Lecture 4 - k-layer Neural Networks

DD2424

April 3, 2017

A new class of scoring functions

Linear scoring function 2-layer Neural Network
s=Wx+b s1 = Wix+ by
h = max(0, s;)
s = Woh + by

Tnput: x Output: s = Wx+b s = Wzh+ by

Before

Not restricted to two layers

2-layer Neural Network 3-layer Neural Network
s = Wix+ b, s1 = Wix+b;
h = max(0,s;) h; = max(0,s;)
s = Wsh + by ss = Wsh; + by
hy = max(0, s3)
s = W3hs + bs

Input: x s; = Wix+by Output: s = Wyh + by

Some terminology

3-layer Neural Network

s1=Wix+by wiism <d

1st hidden layer activations — hq = 111&1X<O, Sl) < apply non-linearity via activation fn
sp = Wohy 4+ by 1wy is s oy

2nd hidden layer activations — hy = IIl;ﬁlX(O, Sg) <+ apply non-linearity via activation fn

Output responses — S = Wsho +bg wiis e x my

Input: x 51 = Wix+b, 3= Wahy + by Output: s = Wshy + by

hy = max(0,s1) hy = max(0,s2)

Sometimes referred to as a 2-hidden-layer neural network.

Computational Graph of our 2-layer neural network

Wix + by mmax(o, Sl)mWQh + by

2-layer neural network with probabilistic outputs

< > Wix+b max(0, s1) Wah + b softmax(s)

Options for activation functions

Sigmoid tanh RelLu

— max (0,2)

o(z) = ot tanh(z) = % ReLu(z) = max(0,z)

Activation function is applied independently to each element of the score

vector.

Options for activation Functions

Leaky RelLu ELU

—ELU(x)

if
max(0.1z,) ELU(z) = ’ o> 0
a(exp(xz) — 1)) otherwise

Activation function is generally applied independently to each element of

vector.

Options for Activation Functions

Sigmoid tanh RelLu

o(2) = e tanh(z) = SR@=exp(=2) Re| (2) = max(0, z)

exp(z)+exp(—z)

In modern networks RelLU is the most common activation function.

Effect of the number of hidden nodes in a 2 layer network

=100

e m is the number of nodes in the hidden layer.

e No regularization.

Result depends on parameter initialization

=100

e m is the number of nodes in the hidden layer.
e No regularization.

e Different random parameter initialization to previous slide.

Effect of regularization

J(D,2,0)= > I(x,5,0)+ AR(©)

(x,y)€D
A=.01 A=.1

e m = 100 nodes in the hidden layer.

A=0 A =.001

e [regularization.

Do not use size of neural network as a regularizer.
Use stronger regularization.

Big Model + Regularize vs Small Model

Small model Big model Big model

+ Regularize

High-level overview of how to train network

Mini-batch SGD (or variant)

Loop
1. Sample a batch of the training data.

2. Forward propagate it through the graph and calculate
loss/cost.

3. Backward propagate to calculate the gradients.

4. Update the parameters using the gradient.

Gradient Computations for a k-layer neural network

Back propagation for 2-layer neural network

)by Qmax(o, o)mwzh by /S\soﬁmax(s)/;\— log(yTp)m Lt @
_/ _/ N4

W12 + W f?

For a single labelled training example:

1. Forward propagate it through the graph and calculate loss.

2. Backward propagate to calculate the gradients.

Back propagation for 2-layer neural network

)by Qmax(o, o)mwzh by /S\soﬁmax(s)/;\— log(yTp)m Lt @
_/ _/ N4 '

W12 + W f?

For a single labelled training example:

1. Forward propagate it through the graph and calculate loss.

1 this is straightforward

2. Backward propagate to calculate the gradients. < Focus on this.

Backward Pass: Gradient of current node

Starting point of our demonstration

[Wal? + W2

In Lecture 3 explicitly computed filled in local Jacobians and
gradients.

Backward Pass

Compute local Jacobian of node s w.r.t. its child h

W2 + W2 ?

|s = Wsh+by|
9sq 9sq
ohy Bhm
e The Jacobian we need to compute: 2 = :
dse dse
oh Dhm

e The individual derivatives: g;% = Waj
J

e In vector notation: 2% =W,

Backward Pass

Compute gradient of J w.r.t. node h

I

0J _ 9408
Js Jh

Wix + by Omaxm snmmh + by msoftmax 5>m log(y” pm Lt ar
' _/ | U

©/6

:\

WAl + ([?

