Lecture 5 - Training & Regularizing Neural Networks

DD2424

April 5, 2017

Baby sitting the training process

Training neural networks not completely trivial

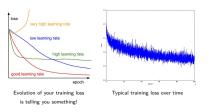
- Several hyper-parameters affect the quality of your training.
- These include
 - learning rate
 - degree of regularization
 - network architecture
 - hyper-parameters controlling weight initialization
- If these (potentially correlated) hyper-parameters are not appropriately set

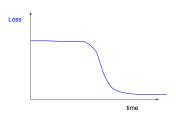
 you will not learn an effective network.
- · Multiple quantities you should monitor during training.
- · These quantities indicate
 - a reasonable hyper-parameter setting and/or
 - how hyper-parameters setting could be changed for the better.

What to monitor during training

Monitor & Visualize the loss/cost curve

Telltale sign of a bad initialization





Monitor & visualize the accuracy

accuracy training accuracy validation accuracy: little overfitting validation accuracy: strong overfitting

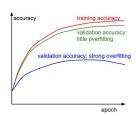
Gap between training and validation accuracy indicates amount of over-fitting.

Over-fitting

should increase regularization during training:

- increase the degree of \mathcal{L}_2 regularization
- more dropout
- use more training data.

Monitor & visualize the accuracy



Gap between training and validation accuracy indicates amount of over-fitting.

Under-fitting

model capacity not high enough:

- increase the size of the network

Track the ratio of weight updates to weight magnitudes

- Track the ratio of the magnitude of the update vector to the magnitude of the parameter vector.
- · So for a weight matrix, W, and vanilla SGD updates:

$$r = \frac{\| - \eta \nabla_W J \|}{\|W\|}$$

- A rough heuristic is that $r\sim .001.$
- If $r \ll .001 \implies$ learning rate might be too low.
- If $r\gg .001 \implies$ learning rate might be too high.

Parameter Updates: Variations of Stochastic Gradient Descent

One weakness of SGD

One weakness of SGD

- · SGD can be very slow......
- . Example: Use SGD to find the optimum of

$$f(\mathbf{x}) = -\exp(-.5\mathbf{x}^T \Sigma \mathbf{x})$$
150 iterations. $n = .01$

Curves show the iso-contours of $f(\mathbf{x})$

· Speed up optimization by increasing the learning rate?

- SGD can be very slow......
- Example: Use SGD to find the optimum of

Curves show the iso-contours of $f(\mathbf{x})$

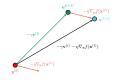
· Speed up optimization by increasing the learning rate?

- SGD has trouble navigating ravines with high learning rates
 SGD oscillates across the slopes of the ravine.
 - Makes slow progress along the bottom towards the local optimum.
- · Unfortunately, ravines are common around local optima.

- Introduce momentum vector as well as the gradient vector.
- Let $\gamma \in [0,1]$ and ${\bf v}$ is the momentum vector

$$\mathbf{v}^{(t+1)} = \gamma \mathbf{v}^{(t)} + \eta \nabla_{\mathbf{x}} f(\mathbf{x}^{(t)}) \leftarrow \text{update vector}$$
 $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \mathbf{v}^{(t+1)}$

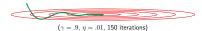
Typically γ set to .9.



How and why momentum helps

How?

- · Momentum helps accelerate SGD in the appropriate direction.
- Momentum dampens the oscillations of default SGD.
 Faster convergence.

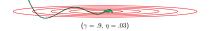


Why?

- For dimensions whose gradient is constantly changing then their entries in the update vector are damped.
- For dimensions whose gradient is approx. constant then their entries in the update vector are not damped.

Momentum not the complete answer

- When using momentum
 - ⇒ can pick up too much speed in one direction.
- ⇒ can overshoot the local optimum.



- Look and measure ahead.
- . Use gradient at an estimate of the parameters at the next iteration.
- Let $\gamma \in [0,1]$ then

$$\mathbf{e}^{(t+1)} = \mathbf{x}^{(t)} - \gamma \mathbf{v}^{(t)} \leftarrow \text{estimate of } \mathbf{x}^{(t+1)}$$

$$\mathbf{v}^{(t+1)} = \gamma \mathbf{v}^{(t)} + \eta \nabla_{\mathbf{x}} f(\mathbf{e}^{(t+1)}) \leftarrow \text{update vector}$$

$$\mathbf{v}^{(t+1)} = \mathbf{v}^{(t)} - \mathbf{v}^{(t+1)}$$

Typically γ set to .9.

Momentum update

More convenient form of NAG update

- The anticipatory update prevents the algorithm having too large updates and overshooting.
- \bullet Algorithm has increased responsiveness to the landscape of f.

