if 〈A1,S〉 → 〈I1,S1〉 ∧ 〈A2,S1〉 → 〈I2,S2〉

〈B1 and B2,S〉 → 〈T ,S2〉 if 〈B1,S〉 → 〈true,S1〉 ∧ 〈B2,S1〉 → 〈T ,S2〉
〈B1 and B2,S〉 → 〈false,S1〉 if 〈B1,S〉 → 〈false,S1〉
〈not B,S〉 → 〈not(T),S′〉 if 〈B,S〉 → 〈T ,S′〉

〈skip,S〉 → 〈S〉
〈X:=A,S〉 → 〈S′[X <∼ I]〉 if 〈A,S〉 → 〈I,S′〉
〈St1; St2,S〉 → 〈S′〉 if 〈St1,S〉 → 〈S′′〉 ∧ 〈St2,S′′〉 → 〈S′〉
〈{St},S〉 → 〈S′〉 if 〈St,S〉 → 〈S′〉

〈if B then St1 else St2,S〉 → 〈S2〉 if 〈B,S〉 → 〈true,S1〉 ∧ 〈St1,S1〉 → 〈S2〉
〈if B then St1 else St2,S〉 → 〈S2〉 if 〈B,S〉 → 〈false,S1〉 ∧ 〈St2,S1〉 → 〈S2〉

〈while B St,S〉 → 〈S′〉 if 〈B,S〉 → 〈false,S′〉
〈while B St,S〉 → 〈S′〉 if 〈B,S〉 → 〈true,S1〉 ∧ 〈St,S1〉 → 〈S2〉

∧〈while B St,S2〉 → 〈S′〉
〈St.A〉 → 〈I〉 if 〈St,∅〉 → 〈S〉 ∧ 〈A,S〉 → 〈I,S′〉

(2) BigStep � 〈b1 and b2,σ 〉 ⇓ 〈t,σ ′〉 iff
(BigStep � 〈b1,σ 〉 ⇓ 〈false,σ ′〉 and t = false

or BigStep � 〈b1,σ 〉 ⇓ 〈true,σ ′′〉 and BigStep � 〈b2,σ ′′〉 ⇓ 〈t,σ ′〉) iff
(RBigStep � 〈b1,s〉 →1 〈false,s′〉, s′ � σ ′ and t = false

or RBigStep � 〈b1,s〉 →1 〈true,s′′〉, s′′ � σ ′′,
RBigStep � 〈b2,s′′〉 →1 〈t,σ ′〉 and s′ � σ ′) iff

RBigStep � 〈b1 and b2,s〉 →1 〈t,s′〉 and s′ � σ ′.

(3) BigStep � 〈while b st,σ 〉 ⇓ 〈σ ′〉 iff
(BigStep � 〈b,σ 〉 ⇓ 〈false,σ ′〉
or BigStep � 〈b,σ 〉 ⇓ 〈true,σ1〉

and BigStep � 〈st,σ1〉 ⇓ 〈σ2〉
and BigStep � 〈while b st,σ2〉 ⇓ 〈σ ′〉 ) iff

(RBigStep � 〈b,s〉 →1 〈false,s′〉 and s′ � σ ′

or RBigStep � 〈b,s〉 →1 〈true,s1〉, s1 � σ1

and RBigStep � 〈st,s1〉 →1 〈s2〉, s2 � σ2

and RBigStep � 〈while b st,s2〉 →1 〈s′〉 and s′ � σ ′ ) iff
RBigStep � 〈while b st,s〉 →1 〈s′〉 and s′ � σ ′.

(4) BigStep � 〈st.a〉 ⇓ 〈i〉 iff
BigStep � 〈st, ⊥〉 ⇓ 〈σ 〉 and BigStep � 〈a,σ 〉 ⇓ 〈i,σ ′〉 iff
RBigStep � 〈st,∅〉 →1 〈s〉, s � σ , RBigStep � 〈a,s〉 →1 〈i,s′〉 and s′ � σ ′ iff
RBigStep � 〈st.a〉 →1 〈i〉

This completes the proof. �

The only apparent difference between BigStep and RBigStep is the different notational conventions they use. However,

as the above theorem shows, there is a one-to-one correspondence also between their corresponding “computations” (or

executions, or derivations). Therefore, RBigStep actually is the big-step operational semantics BigStep, not an “encoding” of

it. Note that, in order to be faithfully equivalent to BigStep computationally, RBigStep lacks the main strength of rewriting

logic that makes it an appropriate formalism for concurrency, namely, that rewrite rules can apply under any context and in

parallel (here all rules are syntactically constrained so that they can only apply at the top, sequentially).

Strengths. Big-step operational semantics allows straightforward recursive definition. It can be easily and efficiently

interpreted in any recursive, functional, or logical framework. It is particularly useful for defining type systems.

Weaknesses. Due to its monolithic, single-step evaluation, it is hard to debug or trace big-step semantic definitions. If the

program is wrong, no information is given about where the failure occurred. Divergence is not observable in the specified
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evaluation relation. It may be hard or impossible to model concurrent features. It is not modular, e.g., to add side effects

to expressions, one must redefine the rules to allow expressions to evaluate to pairs (value-store). It is inconvenient (and

non-modular) to define complex control statements; consider, for example, adding halt to the above definition—one needs

to add a special configuration halting(I), and the following rules:
〈halt A,S〉 → halting(I) if 〈A.S〉 → 〈I,S′〉
〈St1; St2,S〉 → halting(I) if 〈St1,S〉 → halting(I)

〈while B St,S〉 → halting(I) if 〈B,S〉 → 〈S′〉 ∧ 〈St,S′〉 → halting(I)
〈St.A,S〉 → 〈I〉 if 〈St,∅〉 → halting(I)

6. Small-step operational semantics

Introduced by Plotkin in [70], also called transition semantics or reduction semantics, small-step semantics captures the

notion of one computational step.

One inherent technicality involved in capturing small-step operational semantics as a rewrite theory in a one-to-one

notational and computational correspondence is that the rewriting relation is by definition transitive, while the small-step

Table 4

The SmallStep language definition.

Types of configurations: 〈AExp,Store〉, 〈BExp,Store〉, 〈Stmt,Store〉, 〈Pgm,Store〉·
〈X ,σ 〉 → 〈(σ (X)),σ 〉
·

〈++X ,σ 〉 → 〈I,σ [I/X]〉 , if I = σ(X)+ 1

〈A1,σ 〉 → 〈A′1,σ ′〉
〈A1 + A2,σ 〉 → 〈A′1 + A2,σ ′〉

〈A2,σ 〉 → 〈A′2,σ ′〉
〈I1 + A2,σ 〉 → 〈I1 + A′

2
,σ ′〉

·
〈I1 + I2,σ 〉 → 〈I1 +Int I2,σ 〉

〈A1,σ 〉 → 〈A′1,σ ′〉
〈A1<=A2,σ 〉 → 〈A′1<=A2,σ ′〉

〈A2,σ 〉 → 〈A′2,σ ′〉
〈I1<=A2,σ 〉 → 〈I1<=A′2,σ ′〉

·
〈I1<=I2,σ 〉 → 〈(I1 ≤Int I2),σ 〉

〈B1,σ 〉 → 〈B′1,σ ′〉
〈B1 and B2,σ 〉 → 〈B′1 and B2,σ ′〉

·
〈true and B2,σ 〉 → 〈B2,σ 〉

·
〈false and B2,σ 〉 → 〈false,σ 〉

〈B,σ 〉 → 〈B′,σ ′〉
〈not B,σ 〉 → 〈not B′,σ ′〉

·
〈not true,σ 〉 → 〈false,σ 〉

·
〈not false,σ 〉 → 〈true,σ 〉

〈A,σ 〉 → 〈A′,σ ′〉
〈X:=A,σ 〉 → 〈X:=A′,σ ′〉

·
〈X:=I,σ 〉 → 〈skip,σ [I/X]〉

〈St1,σ 〉 → 〈St′1,σ ′〉
〈St1; St2,σ 〉 → 〈St′1; St2,σ ′〉

·
〈skip; St2,σ 〉 → 〈St2,σ 〉

·
〈{St},σ 〉 → 〈St,σ 〉

〈B,σ 〉 → 〈B′,σ ′〉
〈if B then St1 else St2,σ 〉 → 〈if B′ then St1 else St2,σ ′〉

·
〈if true then St1 else St2,σ 〉 → 〈St1,σ 〉

·
〈if false then St1 else St2,σ 〉 → 〈St2,σ 〉

·
〈while B St,σ 〉 → 〈if B then (St; while B St) else skip,σ 〉

〈St,σ 〉 → 〈St′,σ ′〉
〈St.A,σ 〉 → 〈St′.A,σ ′〉

〈A,σ 〉 → 〈A′,σ ′〉
〈skip.A,σ 〉 → 〈skip.A′,σ ′〉

〈P, ⊥〉 →∗ 〈skip.I,σ 〉
eval(P)→ I
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Table 5

RSmallStep rewriting logic theory.

·〈X ,S〉 → 〈(S[X]),S〉
·〈++X ,S〉 → 〈I,S[X <∼ I]〉 if I = S[X] + 1

·〈A1 + A2,S〉 → 〈A′1 + A2,S
′〉 if ·〈A1,S〉 → 〈A′1,S′〉

·〈I1 + A2,S〉 → 〈I1 + A′
2
,S′〉 if ·〈A2,S〉 → 〈A′2,S′〉

·〈I1 + I2,S〉 → 〈I1 +Int I2,S〉
·〈A1 <= A2,S〉 → 〈A′1 <= A2,S

′〉 if ·〈A1,S〉 → 〈A′1,S′〉
·〈I1 <= A2,S〉 → 〈I1 <= A′

2
,S′〉 if ·〈A2,S〉 → 〈A′2,S′〉

·〈I1 <= I2,S〉 → 〈(I1 ≤Int I2),S〉
·〈B1 and B2,S〉 → 〈B′1 and B2,S

′〉 if ·〈B1,S〉 → 〈B′1,S′〉
·〈true and B2,S〉 → 〈B2,S〉

·〈false and B2,S〉 → 〈false,S〉
·〈not B,S〉 → 〈not B′ ,S′〉 if ·〈B,S〉 → 〈B′ ,S′〉
·〈not true,S〉 → 〈false,S〉
·〈not false,S〉 → 〈true,S〉
·〈X := A,S〉 → 〈X := A′ ,S′〉 if ·〈A,S〉 → 〈A′ ,S′〉

·〈X := I,S〉 → 〈skip,S[X <∼ I]〉
·〈St1; St2,S〉 → 〈St′1; St2,S′〉 if ·〈St1,S〉 → 〈St′1,S′〉
·〈skip; St2,S〉 → 〈St2,S〉

·〈{St},S〉 → 〈St,S〉
·〈if B then St1 else St2,S〉

→ 〈if B′ then St1 else St2,S
′〉 if ·〈B,S〉 → 〈B′ ,S′〉

·〈if true then St1 else St2,S〉 → 〈St1,S〉
·〈if false then St1 else St2,S〉 → 〈St2,S〉

·〈while B St,S〉
→ 〈if B then (St; while B St) else skip,S〉

·〈St.A,S〉 → 〈St′.A,S′〉 if ·〈St,S〉 → 〈St′ ,S′〉
·〈skip.A,S〉 → 〈skip.A′ ,S′〉 if ·〈A,S〉 → 〈A′ ,S′〉
eval(P) = smallstep(〈P,∅〉)

smallstep(〈P,S〉) = smallstep(·〈P,S〉)
smallstep(·〈skip.I,S〉)→ I

relation is not transitive (its transitive closure can be defined a posteriori). Therefore, we need to devise a mechanism to

“inhibit” rewriting logic’s transitive and uncontrolled application of rules. An elegant way to achieve this is to view a small-

step as a modifier of the current configuration. Specifically, we consider “·” to be a modifier on the configuration which

performs a “small-step” of computation; in other words, we assume an operation ·_ : Config→ Config. Then, a small-step

semantic rule, e.g.,

〈A1,S〉 → 〈A′1,S′〉
〈A1 + A2,S〉 → 〈A′1 + A2,S′〉

is translated, again automatically, into a rewriting logic rule, e.g.,

·〈A1 + A2,S〉 → 〈A′1 + A2,S
′〉 if · 〈A1,S〉 → 〈A′1,S′〉

A similar technique is proposed in [55], but there two different types of configurations are employed, one standard and

the other “tagged” with the modifier. However, allowing “·” to be a modifier rather than a part of a configuration gives more

flexibility to the specification—for example, one can specify that one wants two steps simply by putting two dots in front of

the configuration.