’ s = Wsh + by ‘

0J 90J 0s
oh _ 0s 0h

Backward Pass

Compute local Jacobian of node h w.r.t. its child s;

WAl + w22

‘h = max(0,s1) ‘

dhq . dhq
Fs1,1 Ts1.m

® The Jacobian we need to compute: 2b = : _

Ohom) ohe
83111 e 851,m

s o _ Ind(s1,; >0) ifi=j

e The individual derivatives: 2% = (515> 0)]_
1 0 otherwise

® In vector notation: g:; = diag(Ind(s1 > 0))

Backward Pass

Compute gradient of J w.r.t. node s;

01 _ 51 ob

Js
max(0, s mw h+ bzm oftmax S)m log(y pm
§ NG] NG

a
O

Wix + by

W2 + W2 ?

‘ h = max(0, s;) ‘

01 _9J b
6s1 N oh 851

Backward Pass

Compute local Jacobian of node s; w.r.t. its child b,

WA ? + ([

’ s1 = Wix+ by ‘
9s1,1 95,1
('3171,1 e abl,m
® The Jacobian we need to compute: gzll -
951.m 951.m
by 1 b1 m

(1 i
e The individual derivatives: ol = {0 't; J
7 otherwise

. . Os1 __
® |n vector notation: oo = I

Backward Pass

Compute gradient of J w.r.t. node by

Wix + by mllldx(o s1) lethrbzm oftmax(s)m log(y pm

W2 + W2 ?

‘ s1 =Wix+ b ‘

I _ 0T 0%
8b1 - 851 6b1

Backward Pass

Compute local Jacobian of node s; w.r.t. its child W

Osy

Wix + blmmmo sx)mv’hh + bzmsoﬁlmx m* log(y” p)m L4 Ar
i N | N

WAl + W22

‘sl—Wlx+b1—(m®X)vec(W1)‘

ds1 1 ds1 1
duy Vam
e Let v = vec(WW1). Jacobian to compute: 51 — :
Osl'ym ’ le.ym
vy OVgm

ZTj_(i—1ya If (i—1)d+1<7<id

o - 951
® The individual derivatives: - =
J

0 otherwise

® |n vector notation: %ivl =L, ®x7

Backward Pass

Compute gradient of J w.r.t. node W

[Wal? + W2

s1 = Wix+ by = (I, @ x1) vec(W1) + by

0J _ _0J os_ 0] o
Ovec(Wy) — Osy Ovec(Wy) ' Or dvec(Wr)

= (g:[XT ggXT e ngT) + A vec(Wl)T <— gradient needed for learning
if we set g = 27

Os1*

Backward Pass

Compute gradient of J w.r.t. node W;

I LEEER CI\"W(U' Sl)mwzh + sz\‘oﬁmaX(S)mf log(y” p!m I+
N N N

[Wal|? + [?

s; =Wix+b; = (Im ® XT) vec(W1) + by

Can convert
oJ

BVT(VVl) = (gle gox? .- gmxT) + 2)\vec(W1)T
(where g = gle) from a vector (1 x md) back to a 2D matrix (m x d):
gnx"
o1 _ | ox" T T
oW = +2)\W1:g x4+ 22\W1
1
T

goX

Aggregated backward pass for a 2-layer neural network

1. Let
T
4 ; _onT
g=—r, (dlag(p) pp)

2. Gradient of J w.r.t. second bias vector is the 1 X ¢ vector
a7
87b2 =8
3. Gradient of J w.r.t. second weight matrix W5 is the ¢ x m matrix
oJ
oW

4. Propagate the gradient vector g to the first layers

=g™h” + 22w,

g=gW2
g=8g diag(lnd(51 > 0))<— assuming Relu activation

5. Gradient of J w.r.t. the first bias vector is the 1 x d vector

o _
ob,
6. Gradient of J w.r.t. the first weight matrix Wi is the m X d matrix
oJ _ gTxT 4+ 22w,

oWy

Gradient Computations for a mini-batch

2-layer scoring function + SOFTMAX + cross-entropy loss + Regularization

e Compute gradients of [w.r.t. Wi, Wa, by, by for each (x,y) € D®:
- Set all entries in gTLl' g—bz,aa—uel and aBTLQ to zero.
- for (x,y) € DM

