
Int J Softw Tools Technol Transfer (2016) 18:653–684
DOI 10.1007/s10009-015-0375-0

REGULAR PAPER

Provably correct control flow graphs from Java bytecode
programs with exceptions

Afshin Amighi1 · Pedro de Carvalho Gomes2 ·
Dilian Gurov2 · Marieke Huisman1

Published online: 5 April 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract We present an algorithm for extracting control
flow graphs from Java bytecode that captures normal as well
as exceptional control flow. We prove its correctness, in the
sense that the behaviour of the extracted control flow graph
is a sound over-approximation of the behaviour of the orig-
inal program. This makes control flow graphs suitable for
performing various static analyses, such as model checking
of temporal safety properties. Analysing exceptional control
flow for Java bytecode is difficult because of the stack-based
nature of the language. We therefore develop the extraction
in two stages. In the first, we abstract away from the com-
plications arising from exceptional flows, and relativize the
extraction on an oracle that is able to look into the stack and
predict the exceptions that can be raised at each instruction.
This idealized algorithm provides a specification for con-
crete extraction algorithms, which have to provide a suitable
implementation for the oracle. We prove correctness of the
idealized algorithm by means of behavioural simulation. In
the second stage, we develop a concrete extraction algorithm
that consists of two phases. In the first phase, the program
is transformed into a BIR program, a stack-less intermediate
representation of Java bytecode, from which the control flow
graph is extracted in the second phase. We use this interme-

B Pedro de Carvalho Gomes
pedrodcg@csc.kth.se

Afshin Amighi
a.amighi@utwente.nl

Dilian Gurov
dilian@csc.kth.se

Marieke Huisman
m.huisman@utwente.nl

1 University of Twente, Enschede, The Netherlands

2 KTH Royal Institute of Technology, Stockholm, Sweden

diate format because it provides the information needed to
implement the oracle, and since it gives rise to more com-
pact graphs. We show that the behaviour of the control flow
graph extracted via the intermediate representation is a sound
over-approximation of the behaviour of the graph extracted
by the direct, idealized algorithm, and thus of the original
program. The concrete extraction algorithm is implemented
as the ConFlEx tool. A number of test cases are performed
to evaluate the efficiency of the algorithm.

Keywords Software verification · Static analysis ·
Program models

1 Introduction

Over the last decade software has become omnipresent, and
at the same time, the demand for software quality and reliabil-
ity has been steadily increasing. Different formal techniques
have been developed to address this goal, such as various
static analyses, model checking and (automated) theorem
proving. A major obstacle is presented by the state space
of software, which is typically very large or even infinite.
Therefore appropriate abstractions are necessary to make the
formal analysis tractable. It is important that such abstrac-
tions (or models) are sound w.r.t. the properties of interest
about the original program: if a property holds over the
abstract model, it should also hold over the original pro-
gram. To be able to establish formally the soundness of the
extracted models one needs a formalization of the extraction,
as a mapping from programs to models.

A natural abstraction are program models (extracted from
program code) that only preserve the information that is rel-
evant for the class of properties at hand. In particular, control
flow graphs (CFGs) [1] are a widely used abstraction, where

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-015-0375-0&domain=pdf

654 A. Amighi et al.

only the control flow information is kept, while all program
data is abstracted away. Concretely, in a CFG, nodes repre-
sent the control points of a method, and edges represent how
instructions shift control between the points.

In the present work, we extract CFGs as program models
that are tailored for compositional verification of control-
flow-based temporal safety properties in the style of [18,20].
Our definition ofCFGsmakes two adaptations of the standard
notion. First, there are no explicit inter-procedural edges:
method calls are represented by labels on the outgoing edges
of invocation nodes, and return points are depicted as atomic
propositions on sink nodes. Second, the CFGs contain excep-
tional control nodes, i.e., nodes representing the takeover of
control by the Java Virtual Machine (JVM) to handle the
exception. The current definition captures method invoca-
tions and exceptions only. However, it can easily be extended
to observe other types of events, such as lock acquisition or
heap manipulation.

For two reasons the analysis of exceptional flows presents
a major complication to the sound extraction of CFGs
from Java bytecode. First, the stack-based nature of the
JVM makes it hard to determine the type of explic-
itly thrown exceptions, thus making it difficult to stat-
ically decide to which handler (if any) control will be
transferred. Second, the JVM can raise (implicit) run-
time exceptions, such as a NullPointerException or
an IndexOutOfBoundsException; to keep track of
where such exceptions can be raised requires much care.

Numerous approaches to the automatic extraction of con-
trol flow graphs from program code have previously been
presented. However, these are typically not accompanied by
any formal correctness argument. We attempt to fill this gap:
we present a CFG extraction algorithm for sequential (i.e.,
single-threaded) Java bytecode (JBC) that captures normal
as well as exceptional control flow, and we prove that the
extraction algorithm is sound w.r.t. program behaviour, if the
latter is viewed as a set of sequential executions (runs). The
main challenge here is to come up with a simple formaliza-
tion of the extraction that allows a relatively straightforward
(even if large) soundness proof, to pave the ground for fully
formal soundness proofs by means of theorem provers. One
complication here derives from the fact that the notion of cor-
rectness of the extraction algorithm is indirect, in terms of
the extracted CFGs being sound models w.r.t. the programs
from which they are extracted.

Our extraction algorithm considers all the typical intri-
cacies of (sequential) JBC such as virtual method call
resolution, the differences between dynamic and static object
types, and exception handling. In particular, it includes
explicitly thrown exceptions. Also, it supports a significant
subset of the run-time exceptions. This partial support is
inherited from the intermediate transformation that our algo-
rithm uses, and the practical aspects of its implementation.

In fact, our algorithm can easily be extended to support a
wider set of run-time exceptions, as long as the intermediate
transformation also does.

We address the problem of sound CFG extraction in two
stages. In the first, we follow the philosophy of Freund
and Mitchell underlying their formalization of the JVM to
abstract away from the complications arising from excep-
tional flows and to relativize the extraction on an oracle that
is able to look into the stack and predict the exceptions that
can be raised at each instruction [13]. The resulting, concep-
tually simple, idealized algorithm is designed to serve as a
specification for concrete CFG extraction algorithms, which
have to implement the oracle in a suitable fashion. We prove
correctness of the algorithm by means of a simulation rela-
tion between the behaviour of the extracted CFG (in terms of
an induced pushdown automaton) and the behaviour of the
original JBC program (in terms of its execution on the JVM,
following again [13]). The CFGs extracted by the algorithm,
however, are rather verbose: in bytecode, all operands are on
the stack, thus many instructions for stack manipulation are
present, all giving rise to irrelevant edges in the CFG. This
affects negatively the efficiency of verification of control flow
properties.

To overcome these problems, in the second stage, we
develop a concrete extraction algorithm that implements the
oracle and at the same time produces more compact CFGs.
The algorithm consists of two separate transformations. The
first one converts the JBC program into a BIR program. The
second transformation defines CFG extraction from BIR.
BIR is a stack-less representation of Java bytecode developed
by Demange et al. [11]. Thus all instructions (including the
explicit athrow) are directly connected to their operands,
providing the necessary information to implement the ora-
cle. Also, the BIR transformation inserts assertions along the
program representation, denoting that a run-time exception
can be raised at a given program point. Further, the represen-
tation of a program in BIR is smaller than in JBC, because
operations are not stack-based, but represented as expres-
sion trees. As a result, the extracted CFGs are more compact.
The composition of the two transformations constitutes the
concrete CFG extraction algorithm from JBC. Its correct-
ness proof uses the correctness of the idealized algorithm.
We prove that the CFGs extracted by the idealized algo-
rithm are simulated structurally (rather than behaviourally)
by the CFGs extracted by the concrete algorithm, which sig-
nificantly simplifies and shortens the proof. By reusing a
previous result from [20] that structural simulation induces
behavioural simulation, and by transitivity of simulation, we
can deduce behavioural simulation.

The concrete algorithm is implemented as the tool Con-
FlEx . It uses Sawja [19], a library for static analysis of Java
bytecode, for the virtual method resolution, and for the BIR
transformation. The BIR transformation in Sawja is purely

123

Provably correct control flow graphs from Java bytecode programs with exceptions 655

syntactic. Therefore, we instrumented it to associate types to
operands, and to compute the most general type when some
operation is performed over operands of different types. Cur-
rently Sawja provides assertions for a subset of the run-time
exceptions. ConFlEx supports all the available assertions,
and can easily be extended if more are provided. Next, we
implemented theCFGextraction algorithm from theBIR rep-
resentation. It is subdivided into two distinct analyses. The
first is intra-procedural, and the CFG of amethod is extracted
by analysing its instructions only. The second analysis is
inter-procedural, and ConFlExuses a fixed-point computa-
tion to determine the flow caused by propagation of uncaught
exceptions.

We perform several test cases with ConFlEx to evalu-
ate its efficiency. The experimental results show that the
extraction time is linear in the number of instructions of
the program. Also, the fixed-point computation of exception
propagation is shown to be light-weight in practice, constitut-
ing a negligible fraction of the total extraction time. The BIR
representation has about one third of the number of instruc-
tions of the corresponding JBC program. Thus, it produces
more compact graphs than those produced by an implemen-
tation of the idealized algorithm that only implements the
oracle for the exception analysis.

The results presented here have been partially published
in [3] (also presented as part of the Licentiate Thesis of
Gomes [14]). The present paper extends thatwork, expanding
on the theoretical underpinnings and providing the details of
the formal proofs. Unlike in [3], we present here the indirect
algorithm as an instantiation of the idealized algorithm, and
provide therefore the formalization and correctness proof of
the latter. An earlier version of the idealized algorithm and
its correctness proof has been presented as part of Amighi’s
M.Sc. thesis [2].

Contributions In summary, the contributions of the paper are
as follows:

1. A simple formalizationofCFGextraction fromJavabyte-
code for the verification of temporal safety properties,
together with a relatively routine, even though not short
soundness proof in terms of a simulation relation relative
to a formal JVM specification. The formalization is ide-
alized in the sense that it uses an “oracle” to abstract from
the complexities inherent in exceptional control flow, and
serves thus as a specification for concrete CFG extraction
algorithms: any such algorithm (i) has to implement the
oracle, and (i i) has only to be shown sound w.r.t. the
models extracted by the idealized algorithm.

2. An efficient instantiation of the idealized algorithm as a
concrete algorithm based on BIR, a well-known interme-
diate bytecode representation.

3. A soundness proof for the concrete algorithm. Even
though far from trivial, the proof is greatly simplified by

the proof of the idealized algorithm, being performed in
terms of structural (i.e., finite state) rather than behav-
ioural (i.e., infinite state) simulation w.r.t. the CFGs
extracted by the latter.

4. An implementation of the extractor in the shape of the
ConFlEx tool. The utility and efficiency of the tool are
shown on several test cases.

Organization The remainder of this paper is organized as
follows. First, Sect. 2 provides the necessary background
definitions for the algorithm and its correctness proof, and
exemplifies the application of the current work. Then, Sect. 3
discusses the direct extraction rules for control flow graphs
from Java bytecode, while Sect. 4 discusses the indirect
extraction rules via BIR, and presents the correctness proof
strategy. Section 5 describes the implementation of the indi-
rect algorithm, and presents experimental results. Section 6
discusses implications of the present work. Finally, Sects. 7
and 8 present related work and conclude.

2 Preliminaries

This section briefly reviews the standard formalization of
Java bytecode programs of Freund and Mitchell, that forms
the basis for our soundness proof, with its corresponding exe-
cution environment. It also introduces our model to represent
Java bytecode programs, and illustrates how our results are
used in a wider context to verify control-flow-based temporal
safety properties of Java bytecode programs.

2.1 Java bytecode and the Java virtual machine

Java bytecode is a stack-based executable language. That
is, the operands for its instructions are stored on a stack,
in contrast to a register-based approach. The Java Virtual
Machine (JVM) is a stack-based interpreter that executes Java
bytecode programs.

Execution errors of a Java program are reported by the
JVM by means of exceptions. Programmers can also explic-
itly throw exceptions (using instruction athrow). Each
method can contain multiple exception handlers, which are
code blocks executed to recover from an exception. If an
exception occurs, and there is no suitable handler in the cur-
rently executing method, its execution is terminated abruptly
and the JVM continues looking for an appropriate handler in
the calling method’s context. This process continues until a
suitable handler is found, or there are no more calling con-
texts. In the latter case, execution terminates exceptionally.

The JVM relies upon a module called the Java bytecode
verifier, that performs type checking and several additional
sanity checks over the program code before it starts the exe-
cution; e.g., the JVMwill not start the execution of a program
that contains a method that can terminate by running out of

123

656 A. Amighi et al.

Fig. 1 Example Java source program with control points

instructions, instead of reaching a return instruction.We say a
Java bytecode program is well-formed if it passes the JVM’s
bytecode verification.1

We use Freund and Mitchell’s formal framework for Java
bytecode [13]. A JBC program is modeled as an environment
Γ that is a partial map from class names, interface names and
method signatures to their respective definitions. Subtyping
in an environment is denoted by Γ � τ1 <: τ2, meaning τ1
is a subtype of τ2 in environment Γ . Let Meth be a set of
method signatures. A method m ∈ Meth is represented in
an environment Γ as Γ [m] = 〈B, H〉, where B denotes the
body and H the table of exception handlers of method m.

Let Addr be the set of all valid instruction addresses in
Γ , and Inst be the Java bytecode instructions set. The body
of a JBC method can be considered as a sequence of pairs of
addresses and instruction:

S′::= 0 : inst; S S::= � : inst; S | ε

� ∈ Addr, inst ∈ Inst

The sequence is non-empty, and the address of the first
instruction is always zero. Dom(B) ⊂ Addr is the set of
valid program addresses for methodm, and B[k] denotes the
instruction at position k ∈ Dom(B) in the method’s body.
For convenience, m[k] = i denotes instruction i at location
k of method m.

HavingExcp as the set of exceptions, themethod’s excep-
tion table H contains quadruples of the form 〈b, e, t, x〉,
where b, e, t ∈ Addr and x ∈ Excp. If an exception is
thrown by an instruction with index i ∈ [b, e) and it is from
a subtype of x , then m[t] is the first instruction of the cor-
responding handler. Thus, the instructions between b and e
model the try block. The instructions starting at t model
either the catch block that handles the exception x , or a

1 Requirements available at http://docs.oracle.com/javase/specs/jvms/
se7/html/jvms-4.html#jvms-4.10.2.

finally block, if x is from the special type any, defined as
an alias of Throwable, the super-type of any exception.

A JVM execution state is modeled as a configuration C =
A; h, where A denotes the sequence of activation records and
h is the heap. Each activation record is created by a method
invocation. The sequence is defined formally by:

A ::= A′ | 〈x〉exc · A′ A′ ::= 〈m, p, f, s, z〉 · A′ | ε

Here,m is the method signature of the active method, p is the
program counter, f is a map from local variables to values,
s is the operand stack, and z is initialization information for
the object being initialized in a constructor. Finally, 〈x〉exc is
an exception handling record, where x ∈ Excp denotes the
exception: in case of an exception, the JVM pushes such a
record on the stack.

Example 1 Figure 1 depicts a sample Java source program. It
has a single class named EvenOdd, containing three meth-
ods. The method’s control points are annotated in the left
column. Figure 2 depicts the same program in Java byte-
code. The left column denotes the addresses of the method’s
instructions, which are also control points in the program
execution. The present work covers only the analysis of Java
bytecode. However, clearly the JBC representation is much
more verbose than the source representation. Therefore, for
understandability, we sometimes illustrate definitions using
source code programs.

The entry method main receives two arguments upon
invocation: the first one is a selector between methods
even and odd; the second is the integer to be checked.
It invokes two methods from the Java API: parseInt
and equals. The method odd potentially throws an
ArithmeticException. The method even, on the
other hand, contains an exception handler for such an
exception. If an ArithmeticException is raised in
the interval of control points [0, 12) ([v15,v19) in the
source), defined by the try block, then control is transferred

123

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.10.2
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.10.2

Provably correct control flow graphs from Java bytecode programs with exceptions 657

Fig. 2 Example program in Java bytecode

to the control point 13 (v20 in source), which is the first
instruction defined by the catch block.

2.2 Program model

Control flow graphs are abstract models of programs. To
define their structure and behaviour, we follow Gurov et
al. and use the general notion of model [18,20].

Definition 1 (Model, Initialized Model) A model is a state
transition system M = (S, L ,→, A, λ) where S is a set of
nodes, L a set of labels,→ ⊆ S× L× S a labelled transition
relation, A a set of atomic propositions, and λ : S → P(A)

a valuation assigning the set of atomic propositions that hold
on each node s ∈ S. An initialized model is a pair (M,E),
where E ⊆ S is a set of entry nodes.

Control flow graphs are initialized models, where nodes
represent the control points of a method, and the edges rep-
resent how instructions shift control between the points. In
this work we are interested in a specific type of CFGs that
abstract from all data, but preserve information aboutmethod
invocations, and exceptions. Other Java bytecode features are
ignored. However, our definitions can easily be extended to
capture more features. Also, we do not consider methods
from the Java API to be part of the program.

In our CFGs, the nodes contain information about the
control points, exceptions and returns. We use the follow-
ing notation: ◦p,r

m denotes a normal control node, and •p,x,r
m

indicates an exceptional control node. The nodes are uniquely
identified by their method signature m, position p in the
method’s instruction array (control address), an optional
atomic proposition x (denoting an exception type), and the
optional atomic proposition r (denoting a return node).

The edges contain information about invocation instruc-
tions.We refer to edges corresponding to such instructions as

visible, and label them with a method signature. Edges cor-
responding to other instructions are labelled with ε, and are
called silent. Invocations to methods from the Java API are
also considered silent, although their propagation of excep-
tions is taken into account.

Example 2 Figure 3 shows the CFG extracted for the pro-
gram in Example 1. We represent it by means of control
points from the Java source, for simplicity. There is one sub-
graph for each method in the program, and the nodes of each
method are tagged with the method’s signature. Entry nodes
are depicted by incoming edges without source.

There are several exceptional nodes in the CFG (named
e1,e2, . . .) that do not have a corresponding control point in
the source code. They represent the configurations in which
the control was taken by the JVM, to take care of an excep-
tion. The edges from an exceptional node to a normal one
denote that there is a handler for the exception in that control
point. Exceptional nodes tagged with the atomic proposition
r denote the propagation of an exception by the method.

The only visible edges are the ones relative to the invoca-
tions of methods even and odd. Notice that the invocation
of parseInt, which is a method from the Java API, is con-
sidered to be a silent edge. However, the method’s signature
declares that a NumberFormatException (N.F.E) is
potentially propagated, and this is reflected by the edge toe1.

Now we define formally CFGs that model sequential pro-
grams with procedures and exceptions. Method graphs are
the basic building blocks of control flow graphs. They are
defined as an instantiation of initialized models as follows.