The complete3 small-step operational semantics definition for our simple language except its halt statement (which is

discussed at the end of this section), whichwe call SmallStep, is presented in Table 4. The corresponding small-step rewriting

logic theory RSmallStep is given in Table 5. The language described here does not involve labels on rules like in the SOS of

concurrent systems. For that, one would take an approach similar to that presented in Section 7, that is, pushing the labels

back into the configurations.

3 However, for brevity’s sake, we do not present the semantics of similar constructs, such as −,∗,/, or.



T. Florin et al. / Information and Computation 207 (2009) 305–340 317

As for big-step semantics, the rewriting under context deduction rule for rewriting logic is again inapplicable, since all

rules act at the top, on configurations. However, in SmallStep it is not the case that all right hand sides are normal forms

(this actually is a key feature of small-step semantics). The “·” operator introduced in RSmallStep prevents the unrestricted

application of transitivity, and can be regarded as a token given to a configuration to allow it to change to the next step. We

use transitivity at the end (rules for smallstep) to obtain the transitive closure of the small-step relation by specifically giving

tokens to the configuration until it reaches a normal form.

Again, there is a direct correspondence between SOS-style rules and rewriting rules, leading to the following result, which

can also be proved by induction on the length of derivations:

Proposition 3. For any p ∈ Pgm,σ ,σ ′ : Var ◦→ Int and s ∈ Store such that s � σ , the following are equivalent:
(1) SmallStep � 〈p,σ 〉→〈p′,σ ′〉, and
(2) RSmallStep � ·〈p,s〉→1 〈p′,s′〉 and s′ � σ ′.

Moreover, the following are equivalent for any p ∈ Pgm and i ∈ Int:
(1) SmallStep � 〈p, ⊥〉 →∗ 〈skip.i,σ 〉 for some σ : Var ◦→ Int, and

(2) RSmallStep � eval(p)→ i.

Proof. As for big-step,we split the proof into four cases, by proving for each syntactical category the following facts (suppose

s ∈ Store,σ : Var ◦→ Int, s � σ ):

(1) SmallStep � 〈a,σ 〉 → 〈a′,σ ′〉 iff RSmallStep � ·〈a,s〉 →1 〈a′,s′〉 and s′ � σ ′,
for any a,a′ ∈ AExp, σ ′ : Var ◦→ Int and s′ ∈ Store.

(2) SmallStep � 〈b,σ 〉 → 〈b′,σ ′〉 iff RSmallStep � ·〈b,s〉 →1 〈b′,s′〉 and s′ � σ ′,
for any b,b′ ∈ BExp, σ ′ : Var ◦→ Int and s′ ∈ Store.

(3) SmallStep � 〈st,σ 〉 → 〈st′,σ ′〉 iff RSmallStep � ·〈st,s〉 →1 〈st′,s′〉 and s′ � σ ′,
for any st,st′ ∈ Stmt, σ ′ : Var ◦→ Int and s′ ∈ Store.

(4) SmallStep � 〈p,σ 〉 → 〈p′,σ ′〉 iff RSmallStep � ·〈p,s〉 →1 〈p′,s′〉 and s′ � σ ′,
for any p,p′ ∈ Pgm, σ ′ : Var ◦→ Int and s′ ∈ Store.

These equivalences can be shown by induction on the size of the derivation tree. Again, we only show one example per

category:

(1) SmallStep � 〈a1 + a2,σ 〉 → 〈a1 + a′
2
,σ ′〉 iff

a1 = i and SmallStep � 〈a2,σ 〉 → 〈a′2,σ ′〉 iff
a1 = i, RSmallStep � ·〈a2,s〉 →1 〈a′

2
,s′〉 and s′ � σ ′ iff

RSmallStep � ·〈a1 + a2,s〉 →1 〈a1 + a′
2
,s′〉 and s′ � σ ′.

(2) SmallStep � 〈not true,σ 〉 → 〈false,σ 〉 iff
RSmallStep � ·〈not true,s〉 →1 〈false,s〉.

(3) SmallStep � 〈st1; st2,σ 〉 → 〈st′1; st2,σ ′〉 iff
SmallStep � 〈st1,σ 〉 → 〈st′1,σ ′〉 iff
RSmallStep � ·〈st1,s〉 →1 〈st′

1
,s′〉 and s′ � σ ′ iff

RSmallStep � ·〈st1; st2,s〉 →1 〈st′
1
+ st2,s

′〉 and s′ � σ ′.
(4) SmallStep � 〈st.a,σ 〉 → 〈st.a′,σ ′〉 iff

st = skip and SmallStep � 〈a,σ 〉 → 〈a′,σ ′〉 iff
st = skip, RSmallStep � ·〈a,s〉 →1 〈a′,s′〉 and s′ � σ ′ iff
RSmallStep � ·〈st.a,s〉 → 〈st.a′,s′〉 and s′ � σ ′.

Let us nowmove to the second equivalence. For this proof let→n be the restriction of RSmallStep relation→ to those pairs

which can be provable by exactly applying n− 1 times the Transitivity rule if n > 0, or Reflexivity for n = 0. We first prove the

following more general result (suppose p ∈ Pgm, σ : Var ◦→ Int and s ∈ Store such that s � σ ):

SmallStep � 〈p,σ 〉 →n 〈p′,σ ′〉 iff
RSmallStep � smallstep(〈p,s〉)→n smallstep(·〈p′,s′〉) and s′ � σ ′,

by induction on n. If n = 0 then 〈p,σ 〉 = 〈p′,σ ′〉 and since RSmallStep � smallstep(〈p,s〉) = smallstep(·〈p,s〉) we are done. If n > 0,

we have that

SmallStep � 〈p,σ 〉 →n 〈p′,σ ′〉 iff
SmallStep � 〈p,σ 〉 → 〈p1,σ1〉 and SmallStep � 〈p1,σ1〉 →n−1 〈p′,σ ′〉 iff
RSmallStep � ·〈p,s〉 → 〈p1,s1〉 and s1 � σ1 (by 1)
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and RSmallStep � smallstep(〈p1,s1〉)→n−1 smallstep(·〈p′,s′〉) and s′ � σ ′
(by the induction hypothesis)

iff

RSmallStep � smallstep(·〈p,s〉)→1 smallstep(〈p1,s1〉) and s1 � σ1

and RSmallStep � smallstep(〈p1,s1〉)→n−1 smallstep(·〈p′,s′〉) and s′ � σ ′ iff
RSmallStep � smallstep(·〈p,s〉)→n smallstep(·〈p′,s′〉) and s′ � σ ′.
We are done, since RSmallStep � smallstep(〈p,s〉) = smallstep(·〈p,s〉).

Finally, SmallStep � 〈p, ⊥〉 →∗ 〈skip.i,σ 〉 iff RSmallStep � smallstep(〈p,∅〉)→ smallstep(·〈skip.i,s〉), s � σ ; the rest follows

from RSmallStep � eval(p) = smallstep(〈p,∅〉) and RSmallStep � smallstep(·〈skip.i,s〉) = i. �

Strengths. Small-step operational semantics precisely defines the notion of one computational step. It stops at errors,

pointing them out. It is easy to trace and debug. It gives interleaving semantics for concurrency.

Weaknesses. Each small step does the same amount of computation as a big-step in finding the next redex. It does not give

a “true concurrency” semantics, that is, one has to choose a certain interleaving (no two rules can be applied on the same term

at the same time), mainly because reduction is forced to occur only at the top. One of the reasons for introducing SOS was

that abstract machines need to introduce new syntactic constructs to decompose the abstract syntax tree, while SOS would

and should only work by modifying the structure of the program. We argue that this is not entirely accurate: for example,

one needs to have the syntax of boolean values if one wants to have boolean expressions, and needs an ifmechanism in the

above definition to evaluate while. The fact that these features are common in programming languages does not mean that

the languages which don’t want to allow them should be despised. It is still hard to deal with control—for example, consider

adding halt to this language. One cannot simply do it as for other ordinary statements: instead, one has to add a corner case

(additional rule) to each statement, as shown below:
·〈halt A,S〉 → 〈halt A′,S′〉 if ·〈A,S〉 → 〈A′,S′〉
·〈halt I; St,S〉 → 〈halt I,S〉
·〈halt I.A,S〉 → 〈skip.I,S〉

If expressions could also halt the program, e.g., if one adds functions, then a new rule would have to be added to specify

the corner case for each halt-related arithmetic or boolean construct. Moreover, by propagating the “halt signal” through all

the statements and expressions, one fails to capture the intended computational granularity of halt: it should just terminate

the execution in one step!

7. MSOS semantics

MSOS semantics was introduced by Mosses in [64,65] to deal with the non-modularity issues of small-step and big-step

semantics. The solution proposed in MSOS involves moving the non-syntactic state components to the labels on transitions

(as provided by SOS), plus a discipline of only selecting needed attributes from the states.

A transition inMSOS is of the form P
X−→ P′, where P and P′ are programexpressions andX is a label describing the structure

of the state both before and after the transition. If X is missing, then the state is assumed to stay unchanged. Specifically, X
is a record containing fields denoting the semantic components; the preferred notation in MSOS for saying that in the label

X the semantic component associated to the field name σ (e.g., a store name) is σ0 (e.g., a function associating values to

variables) is X = {σ = σ0, . . .}. Modularity is achieved by the record comprehension notation “. . .” which indicates that more

fields could followbut that they are not of interest for this transition. If record comprehension is used in both the premise and

the conclusion of an MSOS rule, then all occurrences of “. . .” stand for the same fields with the same semantic components.

Fields of a label can fall in one of the following categories: read-only, read-write, and write-only.

Read-only fields are only inspected by the rule, but not modified. For example, when reading the location of a variable in

an environment, the environment is not modified.

Read-write fields come in pairs, having the same field name, except that the “write” field name is primed. They are used

for transitions modifying existing state fields. For example, a store field σ can be read and written, as illustrated by theMSOS

rule‘ for assignment

unobs{σ = σ0,σ
′ = σ0 . . .}

X:=I
{σ=σ0,σ

′=σ0[I/X],...}−−−−−−−−−−−−−→ skip

The above rule says that, if before the transition the store was σ0, after the transition it will become σ0[I/X], updating X by I.

The unobs predicate is used to express that the rest of the state does not change.

Write-only fields are used to record things whose values cannot be inspected before a transition such as emission of

actions to the outsideworld (e.g., output, recording of the trace). Their names are always primed and they have a freemonoid

semantics—everything written on them is actually added at the end. A good example of the usage of write-only fields would
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Table 6

TheMSOS language definition.

unobs{σ , . . .}, σ(X) = I

X
{σ ,...}−−−→ I

unobs{σ = σ0,σ
′ = σ0, . . .}, I = σ0(X)+ 1

++X
{σ=σ0,σ

′=σ0[I/X],...}−−−−−−−−−−−−−→ I

A1
X−→ A′

1

A1 + A2
X−→ A′

1
+ A2

A2
X−→ A′

2

I1 + A2
X−→ I1 + A′

2

I = I1 +Int I2
I1 + I2 → I

A1
X−→ A′

1

A1<=A2
X−→ A′

1
<=A2

A2
X−→ A′

2

I1<=A2
X−→ I1<=A

′
2

T = I1 ≤Int I2
I1<=I2 → T

B1
X−→ B′

1

B1 and B2
X−→ B′

1
and B2

true and B2 → B2

false and B2 → false

B
X−→ B′

not B
X−→ not B′

not true→ false

not false→ true

A
X−→ A′

X:=A
X−→ X:=A′

unobs{σ = σ0,σ
′ = σ0, . . .}

X:=I
{σ=σ0,σ

′=σ0[I/X],...}−−−−−−−−−−−−−→ skip

St1
X−→ St′

1

St1; St2 X−→ St′
1
; St2

skip; St2 → St2

{St} → St

B
X−→ B′

if B then St1 else St2
X−→ if B′ then St1 else St2

if true then St1 else St2 → St1

if false then St1 else St2 → St2

while B St → if B then (St; while B St) else skip

St
X−→ St′

St.A
X−→ St′.A

A
X−→ A′

skip.A
X−→ skip.A′

be a rule for defining a print language construct

unobs{out′ = (), . . .}
print(I)

{out′=I,...}−−−−−−→ skip

where “()” stand for monoid unit.