P
1. Letg=— ‘y,,, <d\'ag(p) — ppT>
y - p

2. Add gradient of [w.r.t. by computed at (x,y)

oL oL
; t=g - +=g x"
dby oWy

3. Propagate the gradients
g =gWa
g = g diag(Ind(s1 > 0))
4. Add gradient of | w.r.t. first layer parameters computed at (x,y)
oL

- ’ _ . T T
b1 e oW, toex
- Divide by the number of entries in D(%):
aL aL
= =W, == DD fori=1,2
aw; ab;
® Add the gradient for the regularization term
aJ oL 8J oL

- +AW,;, —— =
aW,; oW, 9b; Oby

fori =1,2

Forward pass for a k-layer neural network

o Let x(9 =x represent the input.
e fori=1,...,k—1
s = w;x" Y 4 b,
x = max (O, s(i))
Apply the final linear transformation
s® = wx*Y 4 by

Apply SOFTMAX operation to turn final scores into probabilities

_ exp(s(k))
T 1T exp(s(®)

® Apply cross-entropy loss and regularization to measure performance w.r.t.
ground truth label y

5
J=—log(y"p) +)\z W32
i=1

Assumed Relu is the activation function at each intermediary layer.

Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (x, y):
® |et
T

g= fnyfp (diag(p) - ppT)

o fori=rkk—1,...,1
1. The gradient of J w.r.t. bias vector b;
oJ

ob;, ©

2. Gradient of J w.r.t. weight matrix W;

oJ T 6T
- AW,
ow, & X T

3. Propagate the gradient vector g to the previous layer (if ¢ > 1)

g =gW;
g = g diag(Ind(s'? > 0))

Training Neural Networks a little bit of history

A bit of history

® Perceptron algorithm invented by Frank
Rosenblatt (1957).

e Mark 1 Perceptron machine
First implementation of the perceptron algorithm.

® Machine was connected to camera producing
20 x 20 pixel image and recognized letters.

® Perceptron classification fn:

flxw) =

1 ifw'x+b>0
0 otherwise

® For labelled training example (x,y) (y € {-1,1})
the Perceptron loss is

Lp(x, y; W) = max(0, —y(w" x + b))

e Update rule: Use SGD to learn w. If training
example (x;,y;) is incorrectly classified then

W W+ UiX;

A bit of history

e ADALINE (Adaptive Linear Element) developed by Widrow and Hoff at
Stanford in 1960.

® Adaline a single layer neural network with one output
G=w'x+b
® Loss function: for labelled training example (x, y)
I(x,y,w) = (y — (W'x +b)* = (y —9)°
e Update rule: Use SGD with learning rate 7 to learn w:
W= w+n(y —g)x

® [Extension Madaline: a three-layer, fully connected, feed-forward artificial
neural network architecture for classification.

A bit of history

i i illiams, Parallel
Learning Internal Representations by Error Propagation, D. Rumelhart, G, Hinton and R. William

Distributed Processing: Explorations in the Microstructure of Cognition, 1986.

To be more specific, then, ler
@

1
Ep = 5Z =0,
7
Output Patterns be our measure of the error on input/ ourput patrern P and let E = TF, be our
overall measure of the error. We wish 10 show that the delta rule implements a gra-
dient descent in E when the units are linear. We will proceed by simply showing
that

yehich s proportional (0 A, w, as prescrbed by the deta rule. When there are no
‘hidden units it is siraightforward 1o compute the relevant derivative. For this purpose
we use the chain rule to write the derivative as the product of two parts: the deriva-
tive of the error with respect to the Output of the unit times the derivative of the out-
put with respect (o the weight,

3E, _ 3E, 9o, @

Internal B " B0y aw,
Representation The first part els how the error changes with the ouiput of the Jih unit and the
Units second part tells how much chansing wy, changes that output, Now, the deriives
are easy to compute. First, from Equation 2
oE, @
o =~ Uy =0))=~3,.
Yo = 0y »

Not surpisingly, the contribution of unit u; 10 the error is simply proportional to 5,
Moreover, since we have linear unis,

O = LWyl (s)

Jrom which we conclude that
El

%
"
w7

Input Patterns

Thus, substiruting back into Equation 3, we see that

9E,
" =l ®

First time back-propagation became popular

A bit of history

New wave of research in Deep Learning.