Definition 2 (Method Graph) A method graph with excep-
tions for a method m ∈ Meth over sets M ⊆ Meth
and E ⊆ Excp is an initialized model (Mm,Em), where
Mm = (Vm, Lm,→m, Am, λm) with Vm being the set of
control nodes of m, Lm = M ∪ {ε} the set of labels,

123

658 A. Amighi et al.

Fig. 3 Control flow graph for the example Java source program

Am = {m, r} ∪ E , m ∈ λm(v) for all v ∈ Vm , and for all
x, x ′ ∈ E , if {x, x ′} ⊆ λm(v) then x = x ′, i.e., each control
node is tagged with the signature of the method it belongs to
and at most one exception. Em ⊆ Vm is a non-empty set of
entry control point(s) of m.

A CFG is essentially a collection of method graphs. Also,
every control flow graph G is equipped with an interface I =
(I+, I−, I e), denoted G = (M,E) : I , where I+, I− ⊆
Meth are the set of provided, and (externally) requiredmeth-
ods, respectively. We say a CFG is closed if all the required
methods are also provided; we say it is open otherwise. I e ⊆
I+×E is the finite set of potentially propagated exceptions by
each provided method. The composition of CFGs is defined
as the disjoint union � of their method graphs. We should
stress here that in the composition, having the definition of
I e as a pair assists us to track the method that propagates the
exception. The composition of two interfaces is defined by
I1 ∪ I2 = (I+

1 ∪ I+
2 , (I−

1 ∪ I−
2)\(I+

1 ∪ I+
2), I e1 ∪ I e2).

Example 3 The method graph of odd is the central sub-
graph in Fig. 3, and its interface is ({odd}, {even}, {(odd,

ArithmeticException)}). The composed CFG of the
program is the disjoint union of all method graphs, as in
Fig. 3. Its interface is ({main,odd,even}, {}, { (main,

NumberFormatException), (main, Arithmetic-
Exception), (odd, ArithmeticException)}).

The operational semantics of CFGs, referred to here as
CFG behaviour, is defined also as an instance of an initialized
model. A CFG induces a behaviour in terms of a push-down
automaton,modeling the JVMcall stack. Intuitively, theCFG
behaviour is an abstraction of the JVM behaviour, where
the activation records are mapped to control nodes, and the
only information preserved is the method signature, program
point, and a potential exception. The behaviour of CFGs is
defined as follows.

Definition 3 (CFG Behaviour) Let G = (M,E) : I be a
closed flow graph with exceptions such that M = (V, L ,

→, A, λ). The behaviour of G is described by the initial-
ized model b(G) = (Mb,Eb), where Mb = (Sb, Lb,

→b, Ab, λb) such that:

• Sb ∈ V × V ∗, i.e., states are pairs of control node and
stack of control nodes,

• Lb = {τ } ∪ LC
b ∪ LX

b where LC
b = {m1 l m2 | l ∈

{call, ret, xret},m1,m2 ∈ I+} (the set of call and return
labels) and LX

b = {l x | l ∈ {throw, catch}, x ∈ Excp} (the
set of exceptional transition labels).

• Ab = A
• λb((v, σ)) = λ(v)

• →b ⊂ Sb × Lb × Sb is the set of transitions defined by the
following rules:

[transfer] (v, σ)
τ−→b (v′, σ) if m ∈ I+, v

ε−→m v′, r /∈ λ(v),

λ(v) ∩ Excp = λ(v′) ∩ Excp = ∅
[call] (v1, σ)

m1 call m2−−−−−−−→b (v2, v1 · σ) if {m1,m2} ⊆ I+, v1
m2−−→m1 v′

1,

m2 ∈ λ(v2), v2 ∈ E, r /∈ λ(v1),

λ(v1)∩Excp = λ(v2)∩Excp=∅
[return] (v2, v1 · σ)

m2 ret m1−−−−−−−→b (v′
1, σ) if {m1,m2} ⊆ I+, v1

m2−−→m1 v′
1,

{m2, r} ⊂ λ(v2), m1 ∈ λ(v1),

m1 ∈ λ(v′
1), λ(v′

1) ∩ Excp = ∅
[xreturn] (v2, v1 · σ)

m2 xret m1−−−−−−−−→b (v′
1, σ) if {m1,m2} ⊆ I+, v1

m2−−→m1 v′
1

x ∈Excp, x /∈λ(v1), m1∈λ(v1),

{m2, x, r}⊆λ(v2), {m1, x}⊆λ(v′
1)

[throw] (v, σ)
throw x−−−−−→b (v′, σ) if m ∈ I+, v

ε−→m v′, r /∈ λ(v),

x ∈Excp, x ∈λ(v′)
[catch] (v, σ)

catch x−−−−−→b (v′, σ) if m ∈ I+, v
ε−→m v′, r /∈ λ(v),

x ∈ Excp, x ∈ λ(v),

λ(v′) ∩ Excp = ∅,

The set of entry states is defined by Eb = E × {ε}, where ε

is the empty sequence.

Intuitively, τ -transitionsmodel transfer of control between
nodes. A throw-transition models the raise of an exception,

123

Provably correct control flow graphs from Java bytecode programs with exceptions 659

and a catch-transition models the transfer of control to an
exception handler. In these cases, the stack is not changed. A
call-transition models a method invocation: the calling node
is pushed onto the stack, and control is transferred to the
entry node of the callee method. A return-transition mod-
els the normal termination of a method: the calling node is
popped from the stack, and control is transferred to the suc-
cessor normal control node. An xreturn-transitionmodels the
abortion of a method execution by an uncaught exception x ,
and its propagation: the calling node is popped from the stack,
and control is transferred to the successor exceptional node
tagged with x .

Our definition is basedonHuismanet al. [20,Definition8],
but there is a difference in how the method calls and returns
aremodeled. In the original definition, the set of all the return
nodes, either normal or exceptional, is pushed onto the stack
upon amethod call, and then the return transitions are defined
for the set of nodes in the stack. In our definition, only the call-
ing node is pushed onto the stack, and we define transitions
based on the calledmethod’s return points. Also, we partition
the return transitions into normal and exceptional. We intro-
duce such changes to mimic closer the JVM behaviour, and
to stress the propagation of exceptions. However, notice that
both definitions are equivalent, since the pushed calling node
can be seen as a place-holder for the set of all return nodes.

Example 4 Consider the CFG in Fig. 3. Following is an
example run through the (infinite-state) behaviour induced
by the CFG:

(v1, ε)
τ−→b (v2, ε)

τ−→b (v3, ε)
τ−→b (v4, ε)

main call even−−−−−−−−−→b (v15, v4)
τ−→b (v16, v4)

τ−→b

(v18, v4)
even call odd−−−−−−−−→b (v7, v18 · v4)

τ−→b (v8, v18 · v4)
τ−→b (v9, v18 · v4)

throw A.E.−−−−−−→b

(e3, v18 · v4)
odd xreturn even−−−−−−−−−−→b (e4, v4)

catch A.E.−−−−−−→b (v20, v4)
τ−→b · · ·

This sample represents an execution starting in the entry
control point of the main method, next invoking even,
and then odd. An ArithmeticException (A.E.) is
thrown, but not caught, during the execution of odd, and
causes the method to terminate. The exception is propagated
to the calling method even, which catches it, and the exe-
cution proceeds.

2.3 Verification of control-flow-based temporal safety
properties

The currentwork describes how to extractCFGs that preserve
sequences of method calls and exceptions. We illustrate the
utility of the extracted CFGs by briefly describing the appli-

cation and context that motivated the algorithms and tool
presented in this paper. However, we should stress that the
extracted CFGs are also useful for other types of program
analyses, such as [4,17].

Gurov et al. developed a technique for the verification of
control-flow-based temporal safety properties, usingCFGsas
a program model [18]. The properties are specified in Sim-
ulation Logic, which is the (safety) fragment of the modal
μ-calculus [26] without diamond modalities and least fixed
points. The correctness of the verification results is there-
fore only guaranteed for models that are sound w.r.t. this
class of properties. The framework has been extended to also
support the more intuitive (linear-time) temporal logic Weak
LTL, which is the (safety) fragment of LTL [30] that uses the
weak version of the until temporal operator. The technique is
tailored for compositional verification, but can also be used
in a non-compositional setting.

With the technique of [18] one can thus verify proper-
ties over sequences of method invocations and exceptions,
using the CFGs extracted with the algorithm presented here.
Examples of useful properties are: “Exception Xwill only be
caught by a certainmethodM”, “If exceptionX is thrown, the
first invoked method must be the state-restoring method M”,
and “Exception X is always caught within the method that
raised it, or by its caller method.”

The verification technique is implemented as CVPP [21],
a tool set for the (compositional) verification of JBC pro-
grams w.r.t. temporal safety properties of sequences of
method invocations, and exceptions. CVPP is wrapped by
ProMoVer [35,36], a tool that automatically encapsu-
lates the verification steps in CVPP. Below we illustrate
how our extraction algorithm fits in CVPP for the (non-
compositional) verification of a control-flow-based temporal
safety property.

When verifying a Java bytecode program, the first step
is the extraction of its CFG. Next, the CFG is used to con-
struct a push-down system (PDS) that represents the induced
CFG behaviour, following the operational semantics from
Definition 3. Finally, CVPP verifies the temporal property
of interest against the PDS by using a standard PDS model
checker [24,31].

Example 5 Suppose we wish to verify whether the pro-
gram in Fig. 2 will never abort because of an uncaught
ArithmeticException. The following formula inWeak
LTLexpresses this property,whereG is the temporal operator
globally (or always). The formula essentially states that pro-
gram control never reaches a return point of method main
tagged with the given exception type:

φ1 = G ¬(main ∧ r ∧ ArithmeticException)

CVPP extracts the CFG from the program, and creates a PDS
that represents its behaviour. Both the PDS and φ1 are inputs

123

660 A. Amighi et al.

to the PDS model checker. The checker establishes that φ1

does not hold for theCFGbehaviour. A counter-example pro-
duced by the checker exhibits a run that violates φ1: initially
main invokes odd, then odd throws, but does not catch,
an ArithmeticException, the exception is then propa-
gated tomain, and finally causes its exceptional termination.

Now suppose we wish to check whether whenever even
is the firstmethod invoked bymain, then the program cannot
abort because an ArithmeticException is not caught.
The following Weak LTL formula expresses this property,
where W is the standard temporal operator weak until:

φ2 = (main W even)

→ G¬(main ∧ r ∧ ArithmeticException)

Again, CVPP feeds φ2 and the PDS into the model checker,
which shows that φ2 holds for the behaviour induced by the
CFG from the program in Example 2.

3 Extracting control flow graphs from bytecode

This section describes how we build CFGs directly from the
bytecode. The core of the algorithm is a set of rules that, given
an instruction and address, produces a set of edges between
the current control node, and all possible successors. The
rules are defined purely syntactically, based on the method’s
instructions. However, they are justified intuitively by the
instructions’ operational semantics. The algorithm is ideal-
ized, and relies on an oracle to provide information about
exceptions.

In the following we classify the set of the instructions
based on their operational semantics, then we introduce the
direct extraction algorithm and finally we prove the sound-
ness of the proposed algorithm.

3.1 JBC instructions

The essence of any CFG extraction algorithm is the analy-
sis of all possible transitions between any two control points
of the program. Thus, our algorithm is based on the oper-
ational semantics of the Java bytecode, as defined in [13].
We introduce two simplifications. The first is the assump-
tion of an oracle to provide information about exceptions. It
lists which exceptions are potentially raised by the execu-
tion of each instruction type. Also, the instruction athrow

(explicit exception throw) does not have an argument; instead
the exception is determined at run-timeby the top of the stack.
Our algorithm replaces athrow with throw X, and uses
the oracle to list the set X of possible exception types. Sec-
ond, the instructions jsr q and ret r, for the invocation
and return of subroutines, are not considered because they
are deprecated since JBC version 1.6 [27].

We extend the set of the method signatures with a spe-
cial signature named Mjvm to denote the method calling the
main method and then group the instructions with com-
mon behaviour w.r.t. the control flow into disjoint subsets.
The JBC instructions set contains more than 200 instruc-
tions, and this classification enables us to have a manageable
list of extraction rules. The behaviour of subsets is defined
by the operational semantics, which is also used to justify
our extraction rules. Figure 4 presents the partitioned sets,
an intuitive description of the semantics, and examples of
instructions that have a common control flow behaviour.

Now we introduce some auxiliary functions, necessary
to define the operational semantics and formally group the
instructions. The function succ(p) takes a control point and
based on the instruction at this control point yields next
control point. To extract the branch address of CndInst
and JmpInst we define jmp(i) which accepts an instruc-
tion of types CndInst and JmpInst and returns the branch
address. For example, jmp(i), returns q if i = ifeq q or
i = goto q where q is the branch address. The function
cond receives an activation record, and evaluates the condi-
tion of the instruction in m[p]. It is defined as follows for
instruction i = ifeq q and can be defined for the rest of
the conditional instructions similarly.

cond(〈m, p, f, v1 · s, z〉)
=

{
tt if (m[p] = ifeq q ∧ v1 = 0)
ff if (m[p] = ifeq q ∧ v1 �= 0)

The function k p,xΓ [m] is a lookup function to search top-
down the exception table of a method implementation Γ [m]
for a suitable handler for an exception x at location p. It
returns zero if no handler is found, or the position t of the
first suitable handler. It is defined formally as follows:

k p,xΓ [m] =
⎧⎨
⎩
t if ∃ b, e, x ′. 〈b, e, t, x ′〉 ∈ HΓ [m] ∧ p ∈ [b, e)

∧ Γ � x <: x ′ ∧ t �= 0
0 otherwise

Fig. 4 Grouping of bytecode instructions with common control flow behaviour

123

Provably correct control flow graphs from Java bytecode programs with exceptions 661

Fig. 5 JBC instructions operational semantics

The partial function ν receives an activation record
〈m, p, f, v · s, z〉 and a heap h, and yields the possible run-
time exceptions that an instruction m[p] might raise, if any.
We present the definition of this function for three sample of
instructions; for all remaining ones it can be defined similarly.

ν(〈m, p, f, v · s, z〉, h) =
⎧⎨
⎩
NullPointerException if m[p] = getfield f ∧ v = null
NegativeArraySizeException if m[p] = newarray a ∧ v < 0
ExceptionInInitializerError if m[p] = new

We should stress here that the operational semantics for
new in [13] does not define any exception for the instruc-
tion. But, actually the new instruction can potentially raise
ExceptionInInitializerError. This will be elab-
orated more in 4.1.

Figure 5 presents the operational semantics for each subset
of the JBC instructions. The rules are presented in the form:

[Name] P0 · · · Pn

c
l−→ c′

where Name is the name of the rule, {P0, . . . , Pn} is a set

of premises, and c
l−→ c′ is a transition from configuration c

to configuration c′ labelled by a behavioural label l ∈ Lb

as defined in Definition 3. Inside activation records, we use
f ′, s′ and z′ to denote that f , s and z are updated in the
transition.

Eachgroup inFig. 4 corresponds to oneof the rules defined
in Fig. 5, except for the rules named Exc, which are called
JVM’s internal transitions. These refer to a set of the tran-
sitions that are not controlled by program instructions. In
particular when the program raises an exception, there is no
instruction in the JBC instructions set to handle this excep-
tion. Instead, the JVM takes control of the execution, and
looks for a suitable handler for the exception. In case a han-
dler is found, the JVMsets control to this handler, and the pro-
gram continues with the execution. Otherwise, the method is
aborted, and the exception is propagated to the caller method.

123

662 A. Amighi et al.

3.2 The extraction algorithm from JBC

We now present how to extract a CFG, as defined in Sect. 2.2,
from a given JBC program. First, we define the elements of a
CFG fromaprogram’smethod. The nodes of amethod’sCFG
are tagged with an address and a method signature. Based on
Definition 2, to construct the nodes we have to specify Vm ,
Am , λm , and Em . A node v ∈ Vm is uniquely identified by
its control point p ∈ Addr and its atomic propositions, as
tagged by the function λm(v). The method signature is the
default tag for all the method’s control nodes. If m[p] ∈
RetInst then the node is tagged with r. If the node is an
exceptional node then it is tagged with the exception type
x ∈ E . If p = 0 then the node will be a member of Em .

Given a JBC program, our algorithm extracts the CFG
for each class defined in the program. The CFG of a class
is the CFG composed from all the methods defined in the
class. Thus, to build the CFG for the program, we extract
the CFG for each method. The CFG extraction rules for
method m in environment Γ use the implementation of the
method: Γ [m] = 〈B, H〉. For each instruction in B (body
of Γ [m]), the rules build a set of labelled edges connect-
ing control nodes. In addition, the algorithm performs an
inter-procedural analysis to establish the call-return relation
between methods.

Definition 4 (CFG Extraction from JBC) The instruction-
wise extraction functionGjbc : (Meth×Addr×JbcInst) →
P(Vm×Lm×Vm) is definedby the rules in Fig. 6. Themethod
graph for m is defined as Gjbc(m) = ⋃

(p,i)∈B Gm,p,i
jbc . The

control flow graph for the program is defined as Gjbc(Γ) =⋃
{m|Γ [m]∈Γ } Gjbc(m).

We start the explanation of the construction rules with the
auxiliary functions. There are four main auxiliary functions

to construct edges: for handlers, exception raising, exception
propagation, and virtual method calls.
Auxiliary functions The functionHx,p,l

m constructs the edges
corresponding to the raising and handling of an exception. It
queries the function k p,xΓ [m] for a suitable handler for an excep-
tion of type x at position p. If there is a handler, it returns
a pair of edges: one labelled with parameter l from a nor-
mal to an exceptional node (tagged with x), and one labelled
with ε from the exceptional node to a normal node, denoting
control transfer to the handler. Otherwise it produces an edge
labelled with l to an exceptional return node, denoting the
propagation of the exception to the caller. The parameter l is
instantiated with a method signature if the exception is prop-
agated, or with ε if the exception is raised within the method.

The auxiliary function E uses H to compute exceptional
edges for all exceptions that can potentially be raised by a
given instruction. The function X : XmpInst → P(Excp)
returns the set of run-time exceptions that an instruction may
raise. The throw instruction is handled similarly, where X
is the set of possible exceptions. Both rely on an oracle to
list the set of exceptions. FunctionN p,n

m generates the set of
edges to handle all uncaught exceptions from the possible
callee n. Notice that it performs an inter-procedural analysis,
since it evaluates the exceptional return nodes from the callee
method’s CFG.