Note:

NAG shown to greatly increase the ability to train RNNs:

Bengio, Y., Boulanger-Lewandowski, N. & Pascanu, R. Advances in Optimizing Recurrent Networks, (2012). http://arxiv.org/abs/1212.0901

Improvements to NAG

• Let $\gamma \in [0, 1]$ then

$$\mathbf{e}^{(t+1)} = \mathbf{x}^{(t)} - \gamma \mathbf{v}^{(t)} \leftarrow \text{estimate of } \mathbf{x}^{(t+1)}$$
 $\mathbf{v}^{(t+1)} = \gamma \mathbf{v}^{(t)} + \eta \nabla_{\mathbf{x}} f(\mathbf{e}^{(t+1)}) \leftarrow \text{update vector}$
 $\mathbf{v}^{(t+1)} = \mathbf{v}^{(t)} - \mathbf{v}^{(t+1)} + \mathbf{v}^{(t)} = \mathbf{v}^{(t+1)}$

- Form of update inconvenient as usually have x^(t), \(\nabla_{\mathbf{x}} f(\mathbf{x}^{(t)}) \).
 - Can make a variable transformation

$$\mathbf{m}^{(t)} = \mathbf{x}^{(t)} - \gamma \mathbf{v}^{(t)} \quad (\equiv \mathbf{e}^{(t+1)})$$

- Can write $\mathbf{x}^{(t+1)}$ as $\mathbf{v}^{(t+1)} = \mathbf{m}^{(t+1)} + \gamma \mathbf{v}^{(t+1)} = \mathbf{v}^{(t)} = \mathbf{v}^{(t+1)}$

$$\mathbf{m}^{(t+1)} = \mathbf{x}^{(t)} - (1+\gamma)\mathbf{v}^{(t+1)}$$

$$= \mathbf{m}^{(t)} + \gamma\mathbf{v}^{(t)} - (1+\gamma)\mathbf{v}^{(t+1)}$$

where

$$\mathbf{v}^{(t+1)} = \gamma \mathbf{v}^{(t)} + \eta \nabla_{\mathbf{x}} f(\mathbf{m}^{(t)})$$

- Want to adapt the updates to each individual parameter.
- Perform larger or smaller updates depending on the landscape of the cost function.
- · Family of algorithms with adaptive learning rates
 - AdaGrad
 - AdaDelta
 - RMSProp
 - Adam

Fora cleaner statement introduce some notation:

$$\mathbf{g}_t = \nabla_{\mathbf{x}} f(\mathbf{x}^{(t)})$$
 and $\mathbf{g}_t = (g_{t,1}, \dots, g_{t,d})^T$.

Keep a record of the sum of the squares of the gradients w.r.t.
 each x_i up to time t:

$$G_{t,i} = \sum_{j=1}^{t} g_{j,i}^2$$

. The AdaGrad update step for each dimension is

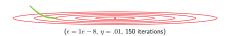
$$x_i^{(t+1)} = x_i^{(t)} - \frac{\eta}{\sqrt{G_{t,i} + \epsilon}} g_{t,i}$$

• Usually set $\epsilon=1e-8$ and n=.01.

J. Duchi, E. Hazan & Y. Singer, Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Journal of Machine Learning Research, 2011.

Big weakness of AdaGrad

- Each $g_{t,i}^2$ is positive.
 - \implies Each $G_{t,i} = \sum_{j=1}^t g_{j,i}^2$ keeps growing during training.
 - \implies the effective learning rate $\eta/(\sqrt{G_{t,i}+\epsilon})$ shrinks and eventually $\longrightarrow 0.$
 - \implies updates of $\mathbf{x}^{(t)}$ stop.



AdaDelta

- · Devised as an improvement to AdaGrad.
- Tackles AdaGrad's convergence to zero of the learning rate as t increases.
- · AdaDelta's two central ideas
 - scale learning rate based on the previous gradient values (like AdaGrad) but only using a recent time window,
 - include an acceleration term (like momentum) by accumulating prior updates.

M. Zeiler, ADADELTA: An Adaptive Learning Rate Method, 2012. http://arxiv.org/abs/1212.5701

- Compute gradient vector \mathbf{g}_t at current estimate $\mathbf{x}^{(t)}$.
- Update average of previous squared gradients (AdaGrad-like step)

$$\tilde{G}_{t,i} = \rho \, \tilde{G}_{t-1,i} + (1 - \rho) \, g_{t,i}^2$$

· Compute the update vector

$$u_{t,i} = \frac{\sqrt{U_{t-1,i} + \epsilon}}{\sqrt{\tilde{G}_{t,i} + \epsilon}} g_{t,i}$$

 Compute exponentially decaying average of updates (momentum-like step)

$$U_{t,i} = \rho U_{t-1,i} + (1 - \rho) u_{t,i}^2$$

The AdaDelta update step:

$$x_i^{(t+1)} = x_i^{(t)} - u_{t,i}$$

Adaptive Moment Estimation (Adam)

- · Computes adaptive learning rates for each parameter.
- How?
 - Stores an exponentially decaying average of
 - \star past gradients $\mathbf{m}^{(t)}$ and
 - \star past squared gradients $\mathbf{v}^{(t)}$
 - $\mathbf{m}^{(t)}$ and $\mathbf{v}^{(t)}$ estimate the mean and variance of the sequence of computed gradients in each dimension.
 - Uses the variance estimate to
 - * damp the update in dimensions varying alot and
 - * increase the update in dimensions with low variation.