® Ability to train networks with
many layers.

® Mixture of unsupervised and
supervised training.

® Unsupervised: Encoding layers
first learnt in stagewise manner
using RBMs (restricted Boltzman
machines).

® Decode layers using an
auto-encoder.

Pretraining Unrolling Fine-tuning

e Supervised: Back-prop used to
do final update of weights.

Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov, Science, 2006.

First Very Convincing Results

e Context-Dependent Pre-trained Deep Neural Networks for Large
Vocabulary Speech Recognition, G. Dahl, D. Yu, L. Deng, A. Acero,
2010.

/~ Transition Probabilities

a
s, Gy, s, Sesx

HMM

" Observation
Probabilities
W,

Ej;L QR e D

& Uobservation

® Beat the widely established approach of GMM-HMM with a DNN-HMM.
® Improved results on popular datasets by 5.8% and 9.2%.

First Very Convincing Results

e ImageNet classification with deep convolutional neural networks A.
Krizhevsky, |. Sutskever, G. Hinton, 2012.

2048 2048

Max 128 Max pooling
pooling pooling

® Beat the stagnating established approaches of
Handcrafted features + kernel SVM.

® Improved results on ImageNet by ~11%.

Better understanding of gradient flows during BackProp helped
with these breakthroughs
Understanding Effect of Activation Functions

1 05
) J

e Squashes numbers to range [0, 1].

e Has nice interpretation as a saturating firing rate of a neuron.

1

o(x) = 1+ exp(—x) JO

Problems
1. Saturated activations kill the gradients.
- Have a sigmoid activation
s=Wx+b
h =o0(s)
- Derivative of the sigmoid function is:

0s;

0 otherwise

04 _ 0 0hi _ 0T
—= = o’ (s;
ds; Oh; ds; Oh;

What happens to gradient of J w.r.t. s; when |s;| > 57

Problems

1. Saturated activations kill the gradients.

2. Sigmoid outputs are not zero-centered.
- Have a sigmoid activation
s=Wx+b
h=o0(s)
- Then
8] _ 9J oh; ds; _ 9J

= = o' (ss) xT
(9Wi 8hi 851‘ 8Wi ahi

aJ
Ow;

What happens to when all entries in x are positive?

Problems
1. Saturated activations kill the gradients.

2. Sigmoid outputs are not zero-centered.
- Have a sigmoid activation

s=Wx+b, h=o(s)

- Then
o7 = OJ Ohi 9si = 01 g"(Si) xT
ow; Oh; Os; OwW; oh; N |
positive 2ll positive

positive or negative

aJ
ow
- 6] . . .
= entries of 722~ are either all positive or all negative.
i

What happens to when all entries in x are positive?

1+ exp(—x)

Problems
1. Saturated activations kill the gradients.

2. Sigmoid outputs are not zero-centered.
- Have a sigmoid activation

s=Wx+b, h=o(s)

- Then
oJ 0J Oh; 0s; oJ 0J Oh; 0s; oJ (s:) xT
= = = = o (S;) X

What is i(/\);v] When all entries in x are +tive? (occurs after applying sigmoid)
i

= entries of —_ are either all positive or all negative.
= inefficient Z|g-zag update paths to find optimal w;

Problems
1. Saturated activations kill the gradients.
2. Sigmoid outputs are not zero-centered.

3. exp() is expensive to compute

exp(z) — exp(—x)
exp(z) + exp(—x)

tanh(z) =

Properties

1. Squashes numbers to range [—1,1].
2. Tanh outputs are zero-centered.

3. Saturated activations kill the gradients.

Rectified Linear Unit (Relu)

ReLu(x) = max(0, z)

voe o

Pros

1. Does not saturate for large positive x.

2. Very computationally efficient.

3. In practice training of a ReLu network converges much faster than

one with sigmoid/tanh activation functions.

Rectified Linear Unit (Relu)

ReLu(x) = max(0, z) !

Problems
1. Output is not zero-centered

2. Negative inputs result in zero gradients.
- Have a Relu activation
s=Wx+b
h = max(0,s)
- Derivative of the RelLu function is:
th—_ 1 ifi:j&$j>0
0s; N

0 otherwise

- Then

0 _ 9J dhy _ [&E ifsi>0
887; a 8hi 8si o

0 otherwise

Rectified Linear Unit (Relu)

ReLu(x) = max(0, z) !