The state after this rule is applied will have the out field containing “LI”, where the juxtaposition LI denotes the free

monoid multiplication of L and I.

The MSOS description of the small-step SOS definition in Table 4 is given in Table 6 (we let X range over labels on

transitions).

Because the part of the state not involved in a certain rule is hidden through the “. . .” notation, language extensions can

be made modularly. Consider, for example, adding halt to the definition in Table 6. One possible way to do it is to follow

the technique proposed in [65] for adding non-parametric abrupt termination, with somemodifications to suit our needs to

abruptly terminate the programwith a value. For this, we add a write-only field in the record, say halt? having as arrows the

monoid freely generated by integer numbers, along with a language construct stuck to block the execution of the program.

To “catch the halt signal” we extend the abstract syntax with a new construct, say program, applied to a top-level program.

The first set of MSOS rules for halt are then
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A
X−→ A′

halt A
X−→ halt A′

unobs{halt?′ = (), . . .}
halt I

{halt?′=I,...}−−−−−−−→ stuck

P
{halt?′=I,...}−−−−−−−→ P′

program P
{halt?′=I,...}−−−−−−−→ program skip.I

P
{halt?′=(),...}−−−−−−−−→ P′

program P
{halt?′=(),...}−−−−−−−−→ program P′

An alternative to the above definition, which would not require the introduction of new syntax, is to make halt? a read-

write field with possible values integers alongwith a default value nil and use an unobservable transition at top to terminate

the program:

A
X−→ A′

halt A
X−→ halt A′

unobs{halt? = nil,halt?′ = nil, . . .}
halt I

{halt?=nil,halt?′=I,...}−−−−−−−−−−−−−→ stuck

unobs{halt? = I, . . .}
P
{halt?=I,...}−−−−−−−→ skip.I

However, since the last rule is based on observation of the state, the program is not forced to terminate as soon as halt is

consumed (as was the case in the first definition), since in the case of non-determinism, for example, there might be other

things which are still computable.

To give a faithful representation of MSOS definitions in rewriting logic, we here follow the methodology in [55]. Using

the fact that labels describe changes from their source state to their destination state, one can move the labels back into the

configurations. That is, a transition step P
u−→ P′ is modeled as a rewrite step ·〈P,upre〉 → 〈P′,upost〉, where upre and upost are

records describing the state before and after the transition. Notice again the use of the “·” operator to emulate small-steps by

restricting transitivity. State records can be specified equationally as wrapping (using a constructor “{_}”) a set of fields built
from fields as constructors, using an associative and commutative concatenation operation “_,_”. Fields are constructed from

state attributes; for example, the store can be embedded into a field by a constructor “σ : _”.
Records upre and upost are computed from u in the following way:

• For unobservable transitions, upre = upost; same applies for unobservable attributes in premises;

• Read-only fields of u are added to both upre and upost .

• Read-write fields of u are translated by putting the read part in upre and the (now unprimed) write part in upost . The

assignment rule, for example, becomes

·〈X:=I,{σ : S0,W}〉 → 〈skip,{σ : S0[X <∼ I],W}〉
Notice that the “. . .” notation gets replaced by a generic field-set variable W .

• Write-only fields i′ = v of u are translated as follows: i : L, with L a fresh new variable, is added to upre, and i : Lv is added

to upost . For example, the print rule above becomes

·〈print(I),{out : L,W}〉 → 〈skip,{out : LI,W}〉
• When dealing with observable transitions, both state records meta-variables and . . . operations are represented in upre

by some variables, while in upost by others. For example, the first rule defining addition in Table 6 is translated into

·〈A1 + A2,R〉 → 〈A′1 + A2,R
′〉 if ·〈A1,R〉 → 〈A′1,R′〉

The key thing to notice here is that modularity is preserved by this translation. What indeed makes MSOS definitions

modular is the record comprehension mechanism. A similar comprehension mechanism is achieved in rewriting logic by

using sets of fields and matching modulo associativity and commutativity. That is, the extensibility provided by the “. . .”

record notation in MSOS is here captured by associative and commutative matching on the W variable, which allows new

fields to be added.
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The relation betweenMSOS and RMSOS definitions assumes thatMSOS definitions are in a certain normal form [55] and is

made precise by the following theorem, strongly relating MSOS and modular rewriting semantics.

Theorem 1 ([55]). For each normalized MSOS definition, there is a strong bisimulation between its transition system and the

transition system associated to its translation in rewriting logic.

The above presented translation is the basis for the Maude-MSOS tool [19], which has been used to define and analyze

complex language definitions, such as Concurrent ML [18].

Table 7 presents the rewrite theory corresponding to the MSOS definition in Table 6. The only new variable symbols

introduced are R,R′, standing for records, and W standing for the remainder of a record.

Strengths. As it is a framework on top of any operational semantics, it inherits the strengths of the semantics for which it

is used; moreover, it adds to those strengths the important new feature of modularity. It is well known that SOS definitions

are typically highly unmodular, so that adding a new feature to the language often requires the entire redefinition of the SOS

rules.

Weaknesses. Control is still not explicit inMSOS, making combinations of control-dependent features (e.g., call/cc) impos-

sible to specify [65, p. 223]. Also,MSOS still does not allow to capture the intended computational granularity of somedefined

language statements. For example, the desired semantics of “halt i” is “stop the execution with the result i”; unfortunately,

MSOS, like its SOS ancestors, still needs to “propagate” the halting signal along the syntax all the way to the top.

8. Reduction semantics with evaluation contexts

Introduced in [96], also called context reduction, the evaluation contexts style improves over small-step definitional style

in two ways:

(1) it gives a more compact semantics to context-sensitive reduction, by using parsing to find the next redex rather than

small-step rules; and

Table 7

RMSOS rewriting logic theory.

·〈X ,{σ : S,W}〉 → 〈I,{σ : S,W}〉 if I = S[X]
·〈++X ,{σ : S0,W}〉 → 〈I,{S0[X <∼ I],W}〉 if I = S0[X] + 1

·〈A1 + A2,R〉 → 〈A′1 + A2,R
′〉 if ·〈A1,R〉 → 〈A′1,R′〉

·〈I1 + A2,R〉 → 〈I1 + A′
2
,R′〉 if ·〈A2,R〉 → 〈A′2,R′〉

·〈I1 + I2,R〉 → 〈I1 +Int I2,R〉
·〈A1<=A2,R〉 → 〈A′1<=A2,R

′〉 if ·〈A1,R〉 → 〈A′1,R′〉
·〈I1<=A2,R〉 → 〈I1<=A′2,R′〉 if ·〈A2,R〉 → 〈A′2,R′〉
·〈I1<=I2,R〉 → 〈I1 ≤Int I2,R〉

·〈B1 and B2,R〉 → 〈B′1 and B2,R
′〉 if ·〈B1,R〉 → 〈B′1,R′〉

·〈true and B2,R〉 → 〈B2,R〉
·〈false and B2,R〉 → 〈false,R〉

·〈not B,R〉 → 〈not B′,R′〉 if ·〈B,R〉 → 〈B′,R′〉
·〈not true,R〉 → 〈false,R〉
·〈not false,R〉 → 〈true,R〉
·〈X:=A,R〉 → 〈X:=A′,R′〉 if ·〈A,R〉 → 〈A′,R′〉

·〈X:=I,{σ : S0,W}〉 → 〈skip,{σ : S0[X <∼ I],W}〉
·〈St1; St2,R〉 → 〈St′1; St2,R′〉 if ·〈St1,R〉 → 〈St′1,R′〉
·〈skip; St2,R〉 → 〈St2,R〉

·〈{St},R〉 → 〈St,R〉
·〈if B then St1 else St2,R〉

→ 〈if B′ then St1 else St2,R
′〉 if ·〈B,R〉 → 〈B′,R′〉

·〈if true then St1 else St2,R〉 → 〈St1,R〉
·〈if false then St1 else St2,R〉 → 〈St2,R〉

·〈while B St,R〉
→ 〈if B then (St; while B St) else skip,R〉

·〈St.A,R〉 → 〈St′.A,R′〉 if ·〈St,R〉 → 〈St′,R′〉
·〈skip.A,R〉 → 〈skip.A′,R′〉 if ·〈A,R〉 → 〈A′,R′〉
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(2) it provides the possibility of also modifying the context in which a reduction occurs, making it much easier to deal

with control-intensive features. For example, defining halt is done now using only one rule, C[halt I] → I, preserving

the desired computational granularity. Additionally, one can also incorporate the configuration as part of the evaluation

context, and thus have full access to semantic information on a “by need basis”; the PLT-Redex implementation of context

reduction, for example, supports this approach. Notice how the assignment rule, for example, modifies both the redex,

transforming it to skip, and the evaluation context, altering the state which can be found at its top. In this framework,

constructs like call/cc can be defined with little effort.

In a context reduction semantics of a language, one typically starts by defining the syntax of evaluation contexts. An

evaluation context is a program with a “hole”, the hole being a placeholder where the next computational step takes place.

If C is such a context and E is some expression whose type fits into the type of the hole of C, then C[E] is the program formed

by replacing the hole of C by E. The characteristic reduction step underlying context reduction is

E→ E′

C[E] → C[E′]
extending the usual “only-at-the-top” reduction by allowing reduction steps to take place under any desired evaluation

context. Therefore, an important part of a context reduction semantics is the definition of evaluation contexts, which is

typically done by means of a context-free grammar. The definition of evaluation contexts for our simple language is found

in Table 8 (we let [] denote the “hole”).

In thisBNFdefinitionof evaluationcontexts,S is a storevariable. Therefore, a “top level” evaluationcontextwill also contain

a store in our simple language definition. There are also context-reduction definitions which operate only on syntax (i.e.,

no additional state is needed), but instead one needs to employ some substitution mechanism (particularly in definitions of

λ-calculus based languages). The rules following the evaluation contexts grammar in Table 8 complete the context reduction

semantics of our simple language, which we call CxtRed.

Bymaking theevaluationcontext explicit andchangeable, context reduction is, inourview, a significant improvementover

small-step SOS. In particular, one can now define control-intensive statements like halt modularly and at the desired level

of computational granularity. Even though the definition in Table 8 gives one the feeling that evaluation contexts and their

instantiation come “for free”, the application of the “rewrite in context” rule presented above can be expensive in practice.

This is because one needs either to parse/search the entire configuration to put it in the form C[E] for some appropriate

Table 8

The CxtRed language definition.