To extract edges for method invocations, the auxiliary
function ReciΓ yields the set of possible method signatures
of a method call in environment Γ . The receiver object for
invokevirtual is determined by late binding. For this,
the virtual method call resolution function resα

Γ is employed,
where α is a parameter denoting an external standard static
analysis to resolve the call. We use nT to indicate method n
from class T . For example, Rapid Type Analysis (RTA) [5]
returns the set of subtypes of the caller’s static type which are

Fig. 6 CFG construction rules

123

Provably correct control flow graphs from Java bytecode programs with exceptions 663

instantiated in the program (created by a new instruction).
So, for α = RTA, the result of the resolution for object o and
method n in environment Γ will be:

resα
Γ (o, n) = {τ | τ ∈ ICΓ ∧ Γ � τ

<: staticT (o) ∧ lookup(n, τ)}

where ICΓ is the set of instantiated classes in environmentΓ ,
staticT (o) gives the static type of object o, and lookup(n, τ)

corresponds to the signature of n in τ , i.e., τ is a subtype of
o’s static type and method n is defined in class τ .
Construction rules For simple computational instructions, a
direct edge to the next control address is established. For jump
instructions, an edge to the jump address (jmp(i), for instruc-
tion i) is generated. For conditional instructions, edges to the
next control address and to the address specified for the jump
are generated. For instructions inXmpInst, edges for all pos-
sible flows are added: successful execution and exceptional
execution, with edges for successful and failed exception
handling, as defined by function Hx,p,l

m . Required edges for
instruction throw can simply be produced by using function
H for all the exceptions in the over-approximated instruction
parameter X .

Given the set of possible receivers, required edges are
generated for each possible receiver. For each call, if the
method’s execution terminates normally, control will be
given back to the next instruction of the caller. If the
method terminates with an uncaught exception, the caller
has to handle this propagated exception. The CFG extrac-
tion rule for method invocation produces edges for both
NullPointerException (N.P.E.) (in case of a null
receiver object exception) and for all propagated exceptions.
To generate exceptional edges for N.P.E., HN.P.E.,p,ε

m is
employed, andN p,n

m generates the set of edges to handle all
uncaught exceptions propagated by any possible callee n.

In all the rules, if the target node points to an instruction
i ∈ RetInst then the node will be tagged with r. To keep the
presentation of the rules reasonably simple we do not show
the target node checks in Fig. 6. Thus the rule for i ∈ RetInst
does not generate any edges in the CFG.

3.3 Soundness of CFG extraction

To show soundness of the extraction algorithm w.r.t. tem-
poral safety properties over sequences of method calls in the
possible presence of exceptions, we show that the executions
of the extracted CFG of a program P can match the labelled
transitions2 of any execution of P , i.e., it over-approximates
the behaviour of P . To this end, we define a mapping θ that

2 Except configurations (ε; h), since CFG configurations always have
a current control point.

abstracts JVM configurations into CFG behavioural config-
urations, and use this abstraction to prove that the behaviour
of the CFG simulates the behaviour of the program, in the
standard sense of simulation between labelled transition sys-
tems [29].

Definition 5 (VM State Abstraction θ) Let Conf be the set
of JVM execution configurations of program P , V the set
of control nodes from the extracted control flow graph Gjbc,
and Sb the set of CFG behavioural configurations of b(Gjbc).
First, define the mapping γ abstracting any sequence of acti-
vation recordsω into a sequence of nodes in Gjbc, inductively
as follows:

γ (ω)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε if ω= ε

◦p
m · γ (ω′) if ω=〈m, p, f, s, z〉 · ω′ ∧ m[p] /∈ RetInst

◦p,r
m · γ (ω′) if ω=〈m, p, f, s, z〉 · ω′ ∧ m[p] ∈ RetInst

•p,x
m · γ (ω′) if ω=〈x〉exc · 〈m, p, f, s, z〉 · ω′ ∧ k p,xΓ [m] �=0

•p,x,r
m · γ (ω′) if ω=〈x〉exc · 〈m, p, f, s, z〉 · ω′ ∧ k p,xΓ [m] =0

Then, given a configuration (ω; h) ∈ Conf with ω �= ε,
define its abstraction as the state θ(ω; h) = (head(γ (ω)),

tail(γ (ω))) ∈ Sb.

We now enunciate the soundness theorem and present two
related cases of the proof; the complete proof can be found
in Appendix 9.

Theorem 1 (CFG Soundness) Let Pjbc be a well-formed
Java bytecode program modeled by the environment Γ . The
behaviour of the extracted flow graph Gjbc(Γ) simulates the
execution of Pjbc.

Proof We prove simulation between the execution of Pjbc
and the behaviour of the extracted CFG, i.e. b(Gjbc). In gen-
eral, this requires to show that every initial configuration
of Pjbc is simulated by some initial configuration of b(Gjbc).
In our case there is a single initial program configuration:

cinit = (〈main, 0, f, ε, z〉; h)

The required simulation can be established by exhibiting a
concrete simulation relation between JVM configurations
and CFG behavioural configurations that relates the initial
Pjbc-configuration cinit to an initial b(Gjbc)-state.

We prove that the abstraction function θ defined above,
viewed as a relation, is such a simulation relation. First,
observe that θ(cinit) = (v0main, ε) is an initial state ofb(Gjbc),
see Definition 3. Then, we prove that for any JVM configu-

ration c and any transition c
l−→ c′ in the execution of Pjbc,

there is a matching transition θ(c)
l−→ θ(c′) in b(Gjbc). We

show this by case analysis on the top frame 〈m, p, f, s, z〉 or
〈x〉exc, and in the former case also on the type of the instruc-
tion m[p], i.e., the current JBC instruction. For each case

we deduce the possible labelled transitions c
l−→ c′ from c

123

664 A. Amighi et al.

as induced by the JBC operational semantics rules shown on
Fig. 5. Next, we use the CFG construction rules from Fig. 6 to
determine the nodes and edges extracted for instructionm[p],
and the definition of CFG behaviour (Definition 3) to estab-

lish θ(c)
l−→ θ(c′).

We now present the two related cases of raising an excep-
tion and then handling the exception. The remaining cases
can be found in Appendix 9.

Case c = (〈m, p, f, s, z〉 · A; h) and m[p] ∈ ThrInst.
The single instruction in the set is throw X. Let X be the
set containing the static type of the exception being thrown,
and all of its subtypes. Applying the abstraction function on
configuration c we obtain: θ(c) = (◦p

m, σ) where σ denotes
γ (A). The operational semantics of throw X (see Fig. 5,
rule [Thr]) defines that for every exception x ∈ X there

is a next configuration c′ such that: c
throw x−−−−→ c′ where

c′ = (〈x〉exc · 〈m, p, f, s, z〉 · A; h). Then there are two sub-
cases:

1. Method m has a handler for x (i.e. k p,xΓ [m] = t ∧ t �= 0).
From the definition of theCFGconstruction functionGjbc
(seeFig. 6, case i = throw X),wehave: (◦p

m, ε, •p,x
m) ∈

Gm,p,throw X
jbc .

By the definition of CFG behaviour (see Definition 3,
rule [throw]), this edge entails the behavioural transition:

(◦p
m, σ)

throw x−−−−→b (•p,x
m , σ).

Now, since k p,xΓ [m] �= 0, applying the abstraction func-

tion on c′ we obtain: θ(c′) = (•p,x
m , σ) and therefore:

θ(c)
throw x−−−−→ θ(c′).

2. There is no handler in m for x (i.e. k p,xΓ [m] = 0). From

the CFG extraction function we obtain: (◦p
m, ε, •p,x,r

m) ∈
Gm,p,throw X
jbc .

By the definition of CFG behaviour, we have the behav-

ioural transition:(◦p
m, σ)

throw x−−−−→b (•p,x,r
m , σ).

Then since k p,xΓ [m] = 0, applying the abstraction function

on c′ we obtain: θ(c′) = (•p,x,r
m , σ) and therefore again:

θ(c)
throw x−−−−→ θ(c′).

Case c = (〈x〉exc · 〈m, p, f, s, z〉 · A; h).
Recall that when there is an exception record on the stack,

the JVM takes control, and execution continues with an inter-
nal transition. Based on the exception handling table inm we
have two sub-cases:

1. Method m has a handler for x (k p,xΓ [m] = t ∧ t �= 0). In
this case, applying the abstraction function on the cur-
rent configuration we obtain: θ(c) = (•p,x

m , σ) where σ

again denotes γ (A). According to the operational seman-

tics of JVM we have the transition: c
catch x−−−−→ c′ where

c′ = (〈m, t, f, s, z〉 · A; h). From the CFG extraction

function for any instruction i that can raise exception x
we have: (•p,x

m , ε, ◦tm) ∈ Gm,p,i
jbc .

Based on the definition of CFG behaviour, this edge

induces the transition: (•p,x
m , σ)

catch x−−−−→b (◦tm, σ).
Applying the abstraction function on c′ we have: θ(c′) =
(◦tm, σ) and hence: θ(c)

catch x−−−−→ θ(c′).
2. There is no handler in m for x (k p,xΓ [m] = 0). In this

case, applying the abstraction function on the current
configuration we obtain: θ(c) = (•p,x,r

m , σ). Let A =
〈n, q, f, s, z〉 · A′. Then n is the caller of m, and by the

operational semantics of JVM we have: c
m xret n−−−−−→ c′

where c′ = (〈x〉exc · 〈n, q, f, s, z〉 · A′; h′). From the
CFG extraction function for any instruction i = m[p]
that can raise exception x we obtain: (◦p

m, ε, •p,x,r
m) ∈

Gm,p,i
jbc .

Because there is no handler in m, the propagated excep-
tion x will be in the CFG extracted for n. So, based on
the exception handling table in n we in turn have the
following two sub-cases:

• Method n has a handler for x (kq,x
Γ [n] = t ∧ t �= 0).

Then according to the CFG extraction rules for n:
(◦qn ,m, •q,x

n) ∈ Gjbc(n).
By the definition of CFG behaviour: (•p,x,r

m , ◦qn ·
σ ′) m xret n−−−−−→b (•q,x

n , σ ′).
Since kq,x

Γ [n] �= 0, abstracting c′ we obtain: θ(c′) =
(•q,x

n , σ ′) and therefore: θ(c)
m xret n−−−−−→ θ(c′).

• Method n does not define any handler for x (kq,x
Γ [n] =

0). Then according to the CFG extraction rules for n:
(◦qn ,m, •q,x,r

n) ∈ Gjbc(n).
By the definition of CFG behaviour: (•p,x,r

m , ◦qn ·
σ ′) m xret n−−−−−→b (•q,x,r

n , σ ′).
Since kq,x

Γ [n] = 0, abstracting c′ we obtain: θ(c′) =
(•q,x,r

n , σ ′) and hence: θ(c)
m xret n−−−−−→ θ(c′). ��

4 Extracting control flow graphs from BIR

This section presents the two-phase transformation from Java
bytecode to control flow graphs using BIR as intermediate
representation. First, we summarize the BIR language, and
the transformation from JBC, named BC2BIR, as defined by
Demange et al. [11]. Next, we describe how BIR is trans-
formed into CFGs. Finally, we prove the soundness for the
indirect transformation w.r.t. sequences of methods calls and
exceptions.

4.1 The BIR language

The BIR language is an intermediate representation of Java
bytecode [11]. The main difference with JBC is that BIR

123

Provably correct control flow graphs from Java bytecode programs with exceptions 665

Fig. 7 Expressions and instructions of BIR

instructions are stack-less, in contrast to bytecode instruc-
tions that operate over values stored on the operand stack.

A BIR program is modeled as an environment, in the
same way as a JBC program. In fact, the partial mappings
for classes and interfaces are common in both representa-
tions. They only differ in the definitions of method bodies.
The JBC instructions occupy a varying number of positions in
the instructions array,whileBIR instructions always occupy a
single position. Thus, the indexing of corresponding instruc-
tions differ, and the transformation has to map the addresses
for jumps, branches and exception handlers.

Figure 7 summarizes the BIR syntax. Its instructions
operate over expression trees, i.e., arithmetic expressions
composed of constants, operations, variables, and fields of
other expressions (expr.f). BIR does not have operations
over strings and booleans; these are transformed into method
calls by theBC2BIR transformation. The transformation also
reconstructs expression trees, i.e., it collapses one-to-many
stack-based operations into a single expression. As a result, a
JBC program represented in BIR typically has fewer instruc-
tions than the original program.

BIR has two types of variables. The first (lvar) are identi-
fiers also present in the original bytecode; the second (tvar)
are new variables introduced by the transformation. Both
variables and object fields can be the target of an assignment.

Many of the BIR instructions have an equivalent JBC
counterpart, e.g., nop, goto and if. A return expr ends
the execution of amethodwith a return value, while return
ends a void method. Method call instructions are represented
by theirmethod signature. For non-voidmethods, the instruc-
tion assigns the result value to a variable. In contrast to JBC,
object allocation and initialization happen in a single step,
during the execution of BIR’s new instruction, which also
performs a call to an object constructor.

The throw instruction explicitly transfers control flow to
the exception handling mechanism, similarly to the athrow
instruction in JBC.Notice that the BIR instruction also has an
operand, similarly to the throw X instruction introduced in
Sect. 3. Here, a sound static analysis that over-approximates

Fig. 8 Implicit exceptions supported byBIR, and associated assertions

the possible types of the operand (e.g., see [8]) implements
the oracle for explicit exceptions.

BIR’s support of implicit exceptions follows the approach
proposed for the Jalapeño compiler [7]. It inserts special
assertions before the instructions that can potentially raise
an exception, as defined by the JVM. Thus, the BIR trans-
formation implements the oracle described in the Sect. 3
for the exceptions raised implicitly by the instructions
execution. Java bytecode also has class initializers, i.e.,
the one-time initialization procedures of a class’s static
fields, invoked when the first object of a class is allocated
by a JBC instruction new. If some exception is raised
inside the initializer, the JVM captures it, and raises an
ExceptionInInitializerError. Thus, BIR adds a
special instruction, called mayinit, to indicate that at that
point a class initializer may be invoked.

Figure 8 shows all implicit exceptions that are currently
supported by the BC2BIR transformation [6], and the asso-
ciated assertion. For example, the transformation inserts a
notnull assertion before any instruction that might raise a
NullPointerException, such as an access to a refer-
ence. If the assertion holds, it behaves as a nop, and control
flow passes to the next instruction. If the assertion fails, con-
trol flow is passed to the exception handling mechanism. In
the transformation from BIR to CFG defined below, we use a
function χ̄ to obtain the exception associated with an instruc-
tion. Notice that our translation from BIR to CFG can easily
be adapted for other implicit exceptions, provided appropri-
ate assertions are generated for them.

123

666 A. Amighi et al.

Fig. 9 Rules for BC2BIRinstr

Next, we give a short overview of the BC2BIR transfor-
mation. It translates a complete JBC program into BIR by
symbolically executing the bytecode using an abstract stack.
This stack is used to reconstruct expression trees and to con-
nect instructions to their operands. As we are only interested
in the set of BIR instructions that can be produced, we do not
discuss all details of this transformation. For the complete
transformation algorithm we refer to [11].

The symbolic execution of the individual instructions is
defined by a function BC2BIRinstr that, given a program
counter, a JBC instruction and an abstract stack, outputs
a set of BIR instructions and a modified abstract stack. In
case there is no match for a pair of bytecode instruction and
stack, the function returns the Fail element, and the algo-
rithm aborts. The functionBC2BIRinstr is defined as follows.

Definition 6 (From JBC to BIR) Let AbsStack ∈ expr∗.
The rules defining the instruction-wise transformation
BC2BIRinstr : N × JbcInstr × AbsStack → (BirInstr∗ ×
AbsStack) ∪ {Fail} from JBC into BIR are given in Fig. 9.

As a convention, we use brackets to distinguish BIR
instructions from their JBC counterpart. The variables tk
are new and are introduced by the transformation.

JBC instructions if, goto, return and vreturn
are transformed into corresponding BIR instructions. The
new is different from [new C()] in BIR, it produces
only a [mayinit] for static initialization of C. As men-
tioned above, object allocation in BIR happens at the
same time as initialization, i.e., when the constructor is
called. The getfield f instruction reads a field from the
object reference at the top of the stack. This might raise a
NullPointerException, therefore the transformation
inserts a [notnull] assertion.

The store x instruction produces one or two assign-
ments, depending on the state of the abstract stack. Instruc-
tion putfield f outputs a set of BIR instructions:
[notnull e] guards whether e is a valid reference;
then the auxiliary function FSave introduces a set of
assignment instructions to temporary variables; followed

by the assignment to the field (e.f). Similarly, instruc-
tion invokevirtual generates a [notnull] assertion,
followed by a set of assignments to temporary variables—
represented as the auxiliary function HSave—and the call
instruction itself. The transformation of invokespecial
can produce two different sequences of BIR instructions.
In the first case, there are assignments to temporary vari-
ables (HSave), followed by the instruction [new C] which
denotes a call to the constructor. The second case is the same
as for invokevirtual.

Figure 10 shows the JBC and BIR versions of method
boolean odd(int) from Fig. 1. The different colors
show the collapsing of instructions by the transforma-
tion; the underlined instructions are the ones that produce
BIR instructions. The BIR method has a local variable
(l0) and two newly introduced variables (t0 and t1).
Notice that the argument for the method invocation and
the operand to the [if] instructions are reconstructed
expression trees. The [notnull] instruction asserts that
a NullPointerException can potentially be raised in
the program point 3. The [mayinit] instruction shows
that class ArithmeticException can be initialized at
that program point.

4.2 The extraction algorithm from BIR

The extraction algorithm that generates a CFG from BIR
iterates over the instructions of a method. It uses the trans-
formation functionGbir that takes as input a program counter,
an instruction for a BIRmethod, and its exception table. Each
iteration outputs a set of edges. The extraction function con-
siders only the program instructions.

To define Gbir, we introduce some auxiliary functions,
which are similar to the ones introduced for the direct extrac-
tion (in Sect. 3). As a convention, we use bars (e.g., N̄) to
differentiate the corresponding functions from the direct, and
indirect algorithms.

The auxiliary function k̄pc,x
Γb[m] returns the first handler (if

any) for the exception of type (or a subtype of) x at position

123

Provably correct control flow graphs from Java bytecode programs with exceptions 667

Fig. 10 Comparison between instructions in method boolean odd(int)

pc. Asmentioned before, the function χ̄i yields the exception
associated with instruction i . The function H̄pc,x,l

m queries
the function k̄ for exception handlers in the control point pc
for the exception type x : if there is any, it returns two edges:
one from a normal to an exceptional control node, and one
from the exceptional node to the normal node taggedwith the
handler’s initial control point; otherwise, it returns an edge
to an exceptional return node. The function also receives a
label l as argument, which may be ε, or a method signature.

The extraction is parametrized on a virtual method call
resolution algorithm α, in the same fashion as the Gjbc algo-
rithm presented in Sect. 3.2. The function resα(n’) uses α

to return a safe over-approximation of the possible receivers
to a virtual invocation of a method with signature n’, or the
single receiver if the signature is from a non-virtual method
(e.g., a static method).

