

KTH Royal Institute of Technology
SEMINAR 1 - 22 March 2017

Simone Stefani - sstefani@kth.se

PART 1
The Local Picture

WHAT IS THIS SEMINAR ABOUT
What is Git and why is good

The abstract view

Saving changes

Inspecting the repository

Undoing changes

Introduction to GitHub

Push and Pull

WHAT IS THIS SEMINAR NOT ABOUT
How to setup Git on your computer

Git/GitHub Clients with GUI

Branching

Merging and rebasing

Git team workflows

Pull requests and forks

PART 1
The Local Picture

How do you organise your code?

my-project

my-project-v2

my-project-final

my-project-really-final

A typical problem for programmers is
managing multiple versions of a project.

Version Control System (VCS)

A VCS allows to seamlessly manage multiple code versions. It is then possible to move
between different versions, selectively save changes and reset to a specific version.
At the same time it offers support to work easily with other programmers.

Git is a communication tool

Besides being a technical tool, a VCS (Git in our case) is a great communication tool. It
helps people in a team to agree on a common workflow and provides a unified
platform to discuss changes and fixes.

Let’s get it clear...

is the version control system

is a hosting service

Git is a program that runs in your computer and it is initialised on top of a project
folder. GitHub is a hosting service provided by a company.

Let’s get started

$ git init
To initialise a folder as a Git-tracked project move into that folder
(cd /path/to/the folder/) and run git init.

The abstract view

https://xkcd.com/1597/

What do YOU see when
looking at a folder?

A tree of files and folders

What does GIT see when
looking at a folder?

Three imaginary areas
(actually four)

Three areas

working
directory

staging
area

history or
repository

Working folder from the point of view of
Git: shows which files have been
modified (created/edited/deleted) since
the last version recorded by Git.

“Middle ground” to select which files that
changed should be part of the next
commit.

A list of the commits: represents
all the changes that have been
recorded by Git.

Saving changes

foo.txt

$ git add foo.txt

working
directory

staging
area

git
repository

To move a (changed) file from the working directory to the
staging area run git add <name-of-the-file>. To add all the
(changed) files to the staging area run git add -A

$ git commit

working
directory

staging
area

git
repository

To make a commit from the staged files run git commit. This will create a new commit
object in the repository: the commit contains the set of changes that we have decided to
record.
Use git commit -m “<write-here-the-commit-message>” to avoid opening an editor.

It’s all about snapshots

Git records the entire contents of each file in every commit.
Many other systems record differences between file versions.

Inspecting the repository

$ git status

$ git log

&

Two commands are mainly used to inspect the state of the repository:
git status and git log

Inspect what?

The command git status displays information about
the state of the working directory and the staging area.

The command git log returns a list
of commits.

Undoing changes

$ git checkout a1e8fb5
The command git checkout <commit> update all files in the
working directory to match the specified commit. This will put you
in a detached HEAD state.

Checkout commit brings to
a detached head state:

READ-ONLY

When in detached HEAD state it is only possible to look at the files in the
working directory. No changes can be made (don’t change the past).

$ git reset foo.txt

working
directory

staging
area

git
repository

foo.txt

The command git reset <file> remove the
specified file from the staging area.

$ git reset a1e8fb5

RESET ONLY STAGING AREA

The command git reset <commit> allows to remove all the committed
changes up to the specified commit. The changes are only removed from Git
repository and staging area. The “physical” files are still present in the folder.

$ git reset --hard a1e8fb5

DANGER:
RESET STAGING AREA & WORKING

DIRECTORY

The --hard option instruct Git that the changes should be
removed from the history and staging area and that the files in
the folder should be reset to match the specified commit.

DON’T RESET PUBLIC HISTORY

After the commits have been
shared with other developers
(pushed to remote) the history
shouldn’t be reset. Doing so
would generate extensive
problems to the collaboration.
Other developer may have in
fact coded their features on
top of commits (pieces of
code) that the reset
command would remove.

One more thing

To tell Git to ignore some files use

.gitignore

A file is ignored by Git if listed inside the standard .gitignore file. This
feature allows to exclude from version control files that are only temporary
and don’t represent source code (compiled files such as .o or .beam).

PART 2
The Social Picture

Local and remote

A Git repository can reside on the local machine or in a remote hosting service
like GitHub. It is common practice to have both a local and a remote
repository for a single project, especially when working in a team. It is then
possible to synchronize the two repositories.

All repositories are born equal...

While it is common to refer to the remote repository as Central, Git makes
no distinction between the working copy and the central repository. Git’s
collaboration model is based on repository-to-repository interaction.

Syncing

In the upcoming slides it is
assumed that an empty
repository has been created on
a hosting service like GitHub
and that there is a local
repository to work with.

$ git remote add origin <url>
The command git remote add <remote-name> <url> adds a remote connection with the specified
name and located at the address specified by the url. This establishes a connection between the local and
remote repositories. The connection provided by the url can be both over HTTP or with SSH (more secure).
The name origin is commonly used to refer to the own remote counterpart of a local repository.

$ git push origin master
The command git push <remote-name> <branch> allows to add
commits registered in the local repository (on the specified branch) to the
remote repository specified by the remote name.

The local repository (Master) is initially ahead of the remote counterpart
(Origin/Master). After pushing they are perfectly synced.

$ git pull origin
The command git pull <remote-name> allows to
add commits registered in the remote repository
specified by the remote name to the local repository.

The local repository (Master) is initially synchronized with the remote counterpart (Origin/Master). Then
someone pushes commits to the remote repository. These commits are missing in the local repository.

After the pull command the two repositories are
synchronized again.

$ git clone <url>

Sometimes it is needed to create a local copy of a remote repository. The
command git clone <url> clones the remote repository specified by
the url to the current directory. This action automatically sets up a
connection between the two repositories naming the remote origin.

Credits

All the graphics in this presentation are from
Atlassian Getting Right Git guide reachable at:

www.atlassian.com/git

The content is licensed under a
Creative Commons Attribution 2.5 Australia License

http://www.atlassian.com/git
http://www.atlassian.com/git
https://creativecommons.org/licenses/by/2.5/au/
https://creativecommons.org/licenses/by/2.5/au/