CConf ::= 〈CPgm,Store〉
CPgm ::= [] | skip.CAExp | CStmt.AExp

CStmt ::= [] | CStmt; Stmt | X:=CAExp | ifCBExp then Stmt else Stmt

| haltCAExp
CBExp ::= [] | Int<=CAExp | CAExp<=AExp | CBExp andBExp | notCBExp
CAExp ::= [] | Int+ CAExp | CAExp+ AExp

E→ E′

C[E] → C[E′]

I1 + I2 → (I1 +Int I2)

〈P,σ 〉[X] → 〈P,σ 〉[(σ (X))]
〈P,σ 〉[++X] → 〈P,σ [I/X]〉[I]when I = σ(X)+ 1

I1<=I2 → (I1 ≤Int I2)

true and B→ B

false and B→ false

not true→ false

not false→ true

if true then St1 else St2 → St1

if false then St1 else St2 → St2

skip; St → St

{St} → St

〈P,σ 〉[X:=I] → 〈P,σ [I/X]〉[skip]
while B St → if B then (St; while B St) else skip

C[halt I] → 〈I〉

C[skip.I] → 〈I〉
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C satisfying the grammar of evaluation contexts, or to maintain enough information in some special data-structures to

perform the split C[E] using only local information and updates. Moreover, this “matching-modulo-the-CFG-of-evaluation-

contexts” step needs to be done at every computation step during the execution of a program, so it may easily become the

major bottleneck of an executable engine based on context reduction. Direct implementations of context reduction such as

PLT-Redex cannot avoid paying a significant performance penalty [97]. Danvy and Nielsen propose in [27] a technique for

efficiently interpreting a restricted form of reduction semantics definitions by means of “refocusing” functions which yield

efficient abstract machines. Although these refocusing functions are equationally definable, since we aim here to achieve

minimal representational distance, we prefer to translate the definitions into rewriting logic by leaving the rules unchanged

and implementing the decompose and plug functions from reduction semantics by means of equations. Next section will

present an abstract-machine definition of a programming language in rewriting logic, resembling Felleisen’s CK machine

[34], which is obtained by applying Danvy and Nielsen’s technique.

Context reduction is trickier to faithfully capture as a rewrite theory, since rewriting logic, by its locality, always applies

a rule in context, without actually having the capability of changing the given context. Also, from a rewriting point of

view, context-reduction captures context-sensitive rewriting, which, although supported by rewriting logic in the form of

congruence restricted to the non-frozen arguments of each operator, cannot be captured “as-is” in its full generality within

rewriting logic.

To faithfully model context-reduction, we make use of two equationally-defined operations: s2c, which splits a piece of

syntax into a context and a redex, and c2s, which plugs a piece of syntax into a context. In our rewriting logic definition,

C[R] is not a parsing convention, but rather a constructor conveniently representing the pair (context C, redex R). In order

to have an algebraic representation of contexts we extend the signature by adding a constant [], representing the hole, for

each syntactic category. The operation s2c, presented in Table 9, has an effect similar to what one achieves by parsing in

context reduction, in the sense that given a piece of syntax it yields C[R]. It is a straight-forward, equational definition of

the decompose function used in context-reduction implementations based on the syntax of contexts. We here assume the

same restrictions on the context syntax as in [27], namely that the grammar defining them is context-free and that there

is always a unique decomposition of an expression into a context and a redex. The operation c2s, presented in Table 10, is

the equational definition of the plug function used in interpreting context-reduction definitions, and it is a morphism on

the syntax. Notice that (from the defining equations) we have the guarantee that it will be applied only to “well formed”

Table 9

Equational definition of s2c.

s2c(〈P,S〉) = 〈C,S〉[R] if C[R] = s2c(P)

s2c(skip.I) = [][skip.I]
s2c(skip.A) = (skip.C)[R] if C[R] = s2c(A)

s2c(St.A) = (C.A)[R] if C[R] = s2c(St)

s2c(halt I) = [][halt I]
s2c(haltA) = (haltC)[R] if C[R] = s2c(A)

s2c(whileB St) = [][whileB St]
s2c(if T then St1 else St2) = [][if T then St1 else St2]

s2c(ifB then St1 else St2) = (ifC then St1 else St2)[R] if C[R] = s2c(B)

s2c({St}) = [][{St}]
s2c(skip; St2) = [][skip; St2]

s2c(St1; St2) = (C; St2)[R] if C[R] = s2c(St1)

s2c(X:=I) = [][X:=I]
s2c(X:=A) = (X:=C)[R] if C[R] = s2c(A)

s2c(I1<=I1) = [][I1<=I2]
s2c(I<=A) = (I<=C)[R] if C[R] = s2c(A)

s2c(A1<=A2) = (C<=A2)[R] if C[R] = s2c(A1)

s2c(T andB2) = [][T andB2]
s2c(B1 andB2) = (C andB2)[R] if C[R] = s2c(B1)

s2c(not T) = [][not T ]
s2c(notB) = (notC)[R] if C[R] = s2c(B)

s2c(X) = [][X]
s2c(++X) = [][++X]

s2c(I1 + I2) = [][I1 + I2]
s2c(I + A) = (I + C)[R] if C[R] = s2c(A)

s2c(A1 + A2) = (C + A2)[R] if C[R] = s2c(A1)
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Table 10

Equational definition of c2s.

c2s([][H]) = H

c2s(〈P,S〉[H]) = 〈c2s(P[H]),S〉
c2s(〈I〉[H]) = 〈I〉
c2s(E1.E2[H]) = c2s(E1[H]).c2s(E2[H])
c2s(halt E[H]) = halt c2s(E[H])
c2s(while E1 E2[H]) = while c2s(E1[H]) c2s(E2[H])
c2s(if E then E1 else E2[H]) = if c2s(E[H]) then c2s(E1[H]) else c2s(E2[H])
c2s({E}[H]) = {c2s(E[H])}
c2s(E1; E2[H]) = c2s(E1[H]); c2s(E2[H])
c2s(X:=E[H]) = X:=c2s(E[H])
c2s(skip[H]) = skip

c2s(E1<=E2[H]) = c2s(E1[H])<=c2s(E2[H])
c2s(E1 and E2[H]) = c2s(E1[H]) and c2s(E2[H])
c2s(not E[H]) = not c2s(E[H])
c2s(true[H]) = true

c2s(false[H]) = false

c2s(++X[H]) = ++X

c2s(E1 + E2[H]) = c2s(E1[H])+ c2s(E2[H])
c2s(I[H]) = I

contexts (i.e., contexts containing only one hole). The rewrite theory RCxtRed is obtained by adding the rules in Table 11 to

the equations of s2c and c2s.

The RCxtRed definition is a faithful representation of context reduction semantics: indeed, it is easy to see that s2c

recursively finds the redex taking into account the syntactic rules defining a context in the same way a parser would,

and in the same way as other current implementations of this technique do it. Also, since parsing issues are abstracted away

using equations, the computational granularity is the same, yielding aone-to-one correspondencebetween the computations

performed by the context reduction semantics rules and those performed by the rewriting rules.

Theorem 2. Suppose that s � σ. Then the following hold:
(1) 〈p,σ 〉 parses in CxtRed as 〈c,σ 〉[r] iff RCxtRed � s2c(〈p,s〉) = 〈c,s〉[r];
(2) RCxtRed � c2s(c[r]) = c[r/[]] for any valid context c and appropriate redex r;
(3) CxtRed � 〈p,σ 〉 → 〈p′,σ ′〉 iff RCxtRed � ·(〈p,s〉)→1 〈p′,s′〉 and s′ � σ ′;
(4) CxtRed � 〈p,σ 〉 → 〈i〉 iff RCxtRed � ·(〈p,s〉)→1 〈i〉;
(5) CxtRed � 〈p, ⊥〉 →∗ 〈i〉 iff RCxtRed � eval(p)→ i.

Proof.

(1) By induction on the number of context productions applied to parse the context, which is the same as the length of the

derivation of RCxtRed � s2c(syn) = c[r], respectively, for each syntactical construct syn. We only show some of the more

interesting cases.

Case ++x: ++x parses as [][++x]. Also RCxtRed � s2c(++x) = [][++x] in one step (it is an instance of an axiom).

Case a1<=a2: a1 <= a2 parses as a1 <= c[r] iff
a1 ∈ Int and a2 parses as c[r] iff
a1 ∈ Int and RCxtRed � s2c(a2) = c[r] iff
RCxtRed � s2c(a1<=a2) = (a1<=c)[r].

Case x:=a: x:=a parses as [][x:=a] iff a ∈ Int, iff

RCxtRed � s2c(x:=i) = [][x:=i].
Case st.a: st.a parses as st.c[r] iff

st = skip and a parses as c[r], iff
st = skip and RCxtRed � s2c(a) = c[r] iff
RCxtRed � s2c(at.a) = st.c[r].

Case 〈p,σ 〉: 〈p,σ 〉 parses as c[r] iff
p parses as c′[r] and c = 〈c′,s〉 iff
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Table 11

RCxtRed rewriting logic theory.

·(I1 + I2)→ (I1 +Int I2)

·(〈P,S〉[X])→ 〈P,S〉[(S[X])]
·(〈P,S〉[++X])→ 〈P,S[X <∼ I]〉[I] if I = s(S[X])

·(I1<=I2)→ (I1 ≤Int I2)

·(true and B)→ B

·(false and B)→ false

·(not true)→ false

·(not false)→ true

·(if true then St1 else St2)→ St1

·(if false then St1 else St2)→ St2

·(skip; St)→ St

·({St})→ St

·(〈P,S〉[X:=I])→ 〈P,S[X <∼ I]〉[skip]
·(while B St)

→ if B then (St; while B St) else skip

·(C[halt I])→ 〈I〉[[]]
·(C[skip.I])→ 〈I〉[[]]

·(C[R])→ C[R′] if ·(R)→ R′

·(Cfg)→ c2s(C[R]) if ·(s2c(Cfg))→ C[R]
eval(P) = reduction(〈P,∅〉)

reduction(Cfg) = reduction(·(Cfg))
reduction(〈I〉) = I

RCxtRed � s2c(p) = c′[r] and c = 〈c′,s〉 iff
RCxtRed � s2c(〈p,s〉) = 〈c′,s〉[r].

(2) From the way it was defined, c2s acts as a morphism on the structure of syntactic constructs, changing [] in C by R. Since

c2s is defined for all constructors, it will work for any valid context C and pluggable expression e. Note, however, that c2s

works as stated also on multi-contexts (i.e., on contexts with multiple holes), but this aspect does not interest us here.

(3) There are several cases again to analyze, depending on the particular reduction that provoked the derivation CxtRed �
〈p,σ 〉 → 〈p′,σ 〉. We only discuss some cases; the others are treated similarly.

CxtRed � 〈p,σ 〉 → 〈p′,σ ′〉 because of CxtRed � 〈c,σ 〉[x] → 〈c,σ 〉[σ(x)] iff
〈p,σ 〉 parses as 〈c,σ 〉[x] and 〈p′,σ ′〉 is 〈c,σ 〉[σ(x)] (in particular σ ′ = σ ) iff

RCxtRed � s2c(〈p,s〉) = 〈c,s〉[x], RCxtRed � s[x] = i where i = σ(x) and RCxtRed � c2s(〈c,s〉[i]) = 〈p′,s〉 iff
RCxtRed � ·(〈p,s〉)→1 〈p′,s〉, because RCxtRed � ·(〈c,s〉[x])→1 〈c,s〉[i].
CxtRed � 〈p,σ 〉 → 〈p′,σ 〉 because of not true→false

c[not true]→c[false] for some evaluation context c iff

〈p,σ 〉 parses as c[not true] and 〈p′,σ 〉 is c[false] iff
RCxtRed � s2c(〈p,s〉) = c[not true] and RCxtRed � c2s(c[false]) = 〈p′,s〉 iff
RCxtRed � ·(〈p,s〉)→1 〈p′,s〉, becauseRCxtRed � ·(c[not true])→1 c[false] (which follows sinceRCxtRed � ·(not true)→1

false).
CxtRed � 〈p,σ 〉 → 〈p′,σ ′〉 because of

CxtRed � 〈c,σ 〉[x:=i] → 〈c,σ [i/x][skip]〉 iff
〈p,σ 〉 parses as 〈c,σ 〉[x:=i], σ ′ = σ [i/x] and 〈p′,σ ′〉 is 〈c,σ ′〉[skip] iff
RCxtRed � s2c(〈p,s〉) = 〈c,s〉[x:=i], s′ = s[x← i] � σ ′ and RCxtRed � c2s(〈c,s′〉[skip]) = 〈p′,s′〉 iff
RCxtRed � ·(〈p,s〉)→1 〈p′,s′〉, because
RCxtRed � ·(〈c,s〉[x:=i])→1 〈c,s′〉[skip].