Let Γb be the environment modeling the BIR representa-
tion of a program P, and Bb be the body of some method
Γb[m]. Following the definitions for a JBC program in
Sect. 3.1, we define for BIR the CFG of a class as the disjoint
union of the CFGs of the methods in the class, and the CFG
of a program as the disjoint union of all CFGs of the classes
in the program, as follows.

Definition 7 (CFG Extraction from BIR) The instruction-
wise extraction functionGbir : (Meth×Addr×BirInstr) →
P(Vm × Lm × Vm) is defined by the rules in Fig. 11. The
method graph form is defined asGbir(m)=⋃

(p,i)∈Bb G
m,p,i
bir .

The control flow graph for the program is defined as
Gbir(Γb) = ⋃

{m|Γb[m]∈Γb} Gbir(m).

We subdivide the definition of Gbir into two parts. The
intra-procedural analysis extracts for every method an ini-
tial CFG, based solely on its instruction array, and its

exception table. Based on these CFGs, the inter-procedural
analysis computes the functions N̄ pc,n

m , which returns excep-
tional edges for exceptions propagated by calls to method n.
The functions for inter-dependent methods are thus mutually
recursive, and are computed in a fixed-point manner.

First, we describe the rules applied by the intra-procedural
analysis. Assignments, [nop] and [mayinit] add a sin-
gle edge to the next normal control node. The conditional
jump [if expr pc’] produces a branch in the CFG: con-
trol can go either to the next control point, or to the branch
point pc’. The unconditional jump goto pc’ adds a single
edge to control point pc’. The [return] and [return
expr] instructions generate an internal edge to a return
node, i.e., a node with the atomic proposition r . Notice that,
although both nodes are tagged with the same pc, they are
different because their sets of atomic propositions are differ-
ent.

The BIR transformation provides the static type staticT
(expr) of the exception raised by [throw expr], and we
soundly over-approximate the possible types of expr to all
its subtypes. The extraction produces an exceptional edge
for each type, followed by the appropriate edge derived from
the exception table.

The rule for assertion instructions produces a normal edge,
for the case that the implicit exception is not raised, and
an edge to the exceptional node tagged with the exception
type (as defined in Fig. 8), together with the appropriate edge
derived from the exception table.

The extraction rule for a constructor call ([new C])
produces a single normal edge, since there is only one
possible receiver for the call. In addition, we also produce
an exceptional edge, because of a possible NullPointer
Exception [27, § 6.5].

123

668 A. Amighi et al.

Fig. 11 Extraction rules for control flow graphs from BIR

The extraction rule for method calls is similar to that of
the direct extraction: we assume that an appropriate virtual
method call resolution algorithm is used, andwe add a normal
edge for each possible receiver returned from resα .

Next, we describe the inter-procedural analysis. In all pro-
gram points where there is a method invocation, the function
N̄ pc,n

m adds exceptional edges, relative to exceptions propa-
gated by called methods. It analyses if the CFG of an invoked
method n contains an exceptional return node. If it does, then
function H̄pc,x,n

m verifies whether the exception of type x is
caught in position pc. If so, it adds two edges: one labelled
with the signature of the called method n, showing that it has
terminated with an uncaught exception, and a second edge
showing the transfer of control to the exception handler. Oth-
erwise it adds an edge to an exceptional return node. In the
latter case, the propagation of the exception continues until it
is caught by some caller method, or there are no more meth-
ods to handle it. This is similar to the process described by Jo
and Chang [23], who also present a fixed-point algorithm to
compute the propagation edges. It checks the pre-computed
call-graph to determine at which control points the invoca-
tions are made to a method propagating a given exception.
If there is a suitable handler for that exception, it adds the
respective handling edges, and the process stops. Otherwise,
the computation proceeds.

4.3 Soundness of CFG extraction

This section discusses the correctness proof of the CFG
extraction algorithm.We start by pointing out that BIR has its
operational semantics defined [11]. Moreover, it was proven
that there is a semantic-preserving relationbetween the termi-
nating traces for the same program in JBCandBIR.However,
our algorithm is defined purely syntactically, thus we do not
use BIR’s correctness result.

Fig. 12 Schema for CFG extraction and correctness proof

We prove correctness indirectly, using the idealized direct
extraction algorithm Gjbc defined in Sect. 3 as a reference.
Gjbc is based directly on the semantics of Java bytecode, but
assumes an oracle to predict the exceptions that can be thrown
by each instruction.

We exploit this idealized algorithm by proving that given a
JBC program, the CFG produced by our extraction algorithm
(Gbir◦BC2BIR) structurally simulates the CFG produced by
the direct extraction algorithm (Gjbc). We then reuse a result
established previously by Huisman et al. [20, Theorem 1]
that structural simulation entails behavioural simulation. As
explained in Sect. 2, the latter result is stated over slightly
different, but equivalent, definitions of CFG and CFG behav-
iour, and thus the result applies in our setting as well. By
transitivity of simulation we conclude that the behaviour
induced by the CFG extracted by Gbir ◦ BC2BIR simulates
the JVM behaviour. Figure 12 summarizes our approach.

We sketch here the overall proof of structural simulation,
and discuss two cases (for the ThrInst and RetInst groups)
in full detail. The remaining cases are given in Appendix 11.
Before discussing the proof sketch, we first introduce some
terminology and make some relevant observations.
Preliminaries for the Correctness Proof The BC2BIR trans-
formation may collapse several bytecode instructions into a

123

Provably correct control flow graphs from Java bytecode programs with exceptions 669

single BIR instruction. We divide the JBC instructions into
two sets: the producer instructions, i.e., those that produce
at least one BIR instruction in function BC2BIRinstr, and
the auxiliary ones, i.e., those that produce none. This divi-
sion can be deduced from Fig. 9 (on page 22). For example,
store and invokevirtual are producer instructions,
while add and push are auxiliary.

We partition the bytecode instruction array into bytecode
segments. These are sub sequences delimited by producer
instructions. Thus each bytecode segment contains zero or
more contiguous auxiliary instructions, followed by a sin-
gle producer instruction. Equivalently, we may say that a
segment is defined by an optional basic block [1] and a sub-
sequent producer instruction. Such a partitioning exists for
all bytecode programs that comply to the Java Bytecode Ver-
ifier (see Sect. 2.1). All methods in such programs must have
goto, return, or athrow as the last (reachable) instruc-
tion, which are producer instructions. Therefore, there can
not be contiguous (reachable) instructions that are not delim-
ited by a producer instruction.

Each bytecode segment is transformed into a set of con-
tiguous instructions by BC2BIR. We call this set a BIR
segment, which is a partition of the BIR instruction array.
There exists a one-to-one mapping between bytecode seg-
ments and the BIR segments, which is also order-preserving.
Thus, we can associate each instruction, either in the JBC or
BIR arrays, to the unique index of its correspondent bytecode
segment. Figure 10 (on page 23) illustrates the partitioning
of instructions into segments. Method odd has eight byte-
code (and BIR) segments, as indicated by the distinct shades.
Producer instructions are underlined.

In the definition of the direct extraction algorithm in Fig. 6
(on page 13), one can observe that all auxiliary instructions
give rise to an internal transfer edge only. This implies that the
sub-graphs for any segment extracted in the direct algorithm
will start with a path-like graph of internal transfer edges
of the same length as the number of auxiliary instructions,
followed by the edges generated for the producer instruction.
Let p be the position for the first auxiliary instruction, and
q the position of the producer instruction. We illustrate the
pattern for this path-like graph below.

◦p
m

ε→ ◦succ(p)m
ε→ ◦succ(succ(p))m

ε→ · · · ◦qm
It is easy to see that the path-like graph isweakly simulated by
some reflexive edge ◦pcm �⇒ ◦pcm . Therefore, for simplicity
we present the proof for the case where p = q. That is, for
JBC segments without auxiliary instructions.

Another important observation is about the mapping
between control addresses between the JBC and the BIR
representations. A control address q from a branching
instruction (e.g., goto q or ifeq q) or from an exception
handler is always mapped to the first control address (let’s

call it pc) of the corresponding BIR segment that q belongs
to. This is necessarily the case because either q contains a
producer instruction, which will generate a set of sequential
BIR instructions, with smallest control address being pc, or
it contains an auxiliary instruction, which will be collapsed
into the BIR instructionswhen the first JBC producer instruc-
tion is processed, also having pc as the control address with
smallest index.

Based on the observations above, our main theorem states
that the method graphs extracted using the indirect algo-
rithm weakly simulate (see Definition 8 in Appendix 10) the
method graphs using the direct algorithm. The abstract stacks
are omitted in the proof since examining the instructions is
sufficient to produce the edges.

Theorem 2 (Structural Simulation of CFGs) Let Γ be the
environment modeling a well-formed JBC program Pjbc.
Then (Gbir ◦ BC2BIR)(Γ) weakly simulates Gjbc(Γ).

Proof (Sketch) Let m be a method signature and Γ [m] be
the method’s definition in Γ . Let p range over indices in
the bytecode instructions array, pc over indices in the BIR
instructions array, ◦p,x,r

m over control nodes in Gjbc(Γ [m]),
and ◦pc,x,r

m over control nodes in (Gbir ◦ BC2BIR)(Γ [m]).
The control nodes are valuated with two optional atomic
propositions: x , which is an exception type, and r , which
is the atomic proposition denoting a return point. Further, let
segJBC(m, p) and segBIR(m,pc) be two auxiliary functions
that return the segment index that a JBC, or a BIR control
address belongs to, respectively. Let s be the index of a BIR
segment. Function fst(s) return its first control address and
oap(s,XR) return the set of control addresses in s tagging a
node with the non-empty set of optional atomic propositions
equal to XR.

We define the binary relation R as the union of two binary
relations R1 and R2, as follows:

R
def= R1 ∪ R2

R1
def= {(◦p

m, ◦pcm) | segJBC(m, p) = segBIR(m,pc)

∧pc = fst(segBIR(m,pc))}
R2

def= {(◦p,XR
m , ◦pc,XR

m) | segJBC(m, p) = segBIR(m,pc)

∧pc ∈ oap(segBIR(m,pc),XR)}

and show the relation to be a weak simulation in the standard
fashion, following Proposition 1 (to be found in Appen-
dix 10): for every pair of nodes in R, we first show that
the nodes have the same set of atomic propositions, and then
match every strong edge that has the first node as source, to a
corresponding weak edge that has the second node as source,
so that the target nodes are again related by R.

Intuitively, the direct and indirect algorithms extract a
similar branching structure for the same JBC code segment,

123

670 A. Amighi et al.

differing in the occurrences of silent transitions. Therefore,
R relates the first normal (source) nodes extracted by both
algorithms (i.e., R1), and a node from the direct algorithm
tagged with a non-empty set of atomic propositions to nodes
extracted in the indirect algorithm with the same set of
atomic propositions (i.e., R2). Notice that the only casewhere
the indirect algorithm produces two distinct nodes with the
same set of non-empty atomic propositions is for the case
of method invocations, where a N.P.E. may be raised in
different control addresses: either by a [notnull] or prop-
agated by the callee method.

Let (◦p
m, �) ∈ R1 and let (◦p,r

m , �) ∈ R2 where ◦p
m and

◦p,r
m are control nodes in Gjbc(Γ [m]) and � is a control node
in (Gbir ◦ BC2BIR)(Γ [m]). We consider the two cases sep-
arately. Let first (◦p

m, �) ∈ R1. The proof proceeds by case
analysis on the type of the producer instruction of the byte-
code segment segJBC(m, p) giving rise to ◦p

m . The cases
follow the subsets of JBC instructions presented in Fig. 4,
which share the same extraction rule in the direct algorithm
for its instructions. We rely on the notation to indicate that
two nodes have the same set of atomic propositions.

We now present the case for the ThrInst. Let X be the set
of all possible exception types for an instance of the idealized
throw X, which is the single instruction in ThrInst. Then
X ⊆ {x |x <: staticT(e)} for the corresponding instance of
[throw e]. That is, the set of possible exceptions in the
indirect extraction soundly over-approximates the set X since
any exception x ∈ X is necessarily a sub-type of staticT(e).
Let x ∈ X.

The direct extraction for the throw instruction produces
two edges if there is a suitable handler for the exception x in
position p. Otherwise, it produces a single edge, whose sink
node is an exceptional return node:

Gm,p,throw x
jbc =

{
{◦p

m
ε→ •p,x

m , •p,x
m

ε→ ◦qm} if has handler

{◦p
m

ε→ •p,x,r
m } otherwise

The transformationBC2BIRinstr returns a single instruction.
Then, similarly toGjbc, theGbir function produces either one,
or two edges:

BC2BIRp,athrow
instr = [throw e]

Gm,pc,[throw e]
bir

=
{

{◦pcm ε→ •pc,x
m , •pc,x

m
ε→ ◦pc′

m } if has handler

{◦pcm ε→ •pc,x,r
m } otherwise

Then � = ◦pcm since pc = fst(s). In the case where
there is an exception handler for x in p and pc, the edge
◦p
m

ε→ •p,x
m is matched by the corresponding weak edge

◦pcm �⇒ •pc,x
m . Then also (•p,x

m , •pc,x
m) ∈ R since

segJBC(p) = segBIR(m,pc) and pc ∈ oap(s, {x}). That

is, pc tags a node where the set XP = {x}. Actually,
for this case there is only one node since pc is the only
control address in the segment. Further, there is the edge

•p,x
m

ε→ ◦qm , which is matched by •pc,x
m �⇒ ◦pc′

m , and

again (◦qm, ◦pc′
m) ∈ R since segJBC(m, q) = segBIR(m,pc′)

and pc′ = fst(segBIR(m,pc′)). That is, pc′ is the first con-
trol address on its code segment.

In the case where there is no exception handler for x , the
only edge is ◦p

m
ε→ •p,x,r

m , which is matched by ◦pcm �⇒
•pc,x,r
m . Moreover, (•p,x,r

m , •pc,x,r
m) ∈ R since segJBC(p) =

segBIR(m,pc) and pc ∈ oap(s, {x, r}). That is, pc tags the
node where the set XP = {x, r}, which concludes the case.

Let now (◦p,r
m , �) ∈ R2. The proof proceeds with the

RetInst set, the only type of the producer instructions of
the bytecode segment segJBC(m, p) giving rise to ◦p,r

m . All
return instructions are producer instructions. However, the
direct algorithm does not produce edges for them, but simply
adds the atomic proposition r to the normal sink nodes tagged
with the address of the return instruction. Let p be the address
of the return instruction. The transformation BC2BIRinstr
returns a single instruction, applied to which Gbir produces
a single edge:

BC2BIRp,return
instr = [return expr]

Gm,pc,[return expr]
bir = {◦pcm ε→ ◦pc,r

m }

In this case we have to relate ◦p,r
m via R2 rather than via R1.

Then � = ◦pc,r
m since segJBC(p) = segBIR(m,pc), andpc ∈

oap(s, {r}). That is,pc tags the only nodewhere the setXP =
{r}. Since there is no outgoing edge from ◦p,r

m , this concludes
the case of return instructions and the whole proof. ��

5 The CONFLEX tool

The indirect extraction algorithm is implemented as our
CFG extraction tool ConFlEx [15]. It uses Sawja [19],
a library for the static analysis of Java bytecode programs.
Sawja features the most popular virtual method call resolu-
tion algorithms, and the transformation from bytecode into
BIR. However, the standard implementation performs only
a syntactic transformation, and does not compute the object
types. We have instrumented the BIR transformation from
Sawja to compute the most generic object type. Thus, we
can estimate soundly the type of explicit exceptions.

ConFlEx implements the extraction rules from Fig. 11
(on page 24), including the computation of exception propa-
gation.Currently the extraction is fine-tuned for the particular
variant of control flow graphs, presented in Definition 1.
However, it can be extended to support other formalizations
with a relatively small effort.Also, the control node addresses
are relative to the BIR representation of the analysed pro-

123

Provably correct control flow graphs from Java bytecode programs with exceptions 671

Table 1 Statistics for ConFlEx

Program # of JBC
instr.

of BIR
instr.

BIR time
(ms)

Intra-procedural Inter-procedural

of nodes # of edges Time (ms) # of nodes # of edges Time (ms)

Jasmin 30,930 10,850 524 20,595 20,937 262 27267 27,717 35

Java-Cup 31,958 13,174 679 24,263 24,549 262 32031 32,449 43

TJWS 33,653 13,129 423 32,333 34,325 515 71218 78,233 354

JFlex 53,474 20,433 1191 39,429 40,035 675 53956 54,777 102

JXplorer 186,644 77,536 1129 150,495 154,583 21,450 332366 344,095 2036

Xowa 713,160 294,339 77,468 716,362 719,534 146,019 5741597 5,865,206 396,437

Soot 1,345,574 516,404 64,856 1,081,297 1,081,962 4,055,987 14,307,406 14,319,126 3,665,739

gram. Though possible, it requires a medium effort to
implement the mapping from the extracted CFG to the orig-
inal JBC addresses.

We have evaluated the performance of ConFlEx . It is
future work to also evaluate the precision of the extracted
CFGs in terms of the ratio of spurious nodes, and to experi-
ment with different VMC resolution algorithms. To evaluate
our tool, we have applied it to a collection of real-world appli-
cations. Themain criterion when selecting these applications
has been their size (number of instructions), without verifica-
tion in mind. We aimed to diversify the type of applications.
For instance, JFlex and Java-Cup are parsing tools, TJWS is
a web server, and JExplorer is an LDAP browser. In our eval-
uation we use the Rapid Type Analysis [5], which provides
the best balance between performance and precision [38].
All experiments are done on a server with an Intel i5 2.53
GHz processor and 4GB of RAM. Methods from the API
are not extracted; only classes that are part of the program
are considered. Table 1 shows statistics about the analysed
programs, the size of the produced CFGs and the extraction
times.

BIR time stands for the translation of the JBC program
into the BIR representation, which is executed after the vir-
tual method call resolution. The translation time is close to
linear in the number of JBC instructions, in all cases except
for the code of the Xowa web browser. Also, we can observe
that the number of BIR instructions is less than 42% of that
of bytecode instructions, for all cases. The average number
of nodes produced in the intra-procedural computation is
roughly twice the number of BIR instructions. That is, about
half of the control nodes are exceptional nodes, which is a
consequence of the over-approximation of the exceptional
flow.

We can also observe that, on average, the computation
time for intra- and inter-procedural analysis grows propor-
tionally with the number of BIR instructions. However, this
growth depends heavily on the number of exceptional paths
in the analysed program. Surprisingly, the inter-procedural

analysis, which is a fixed-point computation, showed in prac-
tice to only take a fraction of the computation time of the
intra-procedural analysis, with Xowa again being the only
exception. We conjecture that the deviation for Xowa is
caused by a more significant presence of exceptional flows
in its implementation.