Problems
1. Output is not zero-centered
2. Negative activations have zero gradients and freezes some

parameter weights.
As

s=Wx+b, h=max(0,s)

then

0J _ 0J 0h; ds; _ [HLXT ifsi>0
Ow; Oh; 9s; Ow; |0 otherwise
— dead ReLU will never activate

= never update parameter weights.

Leaky Relu

— max (0.17,7)

Leaky ReLu(z) = max(.01z, x) :

Pros

1. Does not saturate.

2. Computationally efficient.

3. In practice training of a Leaky ReLu network converges much faster
than one with sigmoid/tanh activation functions.

4. Activations do not die.

[Mass et al., 2013] [He et al., 2015]

Exponential Linear Units (ELU)

ELU(x) x if x>0
€Tr) =
a(exp(x) — 1) otherwise

woe o

Pros & Cons
1. All the benefits of ReLu.

2. Activations do not die.
3. Closer to zero mean outputs.

4. Computation requires exp()

[Clevert et al., 2015]

— ELU(x)

Which Activation Function?

In practice
e Use RelLU.

- Be careful with your learning rates.

- Initialize bias vectors to be slightly positive.
e Try out Leaky ReLU / ELU.
e Try out tanh but don't expect much.

e Don't use sigmoid.

Effect of weight initialization & activation function on gradient
flow

Pathological weight initialization

2-layer Neural Network

Input: x 51 =Wix+ by Output: s = Wah + by
h = max(0,s1)

What happens when you initialize each weight matrix entry to
zero? (each W, = 0)

Initialize with small random numbers

Wi im ~ N(w;0,.01%)

What happens in this case?

Initialize with small random numbers

Wi im ~ N(w;0,.01%)

What happens in this case?

Works okay for small networks, but can lead to non-homogeneous
distributions of activations across the layers of a deep network.

Some activation histograms

® |nitialize a 10-layer network with 500 nodes at each layer.
e Use a tanh activation function at each layer.
® |nitialize weights will small random numbers.

® Generate random input data (N (0, 1?)) with d = 500.

Some activation histograms

® |nitialize a 10-layer network with 500 nodes at each layer.
® Use a tanh activation function at each layer.

® |[nitialize weights will small random numbers.

e Generate random input data (N (0, 1?)) with d = 500.

Layer 1 Layer 2 Layer 3 Layer 4
Layer 5 Layer 6 Layer 7 Layer 8

Histograms of activations at each layer

Some activation histograms

e All activations become zero at the layers > 2.

e What happens in the backward pass of the back-prop algorithm?

Layer 1 Layer 2 Layer 3 Layer 4
Layer 5 Layer 6 Layer 7 Layer 8

Histograms of activations at each layer

Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (x, y):
® |et
T

g= fnyfp (diag(p) - ppT)

o fori=rkk—1,...,1
1. The gradient of J w.r.t. bias vector b;
oJ

ob;, ©

2. Gradient of J w.r.t. weight matrix W;

o0J T ()T
- AW
aw, & X T2

3. Propagate the gradient vector g to the previous layer (if ¢ > 1)

g =gW;
g = g diag(Ind(s'? > 0))

Change the initialization to bigger random numbers

Initialize a 10-layer network with 500 nodes at each layer.

e Use a tanh activation function at each layer.
e Initialize weights with bigger random numbers: W; ;, ~ N(w;0, 1?).
® Generate random input data (N (0, 1?)) with d = 500.

Change the initialization to bigger random numbers

® |nitialize a 10-layer network with 500 nodes at each layer.

® Use a tanh activation function at each layer.

e |Initialize weights with bigger random numbers: W; ;;, ~ N(w;0, 1%).
e Generate random input data (N (0, 1?)) with d = 500.

1

Layer 5 Layer 6 Layer 7 Layer 8
Histograms of activations at each layer

Change the initialization to bigger random numbers

® Almost all neurons completely saturated, either -1 or +1.

e — Gradients will be all zero

o (Remember the picture of the gradient of tanh.)