(4) CxtRed � 〈p,σ 〉 → 〈i〉 because of CxtRed � c[skip.i] → 〈i〉 iff
〈p,σ 〉 parses as 〈[],σ 〉[skip.i] iff
RCxtRed � s2c(〈p,s〉) = 〈[],s〉[skip.i] iff
RCxtRed � ·(〈p,s〉) = 〈i〉, since RCxtRed � ·(〈[],σ 〉[skip.i])→1 〈i〉[[]] and since RCxtRed � c2s(〈i〉[[]]) = 〈i〉.
Also, CxtRed � 〈p,σ 〉 → 〈i〉 because of CxtRed � c[halt i] → 〈i〉 iff
〈p,σ 〉 parses as 〈c,σ 〉[halt i] iff
RCxtRed � s2c(〈p,s〉) = 〈c,s〉[halt i] iff
RCxtRed � ·(〈p,s〉) = 〈i〉 since RCxtRed � ·(〈c,σ 〉[halt i])→1 〈i〉[[]] and since RCxtRed � c2s(〈i〉[[]]) = 〈i〉.

(5) This part of the proof follows the same pattern as that for the similar property for SmallStep (Proposition 3), using the

above properties and replacing smallstep by reduction. �
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Table 12

Rewriting logic theory RK (continuation-based definition of the language).

aexp(I) = I

aexp(A1 + A2) = (aexp(A1),aexp(A2))�+
k(aexp(X)�K) store(Store)→ k(Store[X]�K) store(Store)

k(aexp(++X)�K) store((X = I) Store)

→ k(s(I)�K) store((X = s(I)) Store)

k(I1,I2�+�K)→ k(I1 +Int I2�K)

bexp(true) = true bexp(false) = false

bexp(A1<=A2) = (aexp(A1),aexp(A2))� ≤
bexp(B1 and B2) = bexp(B1)�and(bexp(B2))

bexp(not B) = bexp(B)�not

k(I1,I2� ≤�K)→ k(I1 ≤Int I2�K)

k(true�and(K2)�K)→ k(K2�K)

k(false�and(K2)�K)→ k(false�K)

k(T�not�K)→ k(notBoolT�K)

stmt(skip) = nothing

stmt(X := A) = aexp(A)�write(X)

stmt(St1; St2) = stmt(St1)�stmt(St2) stmt({St}) = stmt(St)

stmt(if B then St1 else St2) = bexp(B)�if(stmt(St1),stmt(St2))

stmt(while B St) = bexp(B)�while(bexp(B),stmt(St))

stmt(halt A) = aexp(A)�halt

k(I�write(X)�K) store(Store)→ k(K) store(Store[X ← I])
k(true�if(K1,K2)�K)→ k(K1�K)

k(false�if(K1,K2)�K)→ k(K2�K)

k(true�while(K1,K2)�K)→ k(K2�K1�while(K1,K2)�K)

k(false�while(K1,K2)�K)→ k(K)

k(I�halt�K)→ k(I)

pgm(St.A) = stmt(St)�aexp(A)

〈P〉 = result(k(pgm(P)) store(empty))

result(k(I) store(Store)) = I

Strengths. Context reduction semantics divides SOS rules into computational rules and rules needed to find the redex;

the latter are transformed into grammar rules generating the allowable contexts. This makes definitions more compact. It

improvesoverSOSsemanticsbyallowing thecontext tobechangedbyexecutionrules. It caneasilydealwithcontrol-intensive

features. It is more modular than SOS.

Weaknesses. It still only allows “interleaving semantics” for concurrency. Although context-sensitive rewritingmight seem

to be easily implementable by rewriting, in fact all current implementations of context reduction work by transforming

context grammar definitions into traversal functions, thus being as (in)efficient as the small-step implementations (one has

to perform an amount of work linear in the size of the program for each computational step). However, one might obtain

efficient implementations for restricted forms of context-reduction definitions by applying refocusing techniques [27].

9. A continuation-based semantics

The idea of continuation-based interpreters for programming languages and their relation to abstract machines has been

well studied (see, for example, [34]). In this section, we propose a rewriting logic theory based on a structure that provides

a first-order representation of continuations in the spirit of Wand [95]; this is the only reason why we call this structure a

“continuation”; but notice that it can just as well be regarded as a post-order representation of the abstract syntax tree of

the program, so one needs no prior knowledge of continuations [34] in order to understand this section. We will show the

equivalence of this theory to the context reduction semantics theory.

Based on the desired order of evaluation, the program is sequentialized by transforming it into a list of tasks to be

performed in order. This is done once and for all at the beginning, the benefit being that at any subsequent moment in time

we know precisely where the next redex is: at the top of the list of tasks. We call this list of tasks a continuation, but is

nothingmore than a pure first-order flattening of the program and can be easily introducedwithout appealing to high-order

constructs. For example aexp(A1 + A2) = (aexp(A1),aexp(A2))�+ precisely encodes the order of evaluation: first A1, then A2,

then add the values. Also, stmt(if B then St1 else St2) = B�if(stmt(St1),stmt(St2)) says that St1 and St2 are dependent on

the value of B for their evaluation. The fact that we denote the above relation by equality, althoughwe operationally interpret
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it from left to right, indicates that the two terms are structurally equal (and in fact, they are equal in the initial model of

the specification)—at any time during the evaluation one could apply the equations backwards and reconstitute the current

state of the program being executed.

The top level configuration is constructed by an operator “_ _” putting together the store (wrapped by a constructor

store) and the continuation (wrapped by k). Also, syntax is added for the continuation items. Here, the distinction between

equations and rules becomes even more obvious: equations are used to prepare the context in which a computation step

can be applied, while rewrite rules exactly encode the computation steps semantically, yielding the intended computational

granularity. Specifically pgm, stmt, bexp, aexp are used to flatten the program to a continuation, taking into account the order

of evaluation. The continuation is defined as a list of tasks, where the list constructor “_�_” is associative, having as identity

a constant “nothing”. We also use lists of values and continuations, each having an associative list append constructor “_,_”

with identity “.”. We use variables K and V to denote continuations and values, respectively; also, we use Kl and Vl for lists of

continuations and values, respectively. The rewrite theory RK specifying the continuation-based definition of our example

language is given in Table 12. Lists of expressions are evaluated using the following (equationally defined) mechanism:

k((Vl,Ke,Kel)�K) = k(Ke�(Vl,nothing,Kel)�K)

Because in rewriting engines equations are also executed by rewriting, one would need to split the above rule into two

rules:

k((Vl,Ke,Kel)�K = k(Ke�(Vl,nothing,Kel)�K)

k(V�(Vl,nothing,Kel)�K) = k((Vl,V ,Kel)�K)

The semantics we obtain here for this simple sequential language is an abstract machine, similar in spirit to the one

obtainable by applying CPS transformers on an interpreter as in [74] or that obtained by applying refocusing [27] on the

context-reduction definition. One slight difference is that we keep the state and the continuation as distinct entities at the

top level, rather than embedding the state as part of the context/continuation structure. In a computational logic framework

like rewriting logicwhere thegapbetween“implementations” and “specifications” is almost inexistent, this continuation-like

style can be used to define languages, not only to efficiently interpret them.

An important benefit of this definitional style is that of gaining locality. Now one needs to specify from the context only

what is needed to perform the computation. This indeed gives the possibility of achieving “true concurrency”, since rules

which do not act on the same parts of the context can be applied in parallel. In [72], we show how the same technique can

be used, with no additional effort, to define concurrent languages; the idea is, as expected, that one continuation structure is

generated foreachconcurrent threadorprocess. Thenrewrite rules canapply “truly concurrently” at the topsof continuations.

Strengths. In continuation-based semantics there is no need to search for a redex anymore, because the redex is always

at the top. It is much more efficient than direct implementations of evaluation contexts or small-step SOS. Also, this style

greatly reduces the need for conditional rules/equations; conditional rules/equations might involve inherently inefficient

reachability analysis to check the conditions and are harder to deal with in parallel environments. An important “strength”

specific to the rewriting logic approach is that reductions can now apply wherever they match, in a context-insensitive way.

Additionally, continuation-based definitions in the RLS style above are verymodular (particularly due to the use of matching

modulo associativity and commutativity).

Weaknesses. The program is now hidden in the continuation: one has to either learn to like it like this, or to write a back-

wards mapping to retrieve programs from continuations4; to flatten the program into a continuation structure, several new

operations (continuation constants) need to be introduced, which “replace” the corresponding original language constructs.

9.1. Relation with context reduction

Wenext show the equivalence between the continuation-based and the context-reduction rewriting logic definitions. The

specification in Table 13 relates the two semantics, showing that at each computational “point” it is possible to extract from

our continuation structure the current expressionbeingevaluated. For each syntactical construct Syn ∈ {AExp,BExp,Stmt,Pgm},
we equationally define two (partial) functions:

• k2Syn takes a continuation encoding of Syn into Syn; and

• kSyn extracts from the tail of a continuation a Syn and returns it together with the remainder prefix continuation.

Together, these two functions can be regarded as a parsing process, where the continuation plays the role of “unparsed”

syntax, while Syn is the abstract syntax tree, i.e., the “parsed” syntax. The formal definitions of k2Syn and kSyn are given in

Table 13.

4 However, we regard these as minor syntactic details. After all, the program needs to be transformed into an abstract syntax tree (AST) in any of the

previous formalisms. Whether the AST is kept in prefix versus postfix order is somewhat irrelevant.
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Table 13

Recovering the abstract syntax trees from continuations.

k2Pgm(K) = k2Stmt(K ′).A if {K ′ ,A} = kAExp(K)

k2Stmt(nothing) = skip

k2Stmt(K) = k2Stmt(K ′); St if {K ′ ,St} = kStmt(K) ∧ K ′ /= nothing

k2Stmt(K) = St if {K ′ ,St} = kStmt(K) ∧ K ′ = nothing

kStmt(K�write(X)) = {K ′ ,X:=A} if {K ′ ,A} = kAExp(K)

kStmt(K�while(K1,K2)) = {K ′ ,if B then {St; while B1St} else skip}
if {K ′ ,B} = kBExp(K) ∧ B1 = k2BExp(K1) ∧ St = k2Stmt(K2) ∧ B /= B1

kStmt(K�while(K1,K2)) = {K ′ ,while B St}
if {K ′ ,B} = kBExp(K) ∧ B1 = k2BExp(K1) ∧ St = k2Stmt(K2) ∧ B = B1

kStmt(K�if(K1,K2)) = {K ′ ,if B then k2Stmt(K1) else k2Stmt(K2)}
if {K ′ ,B} = kBExp(K)

kStmt(K�halt) = {K ′ ,halt A} if {K ′ ,A} = kAExp(K)

k2AExp(K) = A if {nothing,A} = kAExp(K)

kAExp(K�kv(Kl,Vl)�K ′) = kAExp(Vl,K ,Kl�K ′)

kAExp(K�aexp(A)) = {K ,A}
kAExp(K�I) = {K ,I}
kAExp(K�K1,K2�+) = {K ,k2AExp(K1)+ k2AExp(K2)}
k2BExp(K) = B if {nothing,B} = kBExp(K)

kBExp(K�kv(Kl,Vl)�K ′) = kBExp(Vl,K ,Kl�K ′)

kBExp(K�T) = {K ,T}
kBExp(K�K1,K2� ≤) = {K ,k2AExp(K1)<=k2AExp(K2)}
kBExp(K�and(K2)) = {K1,B1 and k2BExp(K2)} if {K1,B1} = kBExp(K)

kBExp(K�not) = {K ′ ,not B} if {K ′ ,B} = kBExp(K)

We will show below that for any step CxtRed takes, RK performs at most one step to reach the same5 configuration. No

steps are performed for skip, or for dissolving a block (because these were dealt with when we transformed the syntax into

continuation form), or fordissolvinga statement into a skip (there is noneed for thatwhenusing continuations). Also, no steps

will be performed for loop unrolling, because this is not a computational step; it is a straightforward structural equivalence. In

fact, note that, because of its incapacity to distinguish between computational steps and structural equivalences, CxtRed does

not capture the intended granularity of while: it wastes a computation step for unrolling the loop and one when dissolving

the while into skip; neither of these steps has any computational content.

