
Homework I, Foundations of Cryptography 2017
Before you start:

1. The deadlines in this course are strict and stated on the course homepage.

2. Read the detailed homework rules at the course homepage.

3. Read about I and T-points and grades in the course description.

The problems are given in no particular order. If something seems wrong, then visit the
course homepage to see if any errata was posted. If this does not help, then email dog@kth.se.
Don’t forget to prefix your email subject with Krypto17. We may publish hints on the
homepage as if a problem appears to be harder than expected.

1 (2T) Describe the structure of a proof by reduction in cryptography as explained in class, i.e.,
describe the roles of definitions, assumptions, reductions, parties, adversaries, and conclusions.
A fellow student that does not follow the course should be able to understand your description.
You may show your description to somebody that does not follow the course to check this! Feel
free to use handmade illustrations.

2 (2T) The standard definition of an efficient algorithm in complexity theory is an algorithm with
polynomial running time (if it is uniform or not does not matter in this problem). Why is this
notion not satisfactory when constructing algorithms for optimization problems, but it is rarely
unsatisfactory when modeling adversaries in cryptography?

3 (3T) Suppose that f(·) is not negligible. If there exist integers c, n0 > 0 such that f(n) > n−c

for all n > n0, then prove this and otherwise give a counter example.

4 (2T) List the indices of the functions below that are negligible functions. For example, if you
think f1(n) and f2(n) are negligible and no other, then your answer should simply be ”1, 2”.

f1(n) = n− logn f2(n) = n−256 f3(n) = 2−n f4(n) = n−128n f5(n) = f2(n) + f4(n)

To get any points your answer must be completely correct, i.e., this is an all-or-nothing problem.
You do not need to motivate your answer for this problem.

5 (10I) Implement the AES cipher. A detailed description is found on Kattis https://kth.kattis.

com/problems/oldkattis.aes. Feel free to consult different sources on how to make an efficient
implementation, but any borrowed ideas should be explained briefly in the solutions submitted
on paper. You must also be prepared to explain in detail what you did and why at the oral
exam. Make sure that your code is commented and well structured. Up to 10I points may be
subtracted if this is not the case.

Page 1 (of 5)

Foundations of cryptography • Spring 2017
Douglas Wikström

https://kth.kattis.com/problems/oldkattis.aes
https://kth.kattis.com/problems/oldkattis.aes


6 In each case below, say as much as you can about the entropy of Y and motivate your answers.
Make sure that you do not assume anything about the distribution of Y that is not stated
explicitly. More precisely, for each description of the random variable Y given below, explain if,
why, and how, the information given about Y :

1. is sufficient/insufficient to compute the entropy of Y ,

2. allows you to give a closed expression of the entropy of Y , or

3. only allows you to bound the entropy of Y from above and/or below.

(Possibly in terms of the entropies of X and S.)

6a (1T) Let Y = (X1, . . . , Xn) be a random variable over {0, 1}n such that Pr[Xi = 1] = 1/2
for i = 1, . . . , n.

6b (1T) Let S be a uniformly distributed random variable over {0, 1}128 and define Y to be
the top 64 bits of AESk(S), where AESk denotes the AES function for a fixed key k.

6c (1T) Let S be a uniformly distributed random variable over {0, 1}128 and define Y =
RO(S), where RO : {0, 1}256 → {0, 1}256 is a random oracle.

6d (1T) Let X, S, and T be independent random variables over Zq, where q is an odd prime,
and define Y = (X,S, S + T,X + T ), where sums are taken modulo q.

6e (2T) Let Y = (X0, . . . , Xn) be a random variable over {0, 1}n such that X0 = 1 and for
every (x1, . . . , xi−1) ∈ {0, 1}i−1 we have Pr[Xi = Xi−1|(X1, . . . , Xi−1) = (x1, . . . , xi−1)] =
2−i for i = 1, . . . , n.

6f (2T) Let f be a function, let X be a random variable over a set X , and define Y = f(X).
Only the probability function pX(x) of X is given, not the one for Y .

6g (2T) Let f be a function, let Y be a random variable over a set Y, and define X = f(Y ).
Only the probability function pX(x) of X is given, not the one for Y .

7 (6T) Read the paper of Khazaei and Ahmadi on the Hill cipher. Describe in detail what kinds of
attacks you can mount on the Hill cipher. Is it a known-plaintext, chosen-plaintext, etc attack?
How many ciphertexts do you need? What is the approximate time complexity of the attacks?

8 Search for information about uniform and non-uniform adversaries.

8a (1T) Describe the difference in your own words.

8b (2T) Does it matter which view we take on efficient adversaries? (both in theory and
practice) Are they equivalent?

Page 2 (of 5)

Foundations of cryptography • Spring 2017
Douglas Wikström



9 Let Et : {0, 1}n × {0, 1}tn ← {0, 1}n be an n-bit block cipher with tn-bit keys, consisting of a
t-round Feistel network. Let “‖” denote concatenation and let fi be the ith Feistel function. Then
denote the key by k = k1‖k2‖..‖kt, the plaintext by L0‖R0 ∈ {0, 1}n, and the output in round
s ≥ 1 by Ls‖Rs, i.e., the output ciphertext is Lt‖Rt. Assume that fi(ki, ·) is pseudo-random
function for a random ki.

9a (2T) Show that if t = 1, then the Feistel network is not a pseudorandom permutation.

9b (4T) Show that if t = 2, then the Feistel network is not a pseudorandom permutation.

9c (10T) Show that if t = 3, then the Feistel network is not a pseudorandom permutation.
(Hint: Look at several related inputs and outputs. Evaluate the permutation as well as its
inverse on these.)