Layer 1 Layer 2 Layer 3 Layer 4

Layer 5 Layer 6 Layer 7 Layer 8
Histograms of activations at each layer

Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (x, y):
® |et
T

g= fnyfp (diag(p) - ppT)

o fori=rkk—1,...,1
1. The gradient of J w.r.t. bias vector b;
oJ

ob;, ©

2. Gradient of J w.r.t. weight matrix W;

oJ T 6T
- AW,
ow, & X T

3. Propagate the gradient vector g to the previous layer (if ¢ > 1)

g=gW;
g = g diag(tanh’(s()))

Change the initialization to Xavier initialization

® |nitialize a 10-layer network with 500 nodes at each layer.

e Use a tanh activation function at each layer.

e Initialize weights with Xavier initialization: W; j;m ~ N(w;0,1/1/500).
® Generate random input data (N(0,1?)) with d = 500.

Change the initialization to Xavier initialization

Initialize a 10-layer network with 500 nodes at each layer.

Use a tanh activation function at each layer.

Initialize weights with Xavier initialization: W 1, ~ N(w;0,1/4/500).
Generate random input data (N(0,12)) with d = 500.

005 - o - o [- o M -
1 0 B 1 0 T g T 0

Layer 1 Layer 2 Layer 3 Layer 4
Layer 5 Layer 6 Layer 7 Layer 8

Histograms of activations at each layer

Xavier initialization doesn’t work for RelLu activation

® |nitialize a 10-layer network with 500 nodes at each layer.

® Use a ReLu activation function at each layer.

e Initialize weights with Xavier initialization: W; ;;m ~ N(w;0,1/1/500).
e Generate random input data (N(0,1%)) with d = 500.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
! [Ponee ol L e uT e ‘1
Layer 6 Layer 7 Layer 8 Layer 9 Layer 10

Histograms of activations at each layer

Proper Initialization an active area of research

e Understanding the difficulty of training deep feedforward neural
networks by Glorot and Bengio, 2010

e Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks by Saxe et al, 2013

e Random walk initialization for training very deep feedforward
networks by Sussillo and Abbott, 2014

e Delving deep into rectifiers: Surpassing human-level performance on
ImageNet classification by He et al., 2015

e Data-dependent Initializations of Convolutional Neural Networks by
Krahenbiihl et al., 2015

e All you need is a good init, Mishkin and Matas, 2015

Lessening the effect of initialization: Batch normalization

Batch Normalization

e Want unit Gaussian activations at each layer?
Just make them unit Guassian!

e |dea introduced in:
Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift, S. loffe, C. Szegedy, arXiv 2015.

e Consider activations at some layer for a batch: s s .. s

e To make each dimension unit gaussian, apply:

éz(»j) = diag(oy,. .. ,am)*l (sz(»j) — u)

where

n

I 21) 2
H—n;Sia Jp_nZ(si D — ip)

Bat ormalization

e Usually apply normalization after the fully connected layer
before non-linearity.

e Therefore for a k—layer network have
- fori=1,... k-1
for (x("”,y) € D < Apply ith linear transformation to batch

s = wx(=1 4 b,

end
Compute batch mean and variances of ith layer:
1

1 - i 2
n=— g s(l). af:— g (,sﬁl)fuJ-)Z forj=1,...,m;
Dl ; Dl _; ’
sDep s(ep

for (S“> s y) € D +« Apply BN and activation function
50 — BatchNormaIise(sm.,u, 01,y 0m;)

x(") = max (0, é(i)>

end
end
- Apply final linear transformation: s®) = Wwx(F=1) 4 by

Batch Normalization: Scale & shift range

e Can also allow the network to squash and shift the range
8 = 4050 4 (@)
of the §’s at each layer.

e Can learn the ¥(V's and 3()’s and add them as parameters of
the network.

e To keep things simple this added complexity is often omitted.

Benefits of Batch Normalization

e Improves gradient flow through the network.

Reduces the strong dependence on initialization.

e — learn deeper networks more reliably.

Allows higher learning rates.

Acts as a form of regularization.

If training a deep network, you should use Batch Normalization.

Batch Normalization at Test Time

e At test time do not have a batch.

e Instead fixed empirical mean and variances of activations at
each level are used.

e These quantities estimated during training (with running
averages).

Back-Prop for a Batch Normalization layer.