We do not provide comparative data with other extraction
tools such as Soot [39] orWala [40], since this would demand
the implementation of extraction rules corresponding to ours,
but from their intermediate representations. However, exper-
imental results from Sawja [19] show that it outperforms
Soot in all tests w.r.t. the transformation into their respective
intermediate representations, andoutperformsWalaw.r.t. vir-
tual method call algorithms. Thus, our extraction algorithm
clearly benefits from using Sawja and BIR.

6 Discussion

In this section we describe some implications of our algo-
rithm for control flow graph extraction. First, we address its
precision, and the supported subset of implicit exceptions.
Next, we describe a natural extension of the algorithm for
incremental CFG extraction. Finally, we speculate on the
extraction of control flow graphs from multi-threaded pro-
grams.

6.1 Precision of the extraction

The present work focuses on the soundness of the CFG
extraction algorithm. As usual for static analyses, soundness
(often also referred to as safety) comes at the expense of
precision. Still, we conjecture that the CFGs extracted by
our algorithm are the most precise ones that can be obtained
when abstracting from all non-exceptional data and relativiz-
ing on an (externally provided) sound virtual method call
resolution algorithm.While a formal proof of this conjecture

123

672 A. Amighi et al.

is beyond the scope of this paper, we provide below some
intuitive justification.

In our analysis, exceptions are the only data type consid-
ered. However, the potential occurrence of implicit (runtime)
exceptions depends heavily on program data. For instance,
whether an ArithmeticException is raised because of
a division by zero, or whether an ArrayIndexOutOf-
BoundsException is raised because of an array access
with an invalid index, depends on the instruction’s operands.
Our extraction algorithm does not consider such data, there-
fore it necessarily over-approximates the implicit exceptions
of every Java bytecode instruction to the ones it may poten-
tially raise, as defined in the JVM specification [27]. The
necessary information for this is obtained from the assertions
(see Fig. 8) introduced by the BIR transformation.

However, the processing of explicit exceptions in our
extraction algorithm uses type analysis to infer the possi-
ble exception types for a given athrow instruction. The
symbolic execution performed by the BIR transformation
analyses the operand stack, and associates a variable to the
raised exception. We over-approximate the exception types
of a given [throw e] to its static type and all subclasses
of the static type.

As explained above, both extraction algorithms are para-
metrized by a sound virtual method call resolution algorithm.
Thus, the indirect extraction algorithm inherits the impreci-
sion of the virtualmethod call resolution algorithm. Thismay
impact negatively the size of the extracted CFGs by adding
superfluous call edges; moreover, these call edges may give
rise to additional exceptional nodes and edges, caused by the
propagation of exceptions by the callee sites.

The primary utility of our CFGs is the verification of
control-flow-based temporal safety properties. This allows
the CFG extraction to abstract from most of the data. This
design choice gives rise to a comparatively lightweight
approach that is both efficient and easy to be shown sound.
Still, our extraction algorithm can benefit fromfiner data flow
analyses such as null pointer analysis [37] or symbolic exe-
cution [25], provided that these analyses are also proven to be
sound. Furthermore, the latter technique is envisaged in [34],
by one of the present authors, as the means to extract CFGs
with symbolic data.

6.2 Exceptions supported by the extraction

As explained in Sect. 4, the concrete extraction algorithm
Gbir ◦ BC2BIR extracts CFGs soundly, considering all
explicit exceptions, i.e., raised by athrow, and a subset
of the implicit exceptions (Fig. 8). Here we clarify which
implicit exceptions are supported, and what are the implica-
tions of supporting the full set of exceptions.

We define as implicit exceptions all those exceptions
raised by the Java Virtual Machine, either asynchronously,

by signaling an internal error in the JVM implementa-
tion (VirtualMachineError); or synchronously,
because of a linking error (LinkageError), the exhaus-
tion of some resource (e.g., OutOfMemoryError), or
an abnormal instruction execution, e.g., a division by
zero (ArithmeticException).

Many implicit exceptions are raised during the execu-
tion of a particular instruction. However, there are also
implicit exceptions that depend on the JVM execution set-
tings (e.g., allocated memory), its implementation, or the
hosting machine. All these exceptions are subtypes of the
class java.lang.Error, which according to the Java
specification [27] represent severe problems, and applica-
tions should not try to recover from them. The goal of
our tool is to extract models for typical software engi-
neering processes, such as formal software verification.
Adding exceptions relative to the execution environment,
which can be raised virtually at any control point, would
result in bloated CFGs that do not contribute to the goal
of verification. Therefore, our algorithm does not support
implicit exceptions that are subtypes of Error. The sin-
gle outlier is ExceptionInInitializerError since
it is not raised by an environment anomaly, but due to
an exception raised by the execution of a class initial-
izer.

On the other hand, the implicit exceptions caused by
abnormal executionof an instruction are supported.Demange
et al. [11] have made a careful analysis of the official Java
specification, and encode exceptions by means of BIR asser-
tions. Currently, IllegalMonitorStateException
is the only unsupported exception. It is intrinsic to con-
current programs, and does not impact the algorithms
described in this paper, which are defined for sequen-
tial programs. Nevertheless, our algorithm can be easily
adapted to accommodate this, or any potentially new excep-
tion that newer versions of BIR may support by means of
assertions.

We conclude bymentioning that our tool,ConFlEx , sup-
ports the full set of exceptions, as defined in the standard
Java API. However, the user must explicitly indicate that API
methods are part of the analysed program since the parsing
and extraction of the such methods impact the analysis time
and the CFGs’ size. Therefore, the default setting is to skip
APImethods. In that case, if an APImethod is invoked inside
a program, the tool still considers the exceptions listed in the
throws clause of the method declaration (as illustrated by
Fig. 3, where the parseInt method declares that it may
propagate a NumberFormatException).

6.3 Incremental extraction

The programmodel considered here is in essence procedure-
modular: control flow graphs of programs are simply collec-

123

Provably correct control flow graphs from Java bytecode programs with exceptions 673

tions ofmethod graphs. Thesemethod graphs are obtained by
a combination of an intra- and an inter-procedural analysis,
where the former is based solely on the code of the method at
hand. Thus, a natural question that arises is whether and how
the present framework can be extended to accommodate the
incremental extraction of CFGs, starting from an incomplete
JBC program and refining the extracted models as more code
becomes available. This questionwas addressed by two of the
present authors in Gomes et al. [16]. We briefly summarize
the approach described in this paper.

Gomes et al. consider programs where the components
are statically defined, but the implementation of some com-
ponents is not yet available. They develop an algorithm oG
for incomplete programs as a generalization of the present
Gbir algorithm. The inter-dependencies involving unavail-
able components are captured by means of user-provided
interfaces that specify the methods that can be called and
the exceptions that will be handled by the component.
The VMC resolution algorithm is fixed to Modular Class
Analysis (MCA), a variant of the Class Hierarchy Analy-
sis (CHA) [10] for incomplete programs with annotations.
Figure 13 shows the extraction rules for oG, where the
shaded parts highlight the extension of Gbir for unavailable
code.

The modular framework defines formally the constraints
on instantiating yet unavailable code, needed to ensure the
soundness of the already generated CFGs from the available
components. The soundness of the framework is established
by showing that the CFGs extracted by oG from the available
methods of an incomplete program simulate the CFGs for the
same methods in a complete program extracted by Gbir, if
the instantiation of missing code respects the defined con-

strains. This result is then combined with the theoretical
results presented in this paper to conclude that the CFGs
extracted with the oG algorithm are also sound w.r.t. the JBC
behaviour.

ConFlEx supports the incremental extraction and refine-
ment of CFGs. It features caching of previous analyses, and
matching of newly arriving code against their interface spec-
ifications. Experimental results confirm the intuitive expec-
tation that the over-approximation resulting from analysing
incomplete programs can have a significant negative impact
on the size of the extracted CFGs.

Even though being modular, the described technique is
restricted to programs for which we know in advance all
its components. For certain types of systems, such as open
systems, such an assumption cannot be made. We therefore
plan in future work to investigate how to generate (rather
than specify) the constraints on the unavailable parts of the
program, needed to ensure a given global property.

6.4 Multi-threaded control flow

The definitions and algorithm presented above concern only
sequential control flow. However,ConFlExcan also be used
to analyse concurrent programs, by extracting CFGs from
individual threads: the user simply has to provide the thread’s
entry method as an argument, which invariably is the run()
method from a subtype of Runnable. However, at present
the produced CFGs do not take into account the interaction
between the threads. Thus, a natural extension of our frame-
work and tool would be to support a richer program model
that captures the relevant aspects of concurrency.

Fig. 13 CFG extraction rules from incomplete BIR programs

123

674 A. Amighi et al.

In previous work by two of the present authors, Huisman
et al. define a notion ofCFGs formultithreaded programs [20,
Definition 9]. It considers the following primitives for thread
synchronization in JBC programs: thread spawning and join-
ing, lock acquiring and releasing, and wait, notify, and
notifyAll.

The definition presents certain difficulties for the sound
CFG extraction from Java bytecode. The major one is that it
requires the sets of threads and of locks to be finite. How-
ever, Java allows unbounded creation of objects, thus an
unbounded number of threads and locks. Hence, a strategy is
needed to soundly over-approximate the sets of threads and
locks used in the program.

A first approach to over-approximate the set of threads
would be to abstract all threads of the same type (i.e., that
are instances of the same class) into a single representa-
tive. Though this is a safe over-approximation, it may be
too imprecise for verification purposes. For instance, a spu-
rious violation of mutual exclusion is reported when two (or
more) threads of the same type are abstracted into the same
representative, and the abstract thread enters a critical sec-
tion.

The situation with locks is similar. A simple example with
two threads (possibly not from the same type) sharing two
locks shows that a deadlock would not be detected. Let us
assume that each tread must hold both locks to enter the
critical section. If locks are over-approximated into a single
representative, a thread that acquired one lock is abstracted
as having both. This hides a potential deadlock, where each
thread holds only one of the locks, but blocks while waiting
for the other lock to be released.

One can refine the above idea by abstracting into a user-
provided upper bound of representative threads and locks per
type. This would rule out the most common spurious errors,
and provide a higher precision as the bound increases. How-
ever, further investigations are needed to define strategies for
providing such an upper bound for common practical cases.

7 Related work

Java bytecode has several object-oriented aspects that make
the extraction of control flow graphs complex, such as inheri-
tance, exceptions, and virtual method calls. Therefore, in this
section we discuss the work related to extracting CFGs from
object-oriented programs. To the best of our knowledge, for
none of the existing extraction algorithms a correctness proof
has been provided.

Zhao [41] presents an initial formal definition of CFGs for
Java bytecode programs. However, there is no formal defi-
nition of an extraction algorithm, only a description of the
relevant aspects of the transformation from JBC to the control
flow graphs. Among these, the paper considers exceptions

and describes how exceptions are handled. However, it does
not discuss how they are raised, or how to estimate the excep-
tion type.

Sinha et al. [32,33] propose a control flow graph extrac-
tion algorithm for both Java source and bytecode, which
takes into account explicit exceptions only. The algorithm
performs first an intra-procedural analysis, computing the
exceptional return nodes caused by uncaught exceptions.
Next, it executes an inter-procedural analysis to compute
exception propagation paths. This division is similar to how
our algorithm analyses exceptional flows, using a slightly
different inter-procedural analysis. However, the authors do
not discuss how the static type of explicit exceptions is
determined by the bytecode analysis, whereas we get this
information from the BIR transformation. Moreover, the use
of BIR allows us to also support (a subset of the) implicit
exceptions.

Jiang et al. [22] extend the work of Sinha et al. to C++
source code. C++ has the same scheme of try-catch
and exception propagation as Java source, but without the
finally blocks, or implicit exceptions. This work does
not consider the exception types. Thus, it heavily over-
approximates the possible flows by connecting the control
points with explicit throw within a try block to all its
catch blocks, and considering that any called method con-
taining a throw may terminate exceptionally. Instead, our
work considers the exception types, and thus produces finer
CFGs. Moreover, it tells which exceptions can be raised, or
propagated from method invocations.

Choi et al. [8] use an intermediate representation from
the Jalapeño compiler [7] to extract CFGs with exceptional
flows. The authors introduce a stack-less representation,
using assertions to mark the possibility of an instruction rais-
ing an exception. This approach was followed by Demange
et al. when defining BIR, and proving the correctness of the
transformation from bytecode. As a result, our extraction
algorithm, via BIR, is very similar to that of Choi. We dif-
fer by formally defining extraction rules and proving their
correctness.

Jo and Chang [23] construct CFGs from Java source
code by computing normal and exceptional flows separately.
An iterative fixed-point computation is then used to merge
the exceptional and the normal control flow graphs. Our
exception propagation computation follows their approach;
however, the authors do not discuss how the exception type
is determined. Also, only explicit exceptions are supported;
in contrast, we determine the exception type and support
implicit exceptions by using the BIR transformation.

Recently, Mihancea and Minea [28] presented jModex,
a tool for the extraction of finite-state models from Java web
applications that are tailored for the model checking of secu-
rity properties. In contrast to ConFlEx , their tool does not
fully support virtual method calls, nor exceptional flow.

123

Provably correct control flow graphs from Java bytecode programs with exceptions 675

Finally, we cite Bandera [9,12] as a pioneering tool to gen-
erate abstract models from Java source programs for model
checking. It contains several features, such as output for
multiple model checkers, and some static analyses, such as
slicing. In comparison to ConFlEx , Bandera is a versatile
tool, which provides an integrated framework to program
checking. The work mentions the support of exceptions as
future work. However, we could not find other references
about exceptions in further publications about Bandera.

8 Conclusion

This paper presents an efficient andprecise control flowgraph
extraction algorithm for sequential Java bytecode programs
that considers normal as well as exceptional control flow.
The main contribution of the paper is a formalization and
a soundness proof, providing a formal argument for why
the algorithm is correct, in the sense that it extracts control
flow graphswhose behaviour (in terms of sequential program
executions) soundly over-approximates the behaviour of the
original program. To the best of our knowledge, this is the
first CFG extraction algorithm that has been proven correct.
The proof is presented in pencil-and-paper style, but paves
the ground for a mechanized proof using a standard theorem
prover. Additionally, the paper also contributes an implemen-
tation of the algorithm, whose utility and efficiency has been
demonstrated on several test cases.

The algorithm is developed in two stages, first abstract-
ing away from the complications presented by exceptions
in stack-based languages by means of an (exceptions-
predicting) oracle. The resulting idealized algorithm serves
as a specification for concrete, efficient instantiations, which
have to realize the oracle suitably. In the second stage, we
present a concrete algorithm that not only implements the
oracle, but also gives rise to more compact CFGs. Both goals
are achieved by means of a translation to the intermediate,
stack-less Java bytecode representation BIR, supported by
the Sawja tool. The CFGs are then extracted from the BIR
representation through a combination of intra-procedural and
inter-procedural analyses. The constructed CFGs are precise,
relative to the chosen algorithm for virtual method call res-
olution and to static analyses that abstract from all data but
exceptions.

The correctness of the idealized extraction algorithm is
proved directly, by means of a simulation relation between
the behaviour of the original programand the behaviour of the
extractedCFG. Proving correctness of the concrete algorithm
is then simplified considerably: one has only to prove struc-
tural (rather than behavioural) simulation between the CFGs
extracted by the idealized algorithm and the CFGs extracted
by the concrete one. Still, the proof is not trivial, and requires
the introduction of the notion of bytecode segment, in order

tomatch bytecode instructions toBIR instructions. Structural
simulation is then shown for the CFGs extracted by the two
algorithms for each segment of the original program, by case
analysis on the type of the last instruction in the segment.

The concrete CFG extraction algorithm has been imple-
mented as the ConFlEx tool. The experimental results show
that the algorithm is reasonably efficient, and that it produces
compact CFGs. However, both performance and precision
are highly dependent on the program implementation, and
specifically on its exceptional flow, and the size of the call
graph.

9 Appendix: Correctness of GJBC

Now we enunciate the Theorem 1 again, followed by its full
correctness proof.

Theorem (CFG Soundness) Let Pjbc be a well-formed Java
bytecodeprogrammodeled by the environmentΓ . The behav-
iour of the extracted flow graph Gjbc(Γ) simulates the
execution of Pjbc.

Proof We prove simulation between the execution of Pjbc
and the behaviour of the extracted CFG, i.e. b(Gjbc), in the
standard sense of simulation between labelled transition sys-
tems [29]. In general, this requires to show that every initial
configuration of Pjbc is simulated by some initial configura-
tion of b(Gjbc). In our case there is a single initial program
configuration:

cinit = (〈main, 0, f, ε, z〉; h)

The required simulation can be established by exhibiting a
concrete simulation relation between JVM configurations
and CFG behavioural configurations that relates the initial
Pjbc-configuration cinit to an initial b(Gjbc)-state.

We prove that the abstraction function θ , viewed as a rela-
tion, is such a simulation relation. First, we observe that
θ(cinit) = (v0main, ε) is an initial state of b(Gjbc), see Def-
inition 3. Then, we prove that for any JVM configuration c

and any transition c
l−→ c′ in the execution of Pjbc there is a

matching transition θ(c)
l−→ θ(c′) inb(Gjbc).We show this by

case analysis on the top frame 〈m, p, f, s, z〉 or 〈x〉exc, and
in the former case also on the type of the instruction m[p],
i.e. the current JBC instruction. For each case we deduce
the possible labelled transitions c

l−→ c′ from c as induced
by the JBC operational semantics rules shown on Fig. 5.
Next, we use the CFG construction rules from Fig. 6 to deter-
mine the nodes and edges extracted for instructionm[p], and
the definition of CFG behaviour (Definition 3) to establish

θ(c)
l−→ θ(c′).

Case c = (〈m, p, f, s, z〉 · A; h) and i = m[p] ∈
CmpInst Applying the abstraction function on configura-

123

676 A. Amighi et al.

tion c we have: θ(c) = (◦p
m, σ) where σ denotes γ (A).