In order to clearly explain the relation between reduction contexts and continuations, we go a step further and define

a new rewrite theory RK ′ which, besides identifying while with its unrolling, adds to RK the idea of contexts, holes, and

pluggable expressions. More specifically, we add a new constant “[]” and the following equation, again for each syntactical

category Syn:

k(syn(Syn)�K ′) = k(syn(Syn)�syn([])�K ′)

replacing the equation for evaluating lists of expressions, namely,

k((Vl,Ke,Kel)�K) = k(Ke�(Vl,nothing,Kel)�K)

by the following equation which puts in a hole instead of nothing:

k((Vl,Ke,Kel)�K) = k(Ke�(Vl, syn([]),Kel)�K)

The intuition for the first rule is that, as we will next show, for any well-formed continuation (i.e., one obtained from a

syntactic entity) having a syntactic entity as its prefix, its corresponding suffix represents a valid context where the prefix

syntactic entity can be plugged in. As expected, RK ′ does not bring any novelty to RK, that is, for any term t in RK, TreeRK
(t)

is bisimilar to TreeRK ′ (t).

Proposition 4. For each arithmetic context c in CxtRed and r ∈ AExp,we have that RK ′ � k(aexp(c[r])) = k(aexp(r)�aexp(c))).

Similarly for any possible combination for c and r among AExp,BExp,Stmt,Pgm,Cfg.

5 “same” modulo irrelevant but equivalent syntactic notational conventions.



T. Florin et al. / Information and Computation 207 (2009) 305–340 329

(Note that r in the proposition above needs not be a redex, but can be any expression of the right syntactical category, i.e.,

pluggable in the hole.)

Proof.

++x = [][++x]: RK ′′ � k(aexp(++x)) = k(aexp(++x)�aexp([]))
a1 + a2 = [] + a2[a1]: RK ′′ � k(aexp(a1 + a2)) = k((aexp(a1),aexp(a2))�+)

= k(aexp(a1)�(aexp([]),aexp(a2))�+) = k(aexp(a1)�aexp([] + a2))

i1 + a2 = i1 + [][a2]: RK ′′ � k(aexp(i1 + a2)) = k((aexp(i1),aexp(a2))�+)

= k(aexp(a2)�(i1,aexp([]))�+) = k(aexp(a2)�aexp(i1 + [])).
b1 and b2 = [] and b2[b1]:
RK ′′ � k(bexp(b1 and b2)) = k(bexp(b1)�and(bexp(b2)))

= k(bexp(b1)�bexp([])�and(aexp(b2))) = k(bexp(b1)�bexp([]and b2)).

t and b2 = [][t and b2]:
RK ′′ � k(bexp(t and b2)) = k(bexp(t and b2)�bexp([])).
st.a = [].a[st]: RK ′′ � k(pgm(st.a)) = k(stmt(st)�aexp(a))

= k(stmt(st)�stmt([])�aexp(a)) = k(stmt(st)�pgm([].a)).
skip.a = skip.[][a]: RK ′′ � k(pgm(skip.a)) = k(stmt(skip)�aexp(a))

= k(aexp(a)) = k(aexp(a)�aexp([]))
= k(aexp(a)�stmt(skip)�aexp([])) = k(aexp(a)�pgm(skip.[])).

All other constructs are dealt with in a similar manner. �

Lemma 1. RK ′ � k(k1) = k(k2) implies that for any krest, RK ′ � k(k1�krest) = k(k2�krest).

Proof. Wecanreplayall steps in thefirstproof, for thesecondproof, sinceall equationsonlymodify theheadofacontinuation.

�

By structural induction on the equational definitions, thanks to the one-to-one correspondence of rewriting rules, we

obtain the following result:

Theorem 3. Suppose s � σ.

(1) If CxtRed � 〈p,σ 〉 → 〈p′,σ ′〉 then RK ′ � k(pgm(p)) store(s)→≤1
k(pgm(p′)) store(s′) and s′ � σ ′, where→≤1=→0 ∪ →1 .

(2) IfRK ′ � k(pgm(p)) store(s)→ k(k′) store(s′) then thereexistsp′ andσ ′ such thatCxtRed � 〈p,σ 〉 →∗ 〈p′,σ ′〉,RK ′ � k(pgm(p′)) =
k(k′) and s′ � σ ′.

(3) CxtRed � 〈p, ⊥〉 →∗ i iff RK ′ � 〈p〉 → i for any p ∈ Pgm and i ∈ Int.

Proof (Sketch).

(1) First, oneneeds to notice that rules inRK ′ correspond exactly to those inCxtRed. For example, for i1 + i2 → i1 +Int i2,which

can be read as 〈c,σ 〉[i1 + i2] → 〈c,σ 〉[i1 +Int i2]we have the rule k((i1,i2)�+�krest)→ k((i1 +Int i2)�krest) which, taking

into account the above results, has, as a particular instance: k(pgm(c[i1 + i2]))→ k(pgm(c[i1 +Int i2]). For 〈c,σ 〉[x:=i] →
〈c,σ [i/x]〉[skip]we have k(i�write(x)�k) store(s)→ k(k) store(s[x← i]) which again has as an instance:

k(pgm(c[x:=i]) store(s)→ k(c[skip) store(s[x← i]).
(2) Actually σ ′ is uniquely determined by s′ and p′ is the program obtained by advancing p all non-computational steps—

which were dissolved by pgm, or are equationally equivalent in RK ′ , such as unrolling the loops—, then performing the

step similar to that in RK ′ .
(3) Using the previous two statements, and the rules for halt or end of the program from both definitions.We exemplify only

halt, the end of the program is similar, but simpler. For 〈c,σ 〉[halt i] → i we have k(i�halt�k)→ k(i), and combined

with RK ′ � result(k(i) store(s)) = i we obtain RK ′ � result(k(pgm(c[halt i])) store(s))→ i. �

10. The chemical abstract machine

Berry and Boudol’s chemical abstract machine, or Cham [8], is both a model of concurrency and a specific style of giving

operational semantics definitions. Properly speaking, it is not an SOS definitional style. Berry and Boudol identify a number

of limitations inherent in SOS, particularly its lack of true concurrency, and what might be called SOS’s rigidity and slavery

to syntax [8]. They then present the Cham as an alternative to SOS. In fact, as already pointed out in [50], what the Cham is,
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is a particular definitional style within RLS. That is, every Cham is, by definition, a specific kind of rewrite theory; and Cham

computation is precisely concurrent rewriting computation; that is, proof in rewriting logic.

The basic metaphor giving its name to the Cham is inspired by Banâtre and Le Métayer’s GAMMA language [6]. It views

a distributed state as a “solution” in which many “molecules” float, and understands concurrent transitions as “reactions”

that can occur simultaneously in many points of the solution. It is possible to define a variety of chemical abstract machines.

Each of them corresponds to a rewrite theory satisfying certain common conditions.

There is a common syntax shared by all chemical abstract machines, with each machine possibly extending the basic

syntax by additional function symbols. The common syntax is typed, and can be expressed as the following order-sorted

signature 
:

sorts Molecule, Molecules, Solution.

subsorts Solution < Molecule < Molecules.

op λ :−→Molecules.

op _,_ :Molecules Molecules−→Molecules.

op {|_|} :Molecules−→Solution . *** membrane operator
op _ � _ :Molecule Solution−→Molecule . *** airlock operator

A Cham is then a rewrite theory C = (�,AC,R), with � ⊇ 
, together with a partition R = Reaction � Heating � Cooling �
AirlockAx. The associativity and commutativity (AC) axioms are asserted of the operator _ ,_, which has identity λ. The rules

in R may involve variables, but are subject to certain syntactic restrictions that guarantee an efficient form of AC matching

[8]. AirlockAx is the bidirectional rule6 {|m,M|}�{|m � {|M|}|}, where m is a variable of sort Molecule and M a variable of sort

Molecules. The purpose of this axiom is to choose one of the moleculesm in a solution as a candidate for reaction with other

molecules outside its membrane. The Heating and Cooling rules can typically be paired, with each rule t −→ t′ ∈ Heating

having a symmetric rule t′ −→ t ∈ Cooling, and vice-versa, so that we can view them as a single set of bidirectional rules

t′�t in Heating-Cooling.

Berry and Boudol [8] make a distinction between rules, which are rewrite rules specific to each Cham—and consist of

the Reaction, Heating, and Cooling rules—and laws which are general properties applying to all Chams for governing the

admissible transitions. The first three laws, the Reaction, Chemical and Membrane laws, just say that the Cham evolves by

AC-rewriting. The fourth law states the axiomAirlockAx. The Reaction rules are the heart of the Chamandproperly correspond

to state transitions. The rules in Heating–Cooling express structural equivalence, so that the Reaction rules may apply after

the appropriate structurally equivalent syntactic form is found. A certain strategy is typically given to address the problem

of finding the right structural form, for example to perform “heating” as much as possible. In rewriting logic terms, a more

abstract alternative view is to regard each Cham as a rewrite theory C = (�,ACI ∪ Heating-Cooling ∪ AirlockAx,Reaction), in

which the Heating-Cooling rules and the AirlockAx axiom have been made part of the theory’s equational axioms. That is, we

can more abstractly view the Reaction rules as applied modulo ACI ∪ Heating-Cooling ∪ AirlockAx.
As Berry and Boudol demonstrate in [8], the Cham is particularly well suited to give semantics to concurrent calculi,

yielding considerably simpler definitions than those afforded by SOS. In particular, [8] presents semantic definitions for the

TCCS variant of CCS, a concurrent λ-calculus, and Milner’s π-calculus. Milner himself also used Cham ideas to provide a

compact formulation of his π-calculus [59]. Since our example language is sequential, it cannot take full advantage of the

Cham’s true concurrent capabilities. Nevertheless, there are interesting Cham features that, as we explain below, turn out

to be useful even in this sequential language application. A Cham semantics for our language is given in Table 14. Note that,

since the Cham is itself a rewrite theory, in this case there is no need for a representation in RLS, nor for a proof of correctness

of such a representation; that is, the “representational distance” in this case is equal to 0. Again, RLS does not advocate any

particular definitional style: the Cham style is just one possibility among many, having its own advantages and limitations.

The CHAM definition for our simple programming language takes the CxtRed definition in Table 8 as a starting point. More

precisely, we follow the “refocusing” technique [27]. We distinguish two kinds of molecules: syntactic molecules and store

molecules. Syntactic molecules are either language constructs or evaluation contexts and we will use “[_ | _]” as a molecule

constructor for stacking molecules. We let C range over syntactic molecules representing stacked contexts. Store molecules

are pairs (x,i), where x is a variable and i is an integer. The store is a solution containing store molecules. Then the definition

of “refocusing” functions is translated into heating/cooling rules, bringing the redex to the top of the syntactic molecule. This

allows for the reduction rules to only operate at the top, in a conceptually identical way as for continuation based definitions

in Table 12, both of them following the same methodology introduced in [72].

One can notice a strong relation between our CHAM and CxtRed definitions, in the sense that a step performed using

reduction under evaluation contexts is equivalent to a suite of heating steps followed by one transition step and then by as

many cooling steps as possible. That is, given programs P, P ′ and states σ , σ ′

CxtRed � 〈P,σ 〉 → 〈P′,σ ′〉 ⇐⇒ CHAM � P,{|σ |}⇀∗;→1;↽∗ P′,{|σ ′|}

6 Which is of course understood as a pair of rules, one in each direction.
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Table 14

The CHAM language definition.