Computational Graph for a BN layer

e Compute the mean and variance for the scores in the batch:

n

1< 1
= D osi vy = - > (sig—mwg)’
i=1

=1
where Vp = ('Ub,l, Vp,2y -« ,’Ub7m)T. (H = 2 in the ﬁgure) Define
Vp = diag (v + €)

e Apply batch normalization function to each score vector:

_1
$i=V, *(si — 1)

Gradient Computations for a BN layer

e Want to compute % for each s; in the batch.

e The children of node s; are {8, vy, i1, } thus

8]7&]8@1-_’_67]6%_’_28/,%
Js; 08;0s; Ovy Os; Opy Os;

® |et's look at the individual gradients and Jacobians.

Gradient Computations for a BN layer

aJ aJ 08 _ 9J ovi | 9J O,
asi a E)éi asi avb aSi al,tb 851‘
T

assume already computed

Gradient Computations for a BN layer

aJ _ 9J 05 _ 0J dvy | 9J O,

Os, 08,05, T Ovy 0, | O, Oss

® The equation relating §; to v (remember Vj, = diag(vy, + €))

® Therefore

Gradient Computations for a BN layer

8J 9J0s 0J dvy, OJ O,

8s; 08 0si | Ov, 0si | 0w, Osi

® The children of node vy are {81,...,8,}

® Therefore

oJ 0s;
Ov;, Z 08; Ovy

Gradient Computations for a BN layer

8J _9J 8% _ 0J dvy | 8J o,

Os; 08;0s; Ovy, 0s; Oy Osi

® The children of node v, are {81,...,8,}

® Therefore

aJ - oJ 05
vy Z 98 Ove
- T

assume known

Gradient Computations for a BN layer

0J 0J0os 9J Ovy 0J O,

ds; 08, 0s; | Ov, Os; | O, Os;

® The children of node vy are {81,...,8,}
® Therefore
O] ~0J 05
vy - - 0S; ovy
i=1 T

compute now

Gradient Computations for a BN layer

® The equation relating S; to vy (remember Vy = diag(vy + e))

=

$i =V, * (si—)

® The local Jacobian we want to compute

95,1 88
oy 1 3%

08;

vy R . -
831'1,m asi’m
vy vy m

e Computing the derivative for each individual element:

Ovp,

855 _) —z(ven+ €)% (sik — o) ifj=k
0 otherwise

® |n matrix form

Gradient Computations for a BN layer

oJ 0J0os 9J Ovy, = 0J O,

35,‘ o 8@1 681‘ + Tvb ()S, + 37[‘% 851-

5 .
o Next 57t = 2 diag (si — py)-
e As
1 n
— S
n §: lj — :U'bj
and

Ovpy 2 (sij—mvy) Hi=k
9s; i 0 otherwise

Gradient Computations for a BN layer

8J _ 0J 05 8J ov, 0J O,

ds; 08 0s; Ovy Os; | O, Os;

® The children of node p, are {81,...,8,,Vvs}.

® Therefore

Z 0J %8, 9J 0w

dub 08; Oy, 8vb o,

Gradient Computations for a BN layer

Z aJ dsL 9J Ovy
08; O, avb o,

dl"/b

Wx; + b \max(0,81)

® The equation relating §; to p;, (remember V;, = diag(vy, + ¢))

s=V, (s~ my)
® The local Jacobian we want to compute
0si -
oy,

Gradient Computations for a BN layer

ST N
0s; 8ub ovy o,
= T

aﬂb

already calculated

Gradient Computations for a BN layer

ovy __ .
® Next ﬁ = —2Zdiag (31 (si — m))-
® As

n

1
b = S (sig — 1)?

i=1
and

dup,; — 230 (sig—mwy) ifi=k
0 otherwise

Gradient Computations for a BN layer

0] 9J0s | 0J Ov, . 0J O,

Bs; 08; 08 | Ovs Os; | Opy Oss

® The equation relating p, to s;'s is

1 n
My = n Z St
=1
® Therefore

o, 1

({)Sj n

Putting everything together

0.J 1<~ 0J 3
Bv = 22ug, e (i)
i—1 7

O = 0J -1 20J .
87""!; - _; 6@1‘/’] - n oV dlag (Z (S, l"‘b))

oJ oJ_ -1+ 20J . oJ 1
= 2 4 29 Giag (s — 1) + o~
oy m

ds; 08 ° (

n vy