The operational semantics of [Cmp] defines that there is
a next configuration c′ such that: c

τ−→ c′ where c′ =(〈m, succ(p), f ′, s′, z′〉 · A; h′). From the definition of the

CFG extraction function Gjbc we have (◦p
m, ε, ◦succ(p)m) ∈

Gm,p,i
jbc . By the definition of CFG behaviour this edge entails

the behavioural transition: (◦p
m, σ)

τ−→b (◦succ(p)m , σ). Now
applying the abstraction function on c′ we obtain: θ(c′) =
(◦succ(p)m , σ) and therefore: θ(c)

τ−→ θ(c′).
Case c = (〈m, p, f, s, z〉 · A; h) and i = m[p] ∈ CndInst
Applying the abstraction function on configuration c we
have: θ(c) = (◦p

m, σ)whereσ denotesγ (A). The operational
semantics of [Cnd] defines that there is a next configuration
c′ such that: c

τ−→ c′. Then there are two sub-cases:

1. cond(〈m, p, f, s, z〉) = true : Then c′ = (〈m, jmp(i),
f, s′, z〉 · A; h). From the definition of the CFG extrac-
tion function Gjbc we have (◦p

m, ε, ◦jmp(i)m) ∈ Gm,p,i
jbc . By

the definition of CFG behaviour this edge entails the
behavioural transition: (◦p

m, σ)
τ−→b (◦jmp(i)m , σ). Now

applying the abstraction function on c′ weobtain: θ(c′) =
(◦jmp(i)m , σ) and therefore: θ(c)

τ−→ θ(c′).
2. cond(〈m, p, f, s, z〉) = false : Then c′ = (〈m, succ(p),

f, s′, z〉 · A; h). From the CFG extraction function we
have (◦p

m, ε, ◦succ(p)m) ∈ Gm,p,i
jbc . By the definition of CFG

behaviour this edge entails the behavioural transition:
(◦p

m, σ)
τ−→b (◦succ(p)m , σ). Now applying the abstraction

function on c′ we obtain: θ(c′) = (◦succ(p)m , σ) and there-
fore: θ(c)

τ−→ θ(c′).

Case c = (〈m, p, f, s, z〉 · A; h) and i = m[p] ∈ JmpInst
Applying the abstraction function on configuration c we
have: θ(c) = (◦p

m, σ)whereσ denotesγ (A). The operational
semantics of [Jmp] defines that there is a next configuration
c′ such that: c τ−→ c′ where c′ = (〈m, jmp(i), f, s, z〉 · A; h).
From the definition of the CFG extraction function Gjbc
we have (◦p

m, ε, ◦jmp(i)m) ∈ Gm,p,i
jbc . By the definition of

CFG behaviour, this edge entails the behavioural transition:
(◦p

m, σ)
τ−→b (◦jmp(i)m , σ). Now applying the abstraction func-

tion on c′ we obtain: θ(c′) = (◦jmp(i)m , σ) and therefore:
θ(c)

τ−→ θ(c′).
Case c = (〈m, p, f, s, z〉 · A; h) and i = m[p] ∈
ThrInst The single instruction in the set is throw X.
Let X be the set containing the static type of the excep-
tion being thrown, and all of its subtypes. Applying the
abstraction function on configuration c we obtain: θ(c) =
(◦p

m, σ) where σ denotes γ (A). The operational semantics
of throw X defines that for every exception x ∈ X there

is a next configuration c′ such that: c
throw x−−−−→ c′ where

c′ = (〈x〉exc · 〈m, p, f, s, z〉 · A; h). Then there are two sub-
cases:

1. Method m has a handler for x (i.e. k p,xΓ [m] = t ∧ t �=
0). From the definition of the CFG construction func-
tion Gjbc, we have: (◦p

m, ε, •p,x
m) ∈ Gm,p,i

jbc .
By the definition of CFG behaviour, this edge entails the

behavioural transition: (◦p
m, σ)

throw x−−−−→b (•p,x
m , σ).

Now, since k p,xΓ [m] �= 0, applying the abstraction func-

tion on c′ we obtain: θ(c′) = (•p,x
m , σ) and therefore:

θ(c)
throw x−−−−→ θ(c′).

2. There is no handler in m for x (i.e. k p,xΓ [m] = 0). From

the CFG extraction function we obtain: (◦p
m, ε, •p,x,r

m) ∈
Gm,p,i
jbc . By the definition of CFG behaviour, we have

the behavioural transition: (◦p
m, σ)

throw x−−−−→b (•p,x,r
m , σ).

Then since k p,xΓ [m] = 0, applying the abstraction function

on c′ we obtain: θ(c′) = (•p,x,r
m , σ) and therefore again:

θ(c)
throw x−−−−→ θ(c′).

Case c = (〈m, p, f, s, z〉 · A; h) and i = m[p] ∈ XmpInst
Applying the abstraction function on configuration c we
have: θ(c) = (◦p

m, σ) where σ denotes γ (A). Then there
are two sub-cases:

1. ν(〈m, p, f, s, z〉, h) = undef : The operational semantics
of [Xmp] defines that there is a next configuration c′ such
that: c

τ−→ c′ where c′ = (〈m, succ(p), f ′, s′, z′〉 · A; h′).
From the definition of the CFG extraction function Gjbc
we have (◦p

m, ε, ◦succ(p)m) ∈ Gm,p,i
jbc . By the definition

of CFG behaviour, this edge entails the behavioural
transition: (◦p

m, σ)
τ−→b (◦succ(p)m , σ). Now applying

the abstraction function on c′ we obtain: θ(c′) =
(◦succ(p)m , σ) and therefore: θ(c)

τ−→ θ(c′).
2. ν(〈m, p, f, s, z〉, h) = x : The operational semantics of

[Xmp] defines that there exists a next configuration c′

such that: c
throw x−−−−→ c′ where c′ = (〈x〉exc〈·m, p, f, s,

z〉 · A; h). Again there are two sub-cases:

(a) Methodm has a handler for x (i.e. k p,xΓ [m] = t ∧ t �= 0).
From the CFG construction function definition, we
have: (◦p

m, ε, •p,x
m) ∈ Gm,p,i

jbc .
By the definition of CFG behaviour, this edge

entails the behavioural transition: (◦p
m, σ)

throw x−−−−→b

(•p,x
m , σ). Now, since k p,xΓ [m] �= 0, applying the

abstraction function on c′ we obtain: θ(c′) =
(•p,x

m , σ) and therefore: θ(c)
throw x−−−−→ θ(c′).

(b) There is no handler in m for x (i.e. k p,xΓ [m] =
0). From the CFG extraction function we obtain:
(◦p

m, ε, •p,x,r
m) ∈ Gm,p,i

jbc .
By the definition of CFG behaviour, we have the

behavioural transition: (◦p
m, σ)

throw x−−−−→b (•p,x,r
m , σ).

Then since k p,xΓ [m] = 0, applying the abstraction func-

tion on c′ weobtain: θ(c′) = (•p,x,r
m , σ) and therefore

again: θ(c)
throw x−−−−→ θ(c′).

123

Provably correct control flow graphs from Java bytecode programs with exceptions 677

Case c = (〈x〉exc · 〈m, p, f, s, z〉 · A; h) Recall that when
there is an exception record on the stack, the JVM takes
control, and execution continues with an internal transition.
Based on the exception handling table in m we have again
two sub-cases:

1. Method m has a handler for x (k p,xΓ [m] = t ∧ t �= 0). In
this case, applying the abstraction function on the cur-
rent configuration we obtain: θ(c) = (•p,x

m , σ) where σ

again denotes γ (A). According to the operational seman-

tics of JVM we have the transition: c
catch x−−−−→ c′ where

c′ = (〈m, t, f, s, z〉 · A; h′). From the CFG extraction
function for any instruction that can raise exception x
we have: (•p,x

m , ε, ◦tm) ∈ Gm,p,i
jbc . Based on the defini-

tion of CFG behaviour, this edge induces the transition:

(•p,x
m , σ)

catch x−−−−→b (◦tm, σ). Applying the abstraction
function on c′ we have: θ(c′) = (◦tm, σ) and hence:

θ(c)
catch x−−−−→ θ(c′).

2. There is no handler in m for x (k p,xΓ [m] = 0). Applying
the abstraction function on the current configuration we
obtain: θ(c) = (•p,x,r

m , σ). Let A = 〈n, q, f, s, z〉 · A′.
Then n is the caller of m, and by the operational seman-

tics of JVM we have: c
m xret n−−−−−→ c′ where c′ =

(〈x〉exc · 〈n, q, f, s, z〉 · A′; h′). From the CFG extrac-
tion function for any instruction m[p] that can raise
exception x we obtain: (◦p

m, ε, •p,x,r
m) ∈ Gm,p,i

jbc . Because
there is no handler in m, the propagated exception x will
be in the CFG extracted for n. So, based on the exception
handling table in n we in turn have the following two
sub-cases:

• Method n has a handler for x (kq,x
Γ [n] = t ∧ t �= 0).

Then according to the CFG extraction rules for n:
(◦qn ,m, •q,x

n) ∈ Gjbc(n). By the definition of CFG

behaviour: (•p,x,r
m , ◦qn · σ ′) m xret n−−−−−→b (•q,x

n , σ ′).
Since kq,x

Γ [n] �= 0, abstracting c′ we obtain: θ(c′) =
(•q,x

n , σ ′) and therefore: θ(c)
m xret n−−−−−→ θ(c′).

• Method n does not define any handler for x (kq,x
Γ [n] =

0). Then according to the CFG extraction rules for n:
(◦qn ,m, •q,x,r

n) ∈ Gjbc(n). By the definition of CFG

behaviour: (•p,x,r
m , ◦qn · σ ′) m xret n−−−−−→b (•q,x,r

n , σ ′).
Since kq,x

Γ [n] = 0, abstracting c′ we obtain: θ(c′) =
(•q,x,r

n , σ ′) and hence: θ(c)
m xret n−−−−−→ θ(c′).

Case c = (〈m, p, f, s, z〉 · A; h) and i = m[p] ∈ InvInst
Applying the abstraction function on configuration c we
have: θ(c) = (◦p

m, σ) where σ denotes γ (A). There are two
sub-cases:

1. ν(〈m, p, f, s, z〉, h) = N.P.E.: The operational
semantics of [Inv] defines that there is a next con-

figuration c′ such that: c
throw N.P.E.−−−−−−−−−→ c′ where

c′ = (〈N.P.E.〉exc · 〈m, p, f, s, z〉 · A; h′). The rest is
proved in two sub-cases:

(a) Method m has a handler for N.P.E. (i.e. k p,N.P.E.Γ [m]= t ∧ t �= 0). From theCFGconstruction functionwe
have: (◦p

m, ε, •p,N.P.E.
m) ∈ Gm,p,i

jbc . By the definition
of CFG behaviour, this edge entails the behavioural

transition: (◦p
m, σ)

throw N.P.E.−−−−−−−−−→b (•p,N.P.E.
m , σ).

Now, since k p,N.P.E.Γ [m] �= 0, applying the abstraction

function on c′ we obtain: θ(c′) = (•p,N.P.E.
m , σ) and

therefore: θ(c)
throw N.P.E.−−−−−−−−−→ θ(c′).

(b) There is no handler in m for x (i.e. k p,N.P.E.Γ [m] =
0). From the CFG extraction function we obtain:
(◦p

m, ε, •p,N.P.E.,r
m) ∈ Gm,p,i

jbc . By the definition of

CFG behaviour, we have: (◦p
m, σ)

throw N.P.E.−−−−−−−−−→b

(•p,N.P.E.,r
m , σ). Then since k p,N.P.E.Γ [m] = 0,

applying the abstraction function on c′ we obtain:
θ(c′) = (•p,N.P.E.,r

m , σ) and therefore again: θ(c)
throw N.P.E.−−−−−−−−−→ θ(c′).

2. ν(〈m, p, f, s, z〉, h) �= N.P.E. : In this case the con-
trol will pass to the callee method and after completion,
it will return back to the caller context and next instruc-
tion will be fetched. The possible receivers (one edge
for each receiver) are determined by the virtual method
call resolution, if the instruction is virtual invocation.
The operational semantics of [Inv] defines that there is
a next configuration c′ such that: c

m call n−−−−−→ c′ where
c′ = (〈n, 0, f ′, ε, z′〉 · 〈m, p, f, s, z〉 · A; h′). From the
definition of the CFG extraction function Gjbc for all n
in the set of the possible receivers resulted by call res-
olution algorithm we have: (◦p

m, n, ◦succ(p)m) ∈ Gm,p,i
jbc .

By the definition of CFG behaviour, this edge entails the

behavioural transition: (◦p
m, σ)

m call n−−−−−→b (◦0n, ◦p
m · σ).

Now applying the abstraction function on c′ we obtain:
θ(c′) = (◦0n, σ ′). If we take σ ′ = ◦p

m · σ then we can

prove: θ(c)
m call n−−−−−→ θ(c′).

Case c = (〈m, p, f, s, z〉 · A; h) and m[p] ∈ RetInst
Applying the abstraction function on configuration c we
have: θ(c) = (◦p,r

m , σ) where σ denotes γ (A). Let A =
〈n, q, f ′, s′, z′〉 · A′. Then n is the caller of m, and by the
operational semantics of [Ret] there is a next configuration
c′ such that: c m ret n−−−−→ c′ where c′ = (〈n, succ(q), f ′, s′′, z′〉
· A′; h). Then according to the CFG extraction rules for n:
(◦qn ,m, ◦succ(q)

n) ∈ Gn,q
jbc . By the definition of CFG behav-

iour: (◦p,r
m , ◦qn · σ ′) m ret n−−−−→b (◦succ(q)

n , σ ′). Abstracting next
configuration c′ we obtain: θ(c′) = (◦succ(q)

n , σ ′) and there-

fore: θ(c)
m ret n−−−−→ θ(c′). ��

123

678 A. Amighi et al.

10 Appendix: Weak simulation on models

The results presented here follow closely Milner [29],
adapted to initialized models and thus to CFGs. As usual,
in the context of a transition relation →, we shall write

pi
l→ p j to denote (pi , l, p j) ∈→. Also, we use ε to label

silent edges (instead of τ used in Milner [29], to be consis-
tent with our notation for models). The transition relation →
induces a weak labelled transition relation in the standard
fashion, where β �= ε:

�⇒ def= ε→�

β�⇒ def= �⇒ β→ �⇒

The notion of weak simulation on models is based on the
standard notion, but requires an additional agreement on the
atomic propositions.

Definition 8 (Weak Simulation on Models) Let (Mp,Ep)

and (Mq ,Eq) be two initialized models, with Mp =
(Sp, L ,→p, A, λp) and Mq = (Sq , L ,→q , A, λq), and
let R ⊆ Vp × Vq . Then R is a weak simulation if for all
(pi , qi) ∈ R the following conditions hold:

1. λp(pi) = λq(qi);
2. if pi �⇒ p j then there is q j ∈ Vq such that qi �⇒ q j

and (p j , q j) ∈ R;

3. if pi
β�⇒ p j then there is q j ∈ Vq such that qi

β�⇒ q j

and (p j , q j) ∈ R.

We say thatq weakly simulates p if (p, q) ∈ R for someweak
simulation relation R. We also say that (Mq ,Eq) weakly
simulates (Mp,Ep) if for every p ∈ Ep there is q ∈ Eq

such that q weakly simulates p.

The following proposition (again the style of [29]) allows
for more compact simulation proofs.

Proposition 1 Let (Mp,Ep) and (Mq ,Eq) be two initial-
ized models, with Mp = (Sp, L ,→p, A, λp) and Mq =
(Sq , L ,→q , A, λq), and let R ⊆ Vp ×Vq. Then R is aweak
simulation if for all (pi , qi) ∈ R the following conditions
hold:

1. λp(pi) = λq(qi);

2. if pi
ε→ p j then there is q j ∈ Vq such that qi �⇒ q j

and (p j , q j) ∈ R;

3. if pi
β→ p j then there is q j ∈ Vq such that qi

β�⇒ q j

and (p j , q j) ∈ R.

Thus, to prove weak simulation, it suffices to show that every
strong transition of the first model is matched by a corre-
spondingly labelled weak transition of the second model.

11 Appendix: Correctness of GBIR ◦ BC2BIR

The BC2BIR transformation may collapse several bytecode
instructions into a single BIR instruction. We divide the JBC
instructions into two sets: the producer instructions, i.e.,
those that produce at least one BIR instruction in function
BC2BIRinstr, and the auxiliary ones, i.e., those that produce
none. This division can be deduced from Fig. 9 (on page 22).
For example, store and invokevirtual are producer
instructions, while add and push are auxiliary.

We partition the bytecode instruction array into bytecode
segments. These are sub sequences delimited by producer
instructions. Thus each bytecode segment contains zero or
more contiguous auxiliary instructions, followed by a sin-
gle producer instruction. Equivalently, we may say that a
segment is defined by an optional basic block [1] and a sub-
sequent producer instruction. Such a partitioning exists for
all bytecode programs that comply to the Java Bytecode Ver-
ifier (see Sect. 2.1). All methods in such programs must have
goto, return, or athrow as the last (reachable) instruc-
tion, which are producer instructions. Therefore, there can
not be contiguous (reachable) instructions that are not delim-
ited by a producer instruction.

Each bytecode segment is transformed into a set of con-
tiguous instructions by BC2BIR. We call this set a BIR
segment, which is a partition of the BIR instruction array.
There exists a one-to-one mapping between bytecode seg-
ments and the BIR segments, which is also order-preserving.
Thus, we can associate each instruction, either in the JBC or
BIR arrays, to the unique index of its correspondent bytecode
segment. Figure10 (on page 23) illustrates the partitioning
of instructions into segments. Method odd has eight byte-
code (and BIR) segments, as indicated by the distinct shades.
Producer instructions are underlined.

In the definition of the direct extraction algorithm in Fig. 6
(on page 13), one can observe that all auxiliary instructions
give rise to an internal transfer edge only. This implies that the
sub-graphs for any segment extracted in the direct algorithm
will start with a path-like graph of internal transfer edges
of the same length as the number of auxiliary instructions,
followed by the edges generated for the producer instruction.
Let p be the position for the first auxiliary instruction, and
q the position of the producer instruction. We illustrate the
pattern for this path-like graph below.

◦p
m

ε→ ◦succ(p)m
ε→ ◦succ(succ(p))m

ε→ · · · ◦qm
It is easy to see that the path-like graph isweakly simulated by
some reflexive edge ◦pcm �⇒ ◦pcm . Therefore, for simplicity
we present the proof for the case where p = q. That is, for
JBC segments without auxiliary instructions.

Another important observation is about the mapping
between control addresses between the JBC and the BIR

123

Provably correct control flow graphs from Java bytecode programs with exceptions 679

representations. A control address q from a branching
instruction (e.g., goto q or ifeq q) or from an exception
handler is always mapped to the first control address (let’s
call it pc) of the corresponding BIR segment that q belongs
to. This is necessarily the case because either q contains a
producer instruction, which will generate a set of sequential
BIR instructions, with smallest control address being pc, or
it contains an auxiliary instruction, which will be collapsed
into the BIR instructionswhen the first JBC producer instruc-
tion is processed, also having pc as the control address with
smallest index.

Based on the observations above, our main theorem states
that the method graphs extracted using the indirect algorithm
weakly simulate (see Definition 8) the method graphs using
the direct algorithm. The abstract stacks are omitted in the
proof since examining the instructions is sufficient to produce
the edges.

We now enunciate Theorem 2 again, and present the full
proof.