10 (3I) Implement modular exponentiation from modular multiplication. A detailed description is
found on Kattis. https://kth.kattis.com/problems/kth.krypto.modexp. Use a big integer
library for multiplication, e.g., GMP in C/C++ or java.math.BigInteger in Java. Make sure
that your code is commented and well structured. Up to 3I points may be subtracted if this is
not the case. Keep in mind that you must be able to explain your solution during the oral exam.

11 (3I) Implement Chinese remaindering. A detailed description is found on Kattis. https://
kth.kattis.com/problems/kth.krypto.crt. Make sure that your code is commented and well
structured. Up to 3I points may be subtracted if this is not the case. Keep in mind that you
must be able to explain your solution during the oral exam.

12 (5I) Compute the factorization of an RSA modulus from its encryption and decryption exponents.
A detailed description is found on Kattis. https://kth.kattis.com/problems/kth.krypto.
rsafact. Make sure that your code is commented and well structured. Up to 5I points may be
subtracted if this is not the case. Keep in mind that you must be able to explain your solution
during the oral exam.

13 (2I) Determine basic properties of elliptic curves. A detailed description is found on Kattis.
https://kth.kattis.com/problems/kth.krypto.ellipticcurvepoints. Make sure that your
code is commented and well structured. Up to 2I points may be subtracted if this is not the
case. Keep in mind that you must be able to explain your solution during the oral exam.

14 (4T) In some applications side channel attacks are a concern. Describe what a side channel attack
is. Find as many side channels as possible that as been exploited in the research literature. Cite
each relevant paper properly in your answer with a brief description in a few sentences.

15 The goal of this problem is to study the OpenSSL source code to get feeling for what real world
code for cryptography can look like.

15a (1T) Identify and report the path to the file containing the optimized implementation of
P-256.

Page 3 (of 5)

Foundations of cryptography • Spring 2017
Douglas Wikström

https://kth.kattis.com/problems/kth.krypto.modexp
https://kth.kattis.com/problems/kth.krypto.crt
https://kth.kattis.com/problems/kth.krypto.crt
https://kth.kattis.com/problems/kth.krypto.rsafact
https://kth.kattis.com/problems/kth.krypto.rsafact
https://kth.kattis.com/problems/kth.krypto.ellipticcurvepoints


15b (1T) Determine if any security critical bugs have been fixed in this code since it was
committed to the code base.

15c (3T) Describe the techniques used in the implementation of P-256 to counter side channel
attacks.

16 The generic elliptic curves covered in class uses separate code for doubling, adding, and treatment
of the point at infinity. For some curves this is not necessary, i.e., there is no need for special
code.

16a (3T) Dan Bernstein has published several papers about this. Read enough to be able to
explain the key ideas.

16b (2T) What are the advantages of such curves in practice?

17 The goal of this problem is to prove the following implications covered in class. In other words,
the difficulty in solving this problem is not understanding that the implications hold, but to
write down a rigorous proof. Thus, in this particular problem, any handwaving give zero points.
A proof consists of a description of an efficient reduction and a mathematical analysis thereof.

17a (2T) Prove that the DH assumption implies the DL assumption.

17b (2T) Prove that the DDH assumption implies the DH assumption.

18 Let p = kq + 1 and q be primes such that log q = n, log k = n and such that the bit size of
every prime factor of k is bounded by log n. Let g be a generator of the unique subgroup of Z∗

p

of order q. I pick x ∈ Zq randomly and hand you y = gx. Then you may ask me any number of
questions of the form u ∈ Z∗

p, which I answer by ux mod p.

18a (2T) Explain how you can compute x efficiently (describe your algorithm and analyze its
running time).

18b (1T) What is the important lesson to learn from this example? (This was mentioned in
class, but you will not find it on any slides.)

18c (1T) How would you address this problem in an implementation of the protocol?

Page 4 (of 5)

Foundations of cryptography • Spring 2017
Douglas Wikström



19 The goal of this problem is that you write out the details of a proof in cryptography on your
own. We have already covered this result in class. Let CS = (Gen,Enc,Dec) be a public key
cryptosystem. More precisely:

• Gen is a probabilistic key generation algorithm that on input 1n (security parameter n in
unary representation) outputs a key pair. We denote this by (pk, sk) = Gen(1n).

• Enc is an encryption algorithm that takes a public key pk, a message m ∈ {0, 1}n, and
randomness r ∈ {0, 1}n as input and produces a ciphertext. We denote this by Encpk(m, r).

• Dec is a decryption algorithm that takes a secret key sk and a ciphertext c as input and
outputs the plaintext. We denote this by m = Decsk(c).

Denote by CSk = (Genk,Enck,Deck) the cryptosystem defined as follows:

• Genk is identical to Gen

• Enck takes a public key pk, a message m ∈ {0, 1}n×k, and randomness r ∈ {0, 1}n×k as
input and outputs (Encpk(m1, r1), . . . ,Encpk(mk, rk)).

• Deck takes a secret key sk and a ciphertext c = (c1, . . . , ck) as input and outputs a plaintext
(Decsk(c1), . . . ,Decsk(ck)).

19a (7T) Prove that if CS is secure, then CS2 is secure.

19b (3T) Prove that for every polynomial k(n), if CS is secure, then CSk(n) is secure.

You need to be more rigorous than what we did in class that! Imagine that your life depended
on convincing your worst enemy.

Page 5 (of 5)

Foundations of cryptography • Spring 2017
Douglas Wikström