St.A�[St | [[].A]]
skip.A�[A | [skip.[]]]
[X:=A | C]�[A | [X:=[] | C]]
[St1; St2 | C]�[St1 | [[]; St2 | C]]
[ifB then St1 else St2 | C]�[B | [if [] then St1 else St2 | C]]
[haltA | C]�[A | [halt [] | C]]
[A1<=A2 | C]�[A1 | [[]<=A2 | C]]
[I<=A | C]�[A | [I<=[] | C]]
[B1 andB2 | C]�[B1 | [[] andB2 | C]]
[notB | C]�[B | [not [] | C]]
[A1 + A2 | C]�[A1 | [[] + A2 | C]]
[I + A | C]�[A | [I + [] | C]]

I1 + I2 → (I1 +Int I2)

[X | C],{|(X ,I) � σ |} → [I | C],{|(X ,I) � σ |}
[++X | C],{|(X ,I) � σ |} → [I +Int 1 | C],{|(X ,I +Int 1) � σ |}
I1<=I2 → (I1 ≤Int I2)

true andB→ B

false andB→ false

not true→ false

not false→ true

if true then St1 else St2 → St1

if false then St1 else St2 → St2

skip; St → St

{St} → St

[X:=I | C],{|(X ,I′) � σ |} → [skip | C],{|(X ,I) � σ |}
[whileB St | C] → [ifB then (St; whileB St) else skip | C]
[halt I | C],σ → I

skip.I,σ → I

Note that we could not use the existing airlock mechanism to stack evaluation contexts since that could lead to unsound

computations. Indeed, say onewould use constructs {|_ � _|} to stack contexts, replacing the [_ | _] construct. Then by applying

heating on skip;3/4/5, one can obtain the following sequence (of structurally equivalent molecules)

skip;5/(2/x) ⇀ {|5/(2/x) � {|skip; []|}|}⇀ {|2/x � {|5/[] � {|skip; []|}|}|}
⇀ {|x � {|2/[] � {|5/[] � {|skip; []|}|}|}|}

Now, by applying the cooling, then heating rules for airlock, one obtains the following sequence (of, again, equivalent

molecules)

{|x � {|2/[] � {|5/[] � {|skip; []|}|}|}|}⇁ {|x � {|2/[] � {|5/[],skip; []|}|}|}
⇁ {|x � {|2/[],5/[],skip; []|}|}⇀ {|x � {|5/[] � {|2/[],skip; []|}|}|}
⇀ {|x � {|5/[] � {|2/[] � {|skip; []|}|}|}|}

Finally, by applying cooling rules for contexts, we obtain the sequence:

{|x � {|5/[] � {|2/[] � {|skip; []|}|}|}|}⇁ {|5/x � {|2/[] � {|skip; []|}|}|}
⇁ {|2/(5/x) � {|skip; []|}|}⇁ skip;2/(5/x)

However, skip;5/(2/x) and skip;2/(5/x) are obviously not structurally equivalent.

The above language definition does not exhibit the strengths of the Cham, since Cham was designed to handle easily

concurrent constructs, which are missing from our language. However, making the above language concurrent in Cham

comes at no additional effort. One can execute multiple programs at the same time, sharing the store, simply by putting

them together, and together with the store at the top-level solution and replacing the rule for the end of the program by

skip.I→ I, to allow all programs to finish their evaluation and keep the results.

When Cham definitions follow the style in Table 14, i.e., taking a context-reduction-like approach, one could use as

evaluation strategies heating only on redexes and cooling only on values, whichwould lead to a deterministic abstract-machine.

Moreover, one can notice that airlock rules were introduced to select elements from a set without specifying the rest of the
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set, abstracted by a molecule. Efficient implementations should probably do exactly the opposite, that is, matching in the

sets. To do that in our rewrite framework, one would orient the airlock rules in the sense of inserting back the “airlocked”

molecules into their original solution and to apply them on the terms of the existing rules, tomake the definition executable.

The only rules changing in the definition above are those involving the store; for example, the assignment rule is transformed

into:

[X:=I | C],{|(X ,I′),σ |} → [skip | C],{|(X ,I),σ |}

One should notice that the specification obtained by these transformations is equivalent to the initial one, since it does

not change the equivalence classes and the transitions. The main advantage of the newly obtained specification is that it is

also executable in a deterministic fashion, that is, there is no need to search for a final state anymore.

Strengths. Being a special case of rewriting logic, it inherits many of the benefits of rewriting logic, being specially well

suited for describing truly concurrent computations and concurrent calculi.

Weaknesses. Heating/cooling rules are hard to implement efficiently in general—an implementation allowing them to be

bidirectional in an uncontrolled manner would have to search for final states, possibly leading to a combinatorial explosion.

Rewriting strategies such as those in [10,93,29] can be of help for solving particular instances of this problem. Although this

solution–molecule paradigm seems to work pretty well for languages in which the structure of the state is simple enough, it

is not clear how one could represent the state for complex languages, with threads, locks, environments, and so on. Finally,

Chams provide no mechanism to freeze the current molecular structure as a “value”, and then to store or retrieve it, as

we would need in order to define language features like call/cc. Even though it was easy to define halt because we simply

discarded the entire solution, it would seem hard or impossible to define more complex control-intensive language features

in Cham.

11. Experiments

RLS definitions, being executable, actually are also interpreters for the programming languages they define. One can take

an RLS executable definition as is and execute it on top of a rewrite engine.

However, one should not wrongly conclude from this that in order to make any use of RLS definitions of programming

languages, in particular of those following the various definitional styles proposed in this paper, one must have an advanced

rewrite engine. In fact, one can implement interpreters for languages given an RLS definition using one’s programming

language of choice. Although the proposed RLS definitions follow the same style and intuitions, and have the same strengths

and limitations as their original formulation in their correspondingdefinitional styles,webelieve that automating theprocess

of generating interpreters from the rewriting logic language definitions following a specific operational semantics style

should be easier than doing it directly from the original definition, since the rewriting logic definition is already executable.

Furthermore, since most of the definitional styles presented in this paper use a restricted from of rewriting, one can hope

for automatic translations of those definitions into interpreters in programming languages offering a limited support for

matching and rewriting. To test this claim, we have manually but mechanically translated the RLS definitions for all styles

(except for MSOS and the Cham) in Haskell, Ocaml, and Prolog. Appendix 13 discusses our translation procedures into these

programming languages.

We compare the running times and memory requirements of the interpreters derived mechanically using the above-

mentioned procedures, with those of the “free” interpreters given by executing the definition “as-is” on two rewrite engines

(markedwith� in the tables), namely Asf+Sdf 1.5 (a compiler) and Maude 2.2 (a fast interpreter with good tool support), as

well as with those obtained executing off-the-shelf interpreter implementations in Scheme, used in teaching programming

languages (marked with � in the tables). For Scheme we have used PLT-Scheme as an interpreter and language interpreter

implementations from [35], chapters 3.9 (evaluation semantics) and 7.3 (continuation based semantics), and a PLT-Redex

definition given as example in the installation package (for context reduction). Big-step interpreters are also compared

against bc, a C-written interpreter for a subset of C working only with integers (bc comes as part of UNIX; type “man bc” for

documentation), and two interpreters implemented using monads in Haskell and Ocaml (we mark these interpreters with

� in Table 16). Since RLS representations of MSOS and Cham definitions rely intensively on matching modulo associativity

and commutativity, which is only supported by Maude, we have only performed some experiments on their RLS definitions

in Maude. For Chamwe preferred to give the times obtained by using the novel transformations and strategies presented in

Section 10 for making the specification “more executable”. Using the specification as is, Cham is extremely ineffective when

executed: it takes about 1205MB of memory and 188 s to search for the solution of running the Collatz program (explained

below) up to 3.

Onemay naturally ask: “What is the point of all these experiments? They show little or nothing to support the RLS result-

ing definitions compared to their original definitions, and only show what programs (interpreters) in what programming

languages are more efficient than others.” Our goal here is to convey the reader our strong belief, supported by empirical

evaluation, that the working language designer may be better off in practice formally defining a desired language, using

some preferred definitional style, than implementing an interpreter in an ad-hoc way for that language, even in a preferred
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Table 15

Programs used in evaluation: (a) a tower of loops, each performing two iterations; (b) pProgram testing Collatz’s conjecture up to 300.

x0 := 0;
while (++x0<=2){

x1:=0;
while (++x1<=2){
· · ·

x18:=0;
while (++x18<=2){

skip;
}

· · ·
}
}.0

nr:=300;
while (not (nr<=2)){

n:=nr;
nr:=nr− 1;
while (not (n==1)){

steps:=steps+ 1;
r:=n;
q:=0;
while (not (r<=1)){

r:=r − 2;
q:=q+ 1

};
if (r==0)

then n:=q
else n:=3*n+ 1

}
}
}.steps

(a) (b)

programming language. Unfortunately, the latter approach is also how programming language concepts are being taught

in many places. Formal definitions tend to be significantly more compact, easier to read and more modular than ad-hoc

language implementations, so they are easier to change and experiment with. Additionally, they can serve as amathematical

object capturing the essence of the desired language. One can then use this mathematical object for many other purposes

in addition to executing programs, including formal analyses such as theorem proving and model-checking, static analysis,

partial evaluation, compiler generation, and so on. Of course, this belief transcends the boundaries of rewriting logic; what

RLS gives us here is a unified framework, with a uniform notation supported by a rigorous computational logic, in which one

can formally define programming languages using any of the desired styles. None of the translations from RLS definitions

into programming languages has been implemented, because that is not the focus of this paper. Nevertheless, we strongly

believe that they can be implemented with relatively little effort.

One of the programs chosen to test various implementations consists of nnested loops, each of 2 iterations, parameterized

by n. The other program tests the Collatz’s conjecture up to 300. Collatz’s conjecture states that starting from any positive

number n and performing the following operations:

• if n is even then divide it by 2;

• if n is odd then multiply it by 3 and add 1;

after a finite number of steps, the value of n will become 1. To make the program more computation-intensive (and also to

maximize the number of language constructs used), we here use repeated subtraction to compute division. We also count

in steps the cumulative number of operations performed until 1 is reached for all numbers tested and return it as the result

of the program. The source code for the programs used is presented in Table 15.

Tables 16,17,18 and 19, give for each definitional style the running time of the various interpreters. For the largest number

n (18) of nested loops, peak memory usage was also recorded. Times are expressed in seconds. A limit of 700 mb was set

on memory usage, to avoid swapping; the symbol “-” found in a table cell signifies that the memory limit was reached.

For Haskell we have used the ghc 6.4.2 compiler. For Ocaml we have used the ocamlcopt 3.09.3 compiler. For Prolog we

have compiled the programs using the gprolog 1.3.0 compiler. For Schemewe have used the PLT-Scheme (mzscheme 3.7.1)
interpreter. Tests were performed on an Intel Pentium 4@2 GHz with 1 GB RAM, running Linux.

To have an overview of execution times obtained by using the RLS definition as is for all the styles presented, Table 20

shows, side by side, their execution times in Maude.

Prolog yields pretty fast interpreters. However, for backtracking reasons, it needs to maintain the stack of all predicates

tried on the current path, thus the amount of memory grows with the number of computational steps. The style promoted

in [35] seems to also take into account efficiency. Its only drawback is the fact that it looks more like an implementation,

the representational distance to the big-step definition being much bigger than in interpreters based on RLS. The PLT-Redex

implementation of context reduction seems to servemore a didactic purpose. It compensates for lack of speed by providing a

nice interfaceand thepossibility tovisually tracea run. The rewriting logic implementations seemtobequiteefficient in terms

of speed and memory usage, while keeping a minimal representational distance to the operational semantics definitions.

In particular, RLS definitions interpreted in Maude are comparable in terms of efficiency with the interpreters in Scheme,

while having the advantage of being formal definitions. The main reason for Maude and Scheme being slower than the

others, is because they are both interpreters while the others are compilers. It is well known that compilers usually generate

executables one order of magnitude faster than their interpreted versions. Also, it is good to notice that the interpreter



334 T. Florin et al. / Information and Computation 207 (2009) 305–340

Table 16

Execution times for big-step definitions.

N nested loops(1…2) Collatz’ conjecture

N 15 16 18 Memory for 18 Up to 300

� Asf+Sdf 1.7 2.9 11.6 13 mb 265.1

� BC 0.3 0.6 2.3 <1 mb 13.8

Haskell 0.3 0.7 2.8 4 mb 32.1

� Haskell (monads) 0.6 1.4 4.4 3 mb 58.7

� Maude 3.8 7.7 31.5 6 mb 184.5

Ocaml 0.5 1.1 5.0 1 mb 10.2

� Ocaml (monads) 0.5 0.9 3.8 2 mb 21.5

Prolog 1.6 1.9 7.6 316 mb —

� Scheme [35] 3.8 7.4 30.2 13 mb 122.3

Table 17

Execution times for small-step definitions.