Theorem (Structural SimulationofCFGs)LetΓ be the envi-
ronment modeling a well-formed JBC program Pjbc. Then
(Gbir ◦ BC2BIR)(Γ) weakly simulates Gjbc(Γ).

Proof Letm be amethod signature andΓ [m]be themethod’s
definition in Γ . Let p range over indices in the bytecode
instructions array, pc over indices in the BIR instructions
array, ◦p,x,r

m over control nodes in Gjbc(Γ [m]), and ◦pc,x,r
m

over control nodes in (Gbir ◦ BC2BIR)(Γ [m]). The control
nodes are valuated with two optional atomic propositions:
x , which is an exception type, and r , which is the atomic
proposition denoting a return point. Further, let segJBC(m, p)
and segBIR(m,pc) be two auxiliary functions that return the
segment index that a JBC, or aBIRcontrol address belongs to,
respectively. Let s be the index of a BIR segment. Function
fst(s) return its first control address and oap(s,XR) return
the set of control addresses in s tagging a node with the non-
empty set of optional atomic propositions equal to XR.

We define the binary relation R as the union of two binary
relations R1 and R2, as follows:

R
def= R1 ∪ R2

R1
def= {(◦p

m, ◦pcm) | segJBC(m, p) = segBIR(m,pc)

∧pc = fst(segBIR(m,pc))}
R2

def= {(◦p,XR
m , ◦pc,XR

m) | segJBC(m, p) = segBIR(m,pc)

∧pc ∈ oap(segBIR(m,pc),XR)}

and show the relation to be a weak simulation in the standard
fashion, following Proposition 1: for every pair of nodes in R,
we first show that the nodes have the same set of atomic
propositions, and then match every strong edge that has the
first node as source, to a corresponding weak edge that has

the second node as source, so that the target nodes are again
related by R.

Intuitively, the direct and indirect algorithms extract a
similar branching structure for the same JBC code segment,
differing in the occurrences of silent transitions. Therefore,
R relates the first normal (source) nodes extracted by both
algorithms (i.e., R1), and a node from the direct algorithm
tagged with a non-empty set of atomic propositions to nodes
extracted in the indirect algorithm with the same set of
atomic propositions (i.e., R2). Notice that the only casewhere
the indirect algorithm produces two distinct nodes with the
same set of non-empty atomic propositions is for the case
of method invocations, where a N.P.E. may be raised in
different control addresses: either by a [notnull] or prop-
agated by the callee method.

Let (◦p
m, �) ∈ R1 and let (◦p,r

m , �) ∈ R2 where ◦p
m and

◦p,r
m are control nodes in Gjbc(Γ [m]) and � is a control node
in (Gbir ◦ BC2BIR)(Γ [m]). We consider the two cases sep-
arately. Let first (◦p

m, �) ∈ R1. The proof proceeds by case
analysis on the type of the producer instruction of the byte-
code segment segJBC(m, p) giving rise to ◦p

m . The cases
follow the subsets of JBC instructions presented in Fig. 4,
which share the same extraction rule in the direct algorithm
for its instructions. We rely on the notation to indicate that
two nodes have the same set of atomic propositions.

Case i ∈ CmpInst There are two producer instructions in
this subset: nop and store. We present the case for store
only, since it subdivides into two sub-cases, the first of which
is analogous to the case of nop.

The direct extraction always produces a single edge from
one normal node to the node tagged with the successor of p
in the instructions array:

Gm,p,store
jbc = {◦p

m
ε→ ◦succ(p)m }

The BIR transformation can return either one or two assign-
ments, which leads to two subcases in the proof.
Subcase I BC2BIRinstr produces a single assignment for
store. Applying the Assignment rule of Gbir, we obtain a
single edge:

BC2BIRp,store
instr = {[lj:=e]}

Gm,pc,[lj:=e]
bir = {◦pcm ε→ ◦pc+1m }

Then � = ◦pcm since pc = fst(s). There is the edge
◦p
m

ε→ ◦succ(p)m , which is matched by the weak edge
◦pcm �⇒ ◦pc+1m . Moreover, also (◦succ(p)m , ◦pc+1m) ∈ R
since segJBC(m, succ(p)) = segBIR(m,pc+1) and pc+1 =
fst(segBIR(m,pc+1)). That is, pc+1 is the first control
address in the next code segment. The case for nop is anal-
ogous to this.

123

680 A. Amighi et al.

Subcase II BC2BIRinstr produces two assignments. Apply-
ing the Assignment rule from Gbir twice, we have:

BC2BIRp,store
instr = {[tk:=lj]; [lj:=e]}

Gm,pc,[tk:=lj]
bir = {◦pcm ε→ ◦pc+1m }

Gm,pc+1,[lj:=e]
bir = {◦pc+1m

ε→ ◦pc+2m }

Then � = ◦pcm since pc = fst(s). There is an edge ◦p
m

ε→
◦succ(p)m . It is matched by the weak edge ◦pcm �⇒ ◦pc+2m ,
which traverses ◦pc+1m . Then, also (◦succ(p)m , ◦pc+2m) ∈ R
since segJBC(m, succ(p)) = segBIR(m,pc+2) and pc+2 =
fst(segBIR(m,pc+2)). That is, pc+2 is the first control
address in the next code segment.

Case i ∈ CndInst The only producer instruction in this
subset is if q. The direct extraction produces two edges
from the normal node tagged with control address p: one
to the node tagged with the successor control address to p,
and another to the node tagged with the branching control
address q:

Gm,p,if q
jbc = {◦p

m
ε→ ◦succ(p)m , ◦p

m
ε→ ◦qm}

The transformationBC2BIRinstr returns a single instruction,
applied to which Gbir produces two edges:

BC2BIRp,if q
instr = [ifexpr pc′]

Gm,pc,[if expr pc′]
bir = {◦pcm ε→ ◦pc+1m , ◦pcm ε→ ◦pc’m }

Then � = ◦pcm since pc = fst(s). The first edge ◦p
m

ε→
◦succ(p)m is matched by ◦pcm �⇒ ◦pc+1m . Moreover,
(◦succ(p)m , ◦pc+1m) ∈ R since segJBC(m, succ(p)) = segBIR
(m,pc+1) and pc+1 = fst(segBIR(m,pc+1)). The second

edge ◦p
m

ε→ ◦qm is matched by ◦pcm �⇒ ◦pc’m , and again
(◦qm, ◦pc’m) ∈ R since segJBC(m, q) = segBIR(m,pc′) and
pc′ = fst(segBIR(m,pc′)). That is, both pc+1 and pc′ are
the first control addresses in their respective code segments.

Case i ∈ JmpInst The only producer instruction in this
subset is goto q. The direct extraction produces a single
edge from one normal node to another normal node tagged
with the branching control address q:

Gm,p,goto q
jbc = {◦p

m
ε→ ◦qm}

The transformationBC2BIRinstr returns a single instruction,
applied to which Gbir produces a single edge:

BC2BIRp,goto q
instr = [goto pc’]

Gm,pc,[goto pc’]
bir = {◦pcm ε→ ◦pc’m }

Then � = ◦pcm since pc = fst(s). There is the edge ◦p
m

ε→ ◦qm
which is matched by the corresponding edge ◦pcm �⇒
◦pc′
m . Moreover, (◦qm, ◦pc’m) ∈ R since segJBC(m, q) =
segBIR(m,pc’) and pc’ = fst(segBIR(m,pc’)). That is,
pc’ is the first control address on its code segment.

Case i ∈ ThrInst Let X be the set of all possible exception
types for an instance of the idealized throw X, which is the
single instruction inThrInst. ThenX ⊆ {x |x <: staticT(e)}
for the corresponding instance of [throw e]. That is, the
set of possible exceptions in the indirect extraction soundly
over-approximates the set X since any exception x ∈ X is
necessarily a sub-type of staticT(e). Let x ∈ X.

The direct extraction for the throw instruction produces
two edges if there is a suitable handler for the exception x in
position p. Otherwise, it produces a single edge, whose sink
node is an exceptional return node:

Gm,p,throw x
jbc =

{
{◦p

m
ε→ •p,x

m , •p,x
m

ε→ ◦qm} if has handler

{◦p
m

ε→ •p,x,r
m } otherwise

The transformationBC2BIRinstr returns a single instruction.
Then, similarly toGjbc, theGbir function produces either one,
or two edges:

BC2BIRp,athrow
instr = [throw e]

Gm,pc,[throw e]
bir

=
{

{◦pcm ε→ •pc,x
m , •pc,x

m
ε→ ◦pc’m } if has handler

{◦pcm ε→ •pc,x,r
m } otherwise

Then � = ◦pcm since pc = fst(s). In the case where
there is an exception handler for x in p and pc, the
edge ◦p

m
ε→ •p,x

m is matched by the corresponding weak
edge ◦pcm �⇒ •pc,x

m . Then also (•p,x
m , •pc,x

m) ∈ R since
segJBC(p) = segBIR(m,pc) and pc ∈ oap(s, {x}). That
is, pc tags a node where the set XP = {x}. Actually, for
this case there is only one node since pc is the only control
address in the segment. Further, there is the edge •p,x

m
ε→

◦qm , which is matched by •pc,x
m �⇒ ◦pc’m , and again

(◦qm, ◦pc’m) ∈ R since segJBC(m, q) = segBIR(m,pc’) and
pc’ = fst(segBIR(m,pc’)). That is, pc’ is the first control
address on its code segment.

In the case where there is no exception handler for x , the
only edge is ◦p

m
ε→ •p,x,r

m , which is matched by ◦pcm �⇒
•pc,x,r
m . Moreover, (•p,x,r

m , •pc,x,r
m) ∈ R since segJBC(p) =

segBIR(m,pc) and pc ∈ oap(s, {x, r}). That is, pc tags the
node where the set XP = {x, r}, which concludes the case.

Case i ∈ XmpInst The instructions in this set follow to
the next control point in case they terminate the execution
normally, or can raise an exception if some condition was
violated. We present this case for the div instruction, which

123

Provably correct control flow graphs from Java bytecode programs with exceptions 681

can only raise x = ArithmeticException. The cases
for all other instructions in XmpInst are analogous.

The rule for the direct extraction produces one normal
edge, for the case of successful execution. Also, for each
exception that the instruction may raise, it outputs a varying
number of edges: a pair if there is a suitable handler for the
exception, and otherwise a single edge:

Gm,p,div
jbc

=
{

{◦p
m

ε→ ◦succ(p)m , ◦p
m

ε→ •p,x
m , •p,x

m
ε→ ◦qm} if has handler

{◦p
m

ε→ ◦succ(p)m , ◦p
m

ε→ •p,x,r
m } otherwise

TheBC2BIRinstr transformation returns a single instruction,
which is an assertion. The Gbir function always produces one
edge to a normal node, denoting normal execution. Also, it
outputs a varying number of edges: two edges, if there is a
suitable exception handler; otherwise it outputs a single edge
to an exceptional return node. Thus we may have two sets of
edges:

BC2BIR
p,div
instr = [notzero]

Gm,pc,[notzero]
bir

=
{

{◦pcm ε→ ◦pc+1m , ◦pcm ε→ •pc,x
m , •pc,x

m
ε→ ◦pc’m } if has handler

{◦pcm ε→ ◦pc+1m , ◦pcm ε→ •pc,x,r
m } otherwise

Then � = ◦pcm since pc = fst(s). The edge ◦p
m

ε→ ◦succ(p)m

is matched by ◦pcm �⇒ ◦pc+1m in both cases. More-
over, also (◦succ(p)m , ◦pc+1m) ∈ R since segJBC(m, succ(p)) =
segBIR(m,pc+1) and pc+1 = fst(segBIR(m,pc+1)). That
is, pc+1 is the first control address in the next segment.

In the case where there is an exception handler for x , there
is the edge ◦p

m
ε→ •p,x

m , which ismatched by ◦pcm ε�⇒ •pc,x
m .

Thus, also (•p,x
m , •pc,x

m) ∈ R segJBC(m, p) = segBIR(m,pc)

and pc ∈ oap(s, {x}). Similarly to ThrInst, in this case
pc is the only control address tagging a node also tagged
by x since it is the only address in the segment. Also, there
is the edge •p,x

m
ε→ ◦qm , which is matched by •pc,x

m �⇒
◦pc’m , and again (◦qm, ◦pc’m) ∈ R since segJBC(m, q) =

segBIR(m,pc’) and pc’ = fst(segBIR(m,pc’)).
If there is no exception handler for x , then the direct algo-

rithm produces the edge ◦p
m

ε→ •p,x,r
m , which is matched

by ◦pcm �⇒ •pc,x,r
m . Then, (•p,x,r

m , •pc,x,r
m) ∈ R since

segJBC(p) = segBIR(m,pc) and pc ∈ oap(s, {x, r}). That

is, pc tags the node where the set XP = {x, r}, which con-
cludes the case.

Case i ∈ InvInst This is the subset of instruc-
tions that execute method invocations: invokespecial,
invokestatic,invokevirtual, andinvokeinter
face. Thefirst two instructions always have a single receiver
for the invocation, while the last two instruction may have
more than one potential receiver, because of the dynamic
dispatching.

This is reflected in the function ReciΓ in Fig. 6, which uses
a virtual method call algorithm α to list the possible receivers
for amethod invocation. The indirect algorithm has an equiv-
alent function, resα , which returns the single receiver for a
non-virtual method call, or uses the same algorithm α to list
the possible receivers of a virtual call. The set of possible
receivers for a method invocation is the same for both algo-
rithms. Therefore it suffices to show that, for a (potential)
receiver of a method invocation, the subgraph extracted indi-
rectly weakly simulates the subgraph extracted directly.

We present the proof for the single receiver of an in-
vokespecial call. We chose this instruction because it
is the only one that may produce two distinct sets of BIR
instructions (see Fig. 9). We thus consider two subcases: (I)
when the receiver is an object constructor, and (II), when it
is a private method or a method from the super class. For the
latter, the BIR instructions are the same as for invoke-
static, invokevirtual, and invokeinterface,
and the proofs are analogous.

The direct algorithm does not make a distinction between
constructors, or other method types, and extracts a variable
number of edges for invokespecial. It always pro-
duces one edge for the normal termination of the method,
and either one or two edges for the exceptional flow of
NullPointerException (N.P.E.), again depending
on the presence of a suitable exception handler. Also, it pro-
duces one or two edges for each exception propagated by the
invoked method n (denoted by N p,n

m). We present the proof
for an arbitrary exception x , and generalize to all the possible
propagated exceptions.

Gm,p,invokespecial
jbc =

{
◦p
m

n→ ◦succ(p)m , ◦p
m

ε→ •p,N.P.E.
m , •p,N.P.E.

m
ε→ ◦qm} ∪ N p,n

m if has handler

◦p
m

n→ ◦succ(p)m , ◦p
m

ε→ •p,N.P.E.,r
m } ∪ N p,n

m otherwise

N p,n
m =

{
{◦p

m
n→ •p,x

m , •p,x
m

ε→ ◦tm} if has handler

{◦p
m

n→ •p,x,r
m } otherwise

Subcase I The receiver of an invokespecial is an
object constructor.We instantiate the signature of the invoked
method to n = C to stress this. It returns a sequence of assign-
ments to temporary variables ([t1:=l1;t2:=l2; …]),
denoted by HSave; plus the call to [new C].

123

682 A. Amighi et al.

BC2BIRp,invokespecial
instr

= [HSave(pc,as);tk:=new C]

Assignments to variables produce a single edge to the next
control point. Thus, the extraction of HSave function pro-
duces a (path-like) graph corresponding to a weak transition
◦pcm �⇒ ◦pc’m .

Gm,pc,HSave(pc,as)
bir

= {◦pcm ε→ ◦pc+1m , ◦pc+1m
ε→ ◦pc+2m , . . . , ◦pc’-1m

ε→ ◦pc’m }

The rule for [new C] produces one normal edge for the
case of successful execution, and one or two edges for to the
exceptional flow of a NullPointerException. Also, it
produces one or two edges for any exception x propagated
from C.

Gm,pc’,[tk:=new C]
bir =

{
{◦pc’m

C→ ◦pc’+1m , ◦pc’m
ε→ •pc’,N.P.E.

m , •pc’,N.P.E.
m

ε→ ◦pcqm } ∪ N̄ pc’,C
m if has handler

{◦pc’m
C→ ◦pc’+1m , ◦pc’m

ε→ •pc’,N.P.E.,r
m } ∪ N̄ pc’,C

m otherwise

N̄ pc’,C
m =

{
{◦pc’m

C→ •pc’,x
m , •pc’,x

m
ε→ ◦pctm } if has handler

{◦pc’m
C→ •pc’,x,r

m } otherwise

Then � = ◦pcm since pc = fst(s). The edge ◦p
m

C→ ◦succ(p)m is

matched by ◦pcm C�⇒ ◦pc’+1m , which traverses all the nodes
extracted from HSave, and also (◦succ(p)m , ◦pc’+1m) ∈ R since
segJBC(m, succ(p)) = segBIR(m,pc’+1) and pc’+1 =
fst(segBIR(m,pc’+1)). That is, pc’+1 is the first control
address in the next code segment, after the current segment
delimited by the invokespecial instruction.

The next set of edges depends on the presence of an
exception handler for the NullPointerException. If
there is a suitable handler, then there is another edge ◦p

m
ε→

•p,N.P.E.
m , which is matched by ◦pcm �⇒ •pc’,N.P.E.

m (also
traversing nodes produced from HSave), and (•p,N.P.E.

m ,

•pc’,N.P.E.
m) ∈ R since segJBC(m, succ(p)) = segBIR(m,

pc’) and pc’ ∈ oap(s, {N.P.E.}). Also, there is the edge

•p,N.P.E.
m

ε→ ◦qm , matched by •pc’,N.P.E.
m �⇒ ◦pcqm , and

again (◦qm, ◦pcqm) ∈ R since segJBC(m, q) = segBIR(m,pcq)
and pcq = fst(segBIR(m,pcq)).

If there is no handler, there is the edge ◦p
m

ε→ •p,N.P.E.,r
m ,

which is matched by ◦pcm �⇒ •pc’,N.P.E.,r
m (and tra-

verses nodes extracted from HSave), and (•p,N.P.E.,r
m ,

•pc’,N.P.E.,r
m) ∈ R since segJBC(m, p) = segBIR(m,pc’)

and pc’ ∈ oap(s, {N.P.E., r}).
The set of edges extracted for the propagation of an

exception x also depends on the presence of a handler, and
the explanation is similar to the one for NullPointer-
Exception. If there is a suitable handler, then there is an

edge ◦p
m

C→ •p,x
m , which ismatched by ◦pcm C�⇒ •pc’,x

m (tra-
versing the nodes fromHSave), and (•p,x

m , •pc’,x
m) ∈ R since

segJBC(m, p) = segBIR(m,pc’) and pc’ ∈ oap(s, {x}).
Also, there is the edge •p,x

m
ε→ ◦tm , matched by •pc’,x

m �⇒
◦pctm , and also (◦tm, ◦pctm) ∈ R since segJBC(m, t) =
segBIR(m,pct) and pct = fst(segBIR(m,pct)). If there is

no handler, there is the edge ◦p
m

C→ •p,x,r
m , which is matched

by ◦pcm C�⇒ •pc’,x,r
m . Thus (•p,x,r

m , •pc’,x,r
m) ∈ R since

segJBC(m, p) = segBIR(m,pc’) and pc’ ∈ oap(s, {x, r}).
Notice that if propagated exception x = N.P.E., then

pc’ is the only possible control address tagging the node

with XP = {N.P.E.}, which has been shown above to be
in R for either the cases of having or not a handler.
Subcase II The receiver of a call from invokespecial
is a method within the same class, or from the super class.
The BC2BIRinstr transformation returns the [notnull]
instruction, followed by a sequence of assignments (denoted
by HSave), and the invocation instruction:

BC2BIRp,invokespecial
instr

= [notnull;HSave(pc,as);tk:=e.n(. . .)]

Applying the extraction function to [notnull], we have
again a varying number of edges, depending onwhether there
is a handler for the NullPointerException or not:

Gm,pc,[notnull]
bir =

{
{◦pcm ε→ ◦pc+1m , ◦pcm ε→ •pc,N.P.E.

m , •pc,N.P.E.
m

ε→ ◦pcqm } if has handler

{◦pcm ε→ ◦pc+1m , ◦pcm ε→ •pc,N.P.E.,r
m , } otherwise

As explained above, the extraction of the assignments from
theHSave function produces a (path-like) graph correspond-
ing to a weak transition ◦pc+1m �⇒ ◦pc’m .

Gm,pc+1,HSave(pc,as)
bir ={◦pc+1m

ε→ ◦pc+2m , . . . , ◦pc’-1m
ε→ ◦pc’m }

123

Provably correct control flow graphs from Java bytecode programs with exceptions 683

The rule for [tk= e.n(. . .)] (i.e.,MethodCall) produces one
normal edge for the case of successful execution, and one or
two edges for each propagated exception x .

Gm,pc’,[tk:=e.n(...)]
bir ={◦pc’m

n→ ◦pc’+1m }∪N̄ pc’,n
m

N̄ pc’,n
m =

{
{◦pc’m

n→ •pc’,x
m , •pc’,x

m
ε→ ◦pctm } if has handler

{◦pc’m
n→ •pc’,x,r

m } otherwise

Then � = ◦pcm since pc = fst(s). The edge ◦p
m

n→ ◦succ(p)m

is matched by ◦pcm n�⇒ ◦pc’+1m which traverses ◦pc+1m , and
the nodes extracted from HSave. Thus (◦succ(p)m , ◦pc’+1m) ∈
R since segJBC(m, succ(p)) = segBIR(m,pc’+1) and
pc’+1 = fst(segBIR(m,pc’+1)).

The set of edges extracted because of a potential Null-
PointerException depends on the presence of a han-
dler. If there is a suitable handler, then there is an edge ◦p

m
ε→

•p,N.P.E.
m , which is matched by ◦pcm �⇒ •pc,N.P.E.

m ,
and (•p,N.P.E.

m , •pc,N.P.E.
m) ∈ R since segJBC(m, p) =

segBIR(m,pc) and pc ∈ oap(s, {N.P.E.}). Also, there is
an edge •p,N.P.E.

m
ε→ ◦qm , which is matched by •pc,N.P.E.

m

�⇒ ◦pcqm and (◦qm, ◦pcqm) ∈ R since segJBC(m, q) =
segBIR(m,pcq) and pcq = fst(segBIR(m,pcq)). If there is

no handler, then there is an edge ◦p
m

ε→ •p,N.P.E.,r
m , which

is matched by ◦pcm �⇒ •pc,N.P.E.,r
m and (•p,N.P.E.,r

m ,

•pc,N.P.E.,r
m) ∈ R since segJBC(m, p) = segBIR(m,pc)

and pc ∈ oap(s, {N.P.E., r}). Notice that in either of the
cases pcmay not be the only control address tagging a node
with N.P.E., and •p,N.P.E.

m or •p,N.P.E.,x
m must also relate

to such node.
Again, the explanation for edges related to a propa-

gated exception x is similar to the one for N.P.E.. If
there is a handler for x , then there is an edge ◦p

m
n→

•p,x
m , which is matched by ◦pcm n�⇒ •pc’,x

m , which tra-
verses ◦pc+1m and the nodes extracted from HSave, and
(•p,x

m , •pc’,x
m) ∈ R sincepc’ ∈ oap(s, {x}). There is also an

edge •p,x
m

ε→ ◦tm which ismatched by •pc’,x
m �⇒ ◦pctm , and

also (◦tm, ◦pctm) ∈ R since segJBC(m, t) = segBIR(m,pct)

and pct = fst(segBIR(m,pct)). If there is no handler,

then there is an edge ◦p
m

n→ •p,x,r
m , that is matched by

◦pcm n�⇒ •pc’,x,r
m (traversing ◦pc+1m , the nodes from HSave

and ◦pc’m), and (•p,x,r
m , •pc’,x,r

m) ∈ R since segJBC(m, p) =
segBIR(m,pc’) and pc’ ∈ oap(s, {x, r}).

Notice that if the propagated exception x = N.P.E.,
then both nodes •pc,x,r

m and •pc’,x,r
m relate to •p,x,r

m in R. The
same is true for the case where there is a handler, and the cor-
responding exceptional nodes •pc,x

m and •pc’,x
m relate to •p,x

m

in R. This concludes the case, and the whole case analysis.
Let now (◦p,r

m , �) ∈ R2. The proof proceeds with the
RetInst set, the only type of the producer instructions of

the bytecode segment segJBC(m, p) giving rise to ◦p,r
m . All

return instructions are producer instructions. However, the
direct algorithm does not produce edges for them, but sim-

ply adds the atomic proposition r to the normal sink nodes
tagged with the address of the return instruction. Let p be the
control address of the return instruction. The transformation
BC2BIRinstr returns a single instruction, applied to which
Gbir produces a single edge:

BC2BIRp,return
instr = [return expr(]

Gm,pc,[return expr]
bir = {◦pcm ε→ ◦pc,r

m }

In this case we have to relate ◦p,r
m via R2 rather than via R1.

Then � = ◦pc,r
m since segJBC(p) = segBIR(m,pc) and pc ∈

oap(s, {r}). That is,pc tags the only nodewhere the setXP =
{r}. Since there is no outgoing edge from ◦p,r

m , this concludes
the case of return instructions and the whole proof. ��

References

1. Allen, F.E.: Control flow analysis. SIGPLAN Not. 5, 1–19 (1970).
doi:10.1145/390013.808479

2. Amighi, A.: Flow graph extraction for modular verification of java
programs. Master’s thesis, KTH Royal Institute of Technology,
Stockholm, Sweden (2011). http://www.nada.kth.se/utbildning/
grukth/exjobb/rapportlistor/2011/rapporter11/amighi_afshin_
11038.pdf. Ref.: TRITA-CSC-E 2011:038

3. Amighi, A., Gomes, PdC, Gurov, D., Huisman, M.: Sound control-
flow graph extraction for Java programs with exceptions. In:
Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) Software
Engineering and Formal Methods, Lecture Notes in Computer Sci-
ence, vol. 7504, pp. 33–47. Springer, Berlin (2012). doi:10.1007/
978-3-642-33826-7_3

4. Armando, A., Costa, G., Merlo, A., Verderame, L.: Enabling byod
through secure meta-market. In: Proceedings of the 2014 ACM
Conference onSecurity andPrivacy inWireless&MobileNet-
works, WiSec ’14, pp. 219–230. ACM, New York (2014). doi:10.
1145/2627393.2627410. http://doi.acm.org/

5. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual func-
tion calls. In: OOPSLA, pp. 324–341 (1996)

6. Barre, N., Demange, D., Hubert, L., Monfort, V., Pichardie, D.:
SAWJA API documentation (2011). http://javalib.gforge.inria.fr/
doc/sawja-api/sawja-1.3-doc/api/index.html

7. Burke, M.G., Choi, J.D., Fink, S., Grove, D., Hind, M., Sarkar,
V., Serrano, M.J., Sreedhar, V.C., Srinivasan, H., Whaley, J.: The
Jalapeño dynamic optimizing compiler for Java. In: Proceedings
of the ACM 1999 Conference on Java Grande. JAVA ’99, pp. 129–
141. ACM, New York (1999)

123

http://dx.doi.org/10.1145/390013.808479
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2011/rapporter11/amighi_afshin_11038.pdf
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2011/rapporter11/amighi_afshin_11038.pdf
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2011/rapporter11/amighi_afshin_11038.pdf
http://dx.doi.org/10.1007/978-3-642-33826-7_3
http://dx.doi.org/10.1007/978-3-642-33826-7_3
http://dx.doi.org/10.1145/2627393.2627410
http://dx.doi.org/10.1145/2627393.2627410
http://doi.acm.org/
http://javalib.gforge.inria.fr/doc/sawja-api/sawja-1.3-doc/api/index.html
http://javalib.gforge.inria.fr/doc/sawja-api/sawja-1.3-doc/api/index.html

684 A. Amighi et al.

8. Choi, J.D., Grove, D., Hind, M., Sarkar, V.: Efficient and precise
modeling of exceptions for the analysis of Java programs. SIG-
SOFT Softw. Eng. Notes 24, 21–31 (1999)

9. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu,
C.S., Robby, Z.H.: Bandera: extracting finite-state models from
java source code. In: Proceedings of the 22nd International Confer-
ence on Software Engineering, ICSE ’00, pp. 439–448. ACM,New
York (2000). doi:10.1145/337180.337234. http://doi.acm.org/

10. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented
programs using static class hierarchy analysis. In: Proceedings of
the 9th European Conference on Object-Oriented Programming,
ECOOP, pp. 77–101. Springer, London (1995). http://dl.acm.org/
citation.cfm?id=646153.679523

11. Demange, D., Jensen, T., Pichardie, D.: A provably correct
stackless intermediate representation for Java bytecode. Tech.
Rep. 7021, INRIA Rennes (2009). http://www.irisa.fr/celtique/
demange/bir/rr7021-3.pdf Version 3, November 2010

12. Dwyer, M.B., Hatcliff, J., Joehanes, R., Laubach, S., Păsăreanu,
C.S., Zheng,H.,Visser,W.: Tool-supported programabstraction for
finite-state verification. In: Proceedings of the 23rd International
Conference on Software Engineering, ICSE ’01, pp. 177–187.
IEEE Computer Society, Washington, DC (2001). http://dl.acm.
org/citation.cfm?id=381473.381493

13. Freund, S.N., Mitchell, J.C.: A type system for the Java bytecode
language and verifier. J. Autom. Reason. 30, 271–321 (2003)

14. Gomes, P.D.C.: Sound modular extraction of control flow graphs
from java bytecode. Licentiate Thesis, KTH Royal Institute of
Technology (2012). http://urn.kb.se/resolve?urn=urn:nbn:se:kth:
diva-105275 QC 20121122

15. Gomes, P.D.C., Picoco, A., Amighi, A.: ConFlEx (2012). http://
www.csc.kth.se/pedrodcg/conflex

16. Gomes, PdC, Picoco, A., Gurov, D.: Sound control flow graph
extraction from incomplete java bytecode programs. In: Gnesi, S.,
Rensink, A. (eds.) Fundamental Approaches to Software Engineer-
ing, Lecture Notes in Computer Science, vol. 8411, pp. 215–229.
Springer, Berlin (2014). doi:10.1007/978-3-642-54804-8_15

17. Graa, M., Cuppens-Boulahia, N., Cuppens, F., Cavalli, A.: Formal
characterization of illegal control flow in android system. In: 2013
International Conference on Signal-Image Technology Internet-
Based Systems (SITIS), pp. 293–300 (2013). doi:10.1109/SITIS.
2013.56

18. Gurov, D., Huisman, M., Sprenger, C.: Compositional verification
of sequential programswith procedures. Inf. Comput. 206(7), 840–
868 (2008)

19. Hubert, L., Barré, N., Besson, F., Demange, D., Jensen, T., Mon-
fort, V., Pichardie, D., Turpin, T.: Sawja: static analysis workshop
for Java. In: Formal Verification of Object-Oriented Software
(FoVeOOS ’10), LNCS, vol. 6528, pp. 92–106. Springer, Berlin
(2010)

20. Huisman, M., Aktug, I., Gurov, D.: Program models for com-
positional verification. In: International Conference on Formal
Engineering Methods (ICFEM ’08), LNCS, vol. 5256, pp. 147–
166. Springer, Berlin (2008)

21. Huisman, M., Gurov, D.: CVPP: A tool set for compositonal ver-
ification of control-flow safety properties. In: Formal Verification
of Object-Oriented Software (FoVeOOS ’10), LNCS, vol. 6528,
pp. 107–121. Springer, Berlin (2010)

22. Jiang, S., Jiang, Y.: An analysis approach for testing exception
handling programs. SIGPLAN Not. 42, 3–8 (2007)

23. Jo, J.W., Chang, B.M.: Constructing control flow graph for Java
by decoupling exception flow from normal flow. In: ICCSA (1),
pp. 106–113 (2004)

24. Kiefer, S., Schwoon, S., Suwimonteerabuth, D.: Moped—amodel-
checker for pushdown systems (2005). http://www.informatik.
uni-stuttgart.de/fmi/szs/tools/moped/

25. King, J.C.: Symbolic execution and program testing. Commun.
ACM 19(7), 385–394 (1976). doi:10.1145/360248.360252

26. Kozen,D.:Results on the propositionalμ-calculus. Theor.Comput.
Sci. 27, 333–354 (1983)

27. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual
Machine Specification. java se 7 edition. Tech. Rep. JSR-000924,
Oracle (2012)

28. Mihancea, P., Minea, M.: Jmodex: Model extraction for veri-
fying security properties of web applications. In: IEEE Con-
ference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), pp. 450–453 (2014). doi:10.1109/
CSMR-WCRE.2014.6747216

29. Milner, R.: Communicating and Mobile Systems: the π -Calculus,
chap. 6. Cambridge University Press, New York (1999)

30. Pnueli, A.: The temporal logic of programs. In: 18th Annual Sym-
posium on Foundations of Computer Science, pp. 46–57. IEEE,
New York (1977). doi:10.1109/SFCS.1977.32

31. Schwoon, S.: Model-checking pushdown systems. Ph.D. thesis,
Technische Universität München (2002)

32. Sinha, S., Harrold, M.J.: Criteria for testing exception-handling
constructs in Java programs. In: Proceedings of the IEEE
International Conference on Software Maintenance, ICSM ’99,
pp. 265–276. IEEE Computer Society, New York (1999)

33. Sinha, S., Harrold, M.J.: Analysis and testing of programs with
exception handling constructs. IEEE Trans. Softw. Eng. 26, 849–
871 (2000). doi:10.1109/32.877846

34. Soleimanifard, S., Gurov, D.: Algorithmic verification of pro-
cedural programs in the presence of code variability. In: Post-
Proceedings of the 11th International Symposium on Formal
Aspects of Component Software (FACS’14), Lecture Notes in
Computer Science, vol. 8997. Springer, Berlin (2014)

35. Soleimanifard, S., Gurov, D., Huisman, M.: ProMoVer Web Inter-
face (2012). http://www.csc.kth.se/siavashs/ProMoVer

36. Soleimanifard, S., Gurov, D., Huisman, M.: Procedure-modular
specification and verification of temporal safety properties. Soft-
ware & Systems Modeling, pp. 1–18 (2013). doi:10.1007/
s10270-013-0321-0. http://dx.doi.org/

37. Spoto, F.: Precise null-pointer analysis. Softw. Syst. Model. 10(2),
219–252 (2011). doi:10.1007/s10270-009-0132-5

38. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R.,
Lam, P., Gagnon, E., Godin, C.: Practical virtual method call reso-
lution for java. In: Proceedings of the 15th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’00, pp. 264–280. ACM, New York
(2000). doi:10.1145/353171.353189. http://doi.acm.org/

39. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E.
Co, P.: Soot—A Java Optimization Framework. In: CASCON ’99,
pp. 125–135 (1999). http://www.sable.mcgill.ca/soot/

40. Watson, T.J.: IBM: Libraries for Analysis (Wala) (2012). http://
wala.sourceforge.net/

41. Zhao, J.: Analyzing control flow in Java bytecode. In: Proceedings
of the 16th Conference of Japan Society for Software Science and
Technology, pp. 313–316 (1999)

123

http://dx.doi.org/10.1145/337180.337234
http://doi.acm.org/
http://dl.acm.org/citation.cfm?id=646153.679523
http://dl.acm.org/citation.cfm?id=646153.679523
http://www.irisa.fr/celtique/demange/bir/rr7021-3.pdf
http://www.irisa.fr/celtique/demange/bir/rr7021-3.pdf
http://dl.acm.org/citation.cfm?id=381473.381493
http://dl.acm.org/citation.cfm?id=381473.381493
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105275
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105275
http://www.csc.kth.se/pedrodcg/conflex
http://www.csc.kth.se/pedrodcg/conflex
http://dx.doi.org/10.1007/978-3-642-54804-8_15
http://dx.doi.org/10.1109/SITIS.2013.56
http://dx.doi.org/10.1109/SITIS.2013.56
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747216
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747216
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/32.877846
http://www.csc.kth.se/siavashs/ProMoVer
http://dx.doi.org/10.1007/s10270-013-0321-0
http://dx.doi.org/10.1007/s10270-013-0321-0
http://dx.doi.org/
http://dx.doi.org/10.1007/s10270-009-0132-5
http://dx.doi.org/10.1145/353171.353189
http://doi.acm.org/
http://www.sable.mcgill.ca/soot/
http://wala.sourceforge.net/
http://wala.sourceforge.net/

	Provably correct control flow graphs from Java bytecode programs with exceptions
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Java bytecode and the Java virtual machine
	2.2 Program model
	2.3 Verification of control-flow-based temporal safety properties

	3 Extracting control flow graphs from bytecode
	3.1 JBC instructions
	3.2 The extraction algorithm from JBC
	3.3 Soundness of CFG extraction

	4 Extracting control flow graphs from BIR
	4.1 The BIR language
	4.2 The extraction algorithm from BIR
	4.3 Soundness of CFG extraction

	5 The ConFlExtool
	6 Discussion
	6.1 Precision of the extraction
	6.2 Exceptions supported by the extraction
	6.3 Incremental extraction
	6.4 Multi-threaded control flow

	7 Related work
	8 Conclusion
	9 Appendix: Correctness of mathcalGjbc
	10 Appendix: Weak simulation on models
	11 Appendix: Correctness of mathcalGbir °BC2BIR
	References