N nested loops(1…2) Collatz’ conjecture

N 15 16 18 Memory for 18 Up to 300

� Asf+Sdf 11.9 25.7 115.0 9 mb 769.6

Haskell 3.2 7.0 31.64 3 mb 167.4

� Maude 63.4 131.2 597.4 6 mb >1000

Ocaml 1.0 2.2 9.9 1 mb 21.0

Prolog 7.0 14.5 — >700 mb —

obtained by mechanically compiling the RLS definition in Ocaml can reach the speed of the hand-optimized, C-written bc
interpreter.

12. Related work

There is much related work on frameworks for defining programming languages. Without trying to be exhaustive, we

mention some of them. We do not try to give detailed comparisons with each approach, but limit ourselves to making some

high-level remarks. Also, we do not discuss any of the approaches, such as SOS, MSOS, context reduction, or the Cham, which

we have already discussed in the body of the paper.

12.1. Algebraic denotational semantics

This approach, (see [95,39,14,62] for early papers and [37,88] for twomore recent books), is a special case of RLS, namely,

the case in which the rewrite theoryRL defining languageL is an equational theory. While algebraic semantics shares a

number of advantages with RLS, its main limitation is that it is well suited for giving semantics to deterministic languages,

but not well suited for concurrent language definitions. At the model-theoretic level, initial algebra semantics, pioneered by

Joseph Goguen, is the preferred approach (see, for example, [39,37]), but other approaches, based on loose semantics or on

final algebras, are also possible.

12.2. Other RLS work

RLS is a collective international project. Through the efforts of various researchers, there is by now a substantial body of

work demonstrating the usefulness of this approach [3–5,12,13,17,18,21,24,26,30–33,36,42,43,45,53,56,73,75,76,84–86,89–

91]. A first snapshot of the RLS project was given in [56], and a second in [57]. This paper can be viewed as third snapshot

focusing on the variety of definitional styles supported. In particular, a substantial body of experience in giving programming

language definitions, and using those definitions both for execution and for analysis purposes has already been gathered.

For example, Java 1.4 (see also [20] for a complete formal semantics) and the JVM (see [33,30]) have been specified in Maude

this way, with the Maude rewriting logic semantics being used as the basis of Java and JVM program analysis tools that for

some examples outperform well-known Java analysis tools [33,31]. A semantics of a Caml-like language with threads was

discussed in detail in [56], and a modular rewriting logic semantics of a subset of CML has been given in [18] using the

MaudeMSOS tool [19]. A definition of the Scheme language has been given in [26]. Other language case studies, all specified
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Table 18

Execution times for context reduction definitions.

N nested loops(1…2) Collatz’ conjecture

N 9 15 16 18 Memory for 18 Up to 300

� Asf+Sdf 0.6 88.7 214.4 1008.6 10 mb 891.3

Haskell 0.1 5.8 12.0 53.9 3 mb 157.2

� Maude 0.8 76.2 162.8 713.2 6 mb 1931.6

Ocaml 0.0 1.8 3.8 16.7 1 mb 11.0

Prolog 0.1 9.4 — — >700 mb —

� Scheme: PLT-Redex 198.2 — — — >700 mb —

Table 19

Execution times for continuation-based definitions.

N nested loops(1…2) Collatz’ conjecture

N 15 16 18 Memory for 18 Up to 300

� Asf+Sdf 2.5 4.7 18.3 13 mb 344.7

Haskell 0.6 1.1 4.4 4 mb 41.1

� Maude 8.4 15.6 63.2 7 mb 483.9

Ocaml 0.5 1.1 5.0 1 mb 10.9

Prolog 3.0 6.2 24.0 ≈500 mb —

� Scheme [35] 5.9 11.3 45.2 10 mb 323.6

in Maude, include BC [13], CCS [90,13], CIAO [85], Creol [43], ELOTOS [89], MSR [16,83], PLAN [84,85], the ABEL hardware

description language [45], SILF [42], FUN [72], Orc [4,5], and the π-calculus [86].

12.3. Higher-order approaches

Themost classic higher-order approach, although not exactly operational, is denotational semantics [78,79,77,63]. Denota-

tional semantics has some similaritieswith its first-order algebraic cousinmentionedabove, sinceboth arebasedon semantic

equations. Two differences are: (i) the use of first-order equations in the algebraic case versus the higher-order ones in

traditional denotational semantics; and (ii) the kinds of models used in each case. A related class of higher-order approaches

uses higher-order functional languages or higher-order theorem provers to give operational semantics to programming

languages. Without trying to be comprehensive, we can mention, for example, the use of Scheme in [35], the use of ML in

[69], and the use of Common LISP within the ACL2 prover in [46]. There is also a body of work on using monads [61,94,47]

to implement language interpreters in higher-order functional languages; the monadic approach has better modularity

characteristics thanstandardSOS.A thirdclassofhigher-orderapproachesarebasedontheuseofhigher-orderabstract syntax

(HOAS) [68,41] and higher-order logical frameworks, such as LF [41] or λ-Prolog [66], to encode programming languages as

formal logical systems. For a good example of recent work in this direction see [58] and references there.

12.4. Logic-programming-based approaches

Going back to the Centaur project [11,25], logic programming has been used as a framework for SOS language defi-

nitions. Note that λ-Prolog [66] belongs both in this category and in the higher-order one. For a recent textbook giving

logic-programming-based language definitions, see [80].

12.5. Abstract state machines

Abstract State Machine (ASM) [40] can encode any computation and have a rigorous semantics, so any programming

language can be defined as an ASM and thus implicitly be given a semantics. Both big- and small-step ASM semantics have

been investigated. The semantics of various programming languages, including, for example, Java [81], has been given using

ASMs. There are interesting connections between ASMs and rewriting logic, but their discussion is beyond the scope of this

paper.

13. Conclusions

In this paper, we have tried to show how RLS can be used as a logical framework for operational semantics definitions

of programming languages. In particular, by showing in detail how it can faithfully capture big-step and small-step SOS,
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Table 20

Execution times for RLS definitions interpreted in Maude.

N nested loops(1…2) Collatz’ conjecture

N 15 16 18 Memory for 18 Up to 300

Big-step 3.8 7.7 31.5 6 mb 184.5

Small-step 63.4 131.2 597.4 6 mb 1249.1

Context-reduction 76.2 162.8 713.2 6 mb 1931.6

Continuation-based 8.4 15.6 63.2 7 mb 483.9

MSOS 61.9 127.4 566.3 6 mb 1421.5

Cham 15.7 31.5 129.2 6 mb 618.0

MSOS, context reduction, continuation-based semantics, and the Cham, we hope to have illustrated what might be called its

ecumenical character; that is, its flexible support for a wide range of definitional styles, without forcing or pre-imposing any

given style. In fact, we think that this flexibility makes RLS useful as a way of exploring new definitional styles. For example,

our discussion on the Cham makes clear that the Cham proponents are dissatisfied with the lack of true concurrency in

standard SOS. For highly concurrent languages, such as mobile languages, or for languages involving concurrency, real-time

and/or probabilities, it seems clear to us that a centralized approach forcing an interleaving semantics becomes increasingly

unnatural. We have, of course, refrained from putting forward any specific suggestions in this regard: that was not the point

of an ecumenical paper. But we think that new definitional styles are worth investigating; and hope that RLS in general, and

this paper in particular, will stimulate such investigations.
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Appendix A. Obtaining interpreters from RLS definitions

Since the definitions presented above are deterministic and use a restricted form of rewriting (with the exception ofMSOS

and CHAM), we believe it is straight-forward to generate interpreters from them in languages having built-in support for

patternmatching and abstract data types. Themain principle we use is to translate rewriting rules into evaluation functions.

Since the store was defined separately and relies on matching modulo associativity and commutativity, we abstract it away,

assuming each such language comes with a pre-defined store.

In the following we will show, with the definitions of assignment from big-step and continuation semantics how their

translation appears as part of the chosen implementation languages. Since functional languages have a particular way of

declaring abstract data types, you will notice that the syntax of the program looks different in different languages. However,

assuming the existence of an external parser, we could ask from that parser to give as output terms of the abstract data type

in the corresponding language.

A.1. Big-Step based definitions

The rewriting rule for assignment in big-step is

〈X:=A,S〉 → 〈S′[X <∼ I]〉 if 〈A,S〉 → 〈I,S′〉
Asf+Sdf Since Asf+Sdf is a rewriting engine, translating RLS specifications to Asf+Sdf interpreters is mostly a matter of

using a different notation. In fact Asf+Sdf adopts a notation with setting the premises above the line, close to the

original semantics.

[] <I,S1> := <A,S>
==========================
<X := A,S> = bind(S1,X,I)
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Haskell: We use Scgf(st,s) and Acfg(a,s), etc., to encode configurations 〈st,s〉 and 〈a,s〉, respectively. We define an evalu-

ation function for each type of configuration, for example eStmt is the function evaluating Scfg configurations and
eAExp is evaluating Acfg configurations. The matching of the evaluation of premises is performed by using the let

construct.

eStmt (Scfg (Assign x a) s) =
let (Acfg (Int i) s1) = eAExp (Acfg a s)

in (bind s1 x i)

Maude: Since Maude is the standard execution engine for rewriting logic specifications, the rules here are the ones in the

specification.

rl < X := A,S > => S1[X <- I] if < A,S > => {I,S1}.

Ocaml: Since Ocaml supports polymorphic functions, we only need to define one evaluation function for all constructs.

Then matching is used to obtain the starting term and match ... with ... is used for evaluating the premises.

let rec eval = function
...
| Scfg(Assign(x,a),s) ->

(match eval (Acfg(a,s)) with Acfg(Int(i),s1) ->
(bind s1 x i))

Prolog: In Prolog we define a relation for each type of configuration and use unification for matching only purposes. Note

that while in Ocaml, constructors of abstract data types start with capital letter, in Prolog this would correspond

to variables, so we need to use scfg, acfg, etc., to encode configurations.

eStmt(scfg(X = A,S),S2) :- eAExp(acfg(AE,S),acfg(I,S1)),
bind(S1,X,I,S2).

A.2. Continuation-based definitions

Recall that the RLS semantics for assignment consists of an equation and a rule:

stmt(X := A) = aexp(A)�write(X)

k(I�write(X)�K) store(Store)→ k(K) store(Store[X ← I])

Asf+Sdf Again, the translation to Asf+Sdf implies minimal or no modifications. Note that Asf+Sdf makes no distinction

between equations and rules, all of them being written as equations.

[] stmt(X := A) = aexp(A) -> write(X)
[] k(int(I) -> write(X) -> K) store(Store)
= k(K) store(bind(Store,X,I))

Haskell: The continuation concatenation is replaced by list concatenation. The evaluation rules are transformed into a

recursive evaluation function acting at the top of the state.

stmt (Assign x a)) = (aexp a) ++ [Kwrite x]
result (Kval (Vint i):Kwrite x:k) s = result k (bind s x i)

Maude: Representation in Maude is the exact rewriting logic definition.

eq stmt(X := A) = aexp(A) -> write(X) .
rl k(int(I) -> write(X) -> K) store(Store)
=> k(K) store(Store[X <- I]) .

Ocaml: A similar approach as that for Haskell.

let rec stmt = function
...
| Assign(x, a) -> (aexp a) @ [Kwrite x]

let rec result s = function
...
| (Kval (Vint i)::Kwrite x::k) -> result (bind s x i) k
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Prolog: Same approach as for the functional languages above, but we now define (functional) evaluation relations for

functions decomposing the program and a one-step rewrite relation for the top-level evaluation process.

stmt(X = A,K) :- aexp(A,KA), append(KA,[write(X)],K).
step(conf(store(S),v([I]),k([write(X)|K])),

conf(store(S1),v(Vl),k(K)))
:- bind(S,X,I,S1).
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