D. P. Kingma & J. L. Ba, Adam: a Method for Stochastic Optimization, International Conference on Learning Representations, 2015. Also addresses AdaGrad's radically diminishing learning rate:

- RMSProp an adaptive learning rate method proposed by Geoff Hinton in Lecture 6e of his Coursera Class.
- Stores an exponentially decaying average of the square of the gradient vector:

$$E\left[\mathbf{g}_{t+1}^{2}\right] = \gamma E\left[\mathbf{g}_{t}^{2}\right] + (1 - \gamma) \mathbf{g}_{t+1}^{2}$$

• The RMSProp update rule:

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \frac{\eta}{\sqrt{E\left[\mathbf{g}_{t+1}^2\right] + \epsilon}} \, \mathbf{g}_{t+1}$$

• Typically set $\gamma = .9$ and $\eta = 0.001$.

Update equations for Adam

• Let $\mathbf{g}_t = \nabla_{\mathbf{x}} f(\mathbf{x}^{(t)})$

$$\mathbf{m}^{(t+1)} = \beta_1 \mathbf{m}^{(t)} + (1 - \beta_1) \mathbf{g}_t$$

 $\mathbf{v}^{(t+1)} = \beta_2 \mathbf{v}^{(t)} + (1 - \beta_2) \mathbf{g}_t . * \mathbf{g}_t$

- Set m⁽⁰⁾ = v⁽⁰⁾ = 0

 m m^(t) and v^(t) are biased towards zero (especially during the initial time-steps).
- Counter these biases by setting:

$$\hat{\mathbf{m}}^{(t+1)} = \frac{\mathbf{m}^{(t+1)}}{1 - \beta_1^t}, \qquad \hat{\mathbf{v}}^{(t+1)} = \frac{\mathbf{v}^{(t+1)}}{1 - \beta_2^t}$$

The Adam update rule:

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \frac{\eta}{\sqrt{\hat{\mathbf{y}}^{(t+1)}} \perp \epsilon} \hat{\mathbf{m}}^{(t+1)}$$

• Suggested default values $\beta_1 = .9, \beta_2 = .999, \epsilon = 10^{-8}$

Adam's performance on our toy problem

Comparison of different algorithms on our toy problem

 $(\epsilon = 1e - 8, \gamma = .9, \eta = .03, 150 \text{ iterations})$

Comparison of different algorithms

Comparison of different algorithms at a saddle point

Which optimizer to use?

- Data sparse

 ikely to achieve best results using one of the adaptive learning-rate methods.
- RMSprop, AdaDelta, and Adam are very similar algorithms that do well in similar circumstances.
- Adam slightly outperforms RMSProp near the end of optimization.
- · Adam might be the best overall choice.
- But vanilla SGD (without momentum) and a simple learning rate annealing schedule may be sufficient. But time until finding a local minimum may be long....

Annealing the learning rate

Useful to anneal the learning rate

- When training deep networks, usually helpful to anneal the learning rate over time.
- Why?
 - Stops the parameter vector from bouncing around too widely.
 - ⇒ can reach into deeper, but narrower parts of the loss function.
- · But knowing when to decay the learning rate is tricky!
- Decay too slowly

 waste computations bouncing around chaotically with little improvement.
- Decay too aggressively

 system unable to reach the best position it can.

Common approaches to learning rate decay

Step decay:

After every nth epoch set

$$\eta = \alpha \eta$$

where $\alpha \in (0,1)$. (Instead sometimes people monitor the validation loss and reduce the learning rate when this loss stops improving.)

Exponential decay:

$$n = n_0 e^{-kt}$$

where t is iteration number (either w.r.t. number of update steps or epochs). Then η_0 and k are hyper-parameters.

1/t decay:

$$\eta = \frac{\eta_0}{1 + kt}$$

Common approaches to learning rate decay

Step decay:

After every nth epoch set

$$\eta = \alpha \eta$$

where $\alpha \in (0,1)$. (Instead sometimes people monitor the validation loss and reduce the learning rate when this loss stops improving.)

Exponential decay:

$$n = n_0 e^{-kt}$$

where t is iteration number (either w.r.t. number of update steps or epochs). Then η_0 and k are hyper-parameters.

• 1/t decay:

$$\eta = \frac{\eta_0}{1 + kt}$$

Step decay most common. Better to decay conservatively and train for longer.

Hyperparameters to adjust

- · Initial learning rate.
- · Learning rate decay schedule.
- · Regularization strength
 - L_2 penalty
 - Dropout strength

Optimization of the training hyper-parameters

Cross-validation strategy

- Do a coarse → fine cross-validation in stages.
- Stage 0: Identify the range of feasible learning rates & regularization penalties. (usually done interactively and train only for a few updates.)
- Stage 1: Broad search. Goal is to narrow the search range.
 Only run training for a few epochs.
- . Stage 2: Finer search. Increase training times.
- Stage ...: Repeat Stage 2 as necessary.

Use performance on the validation set to identify good hyper-parameter settings.

 Search for the learning-rate and regularization hyperparameters on a log scale.

Example:

Generate a potential learning rate with

$$\alpha = \operatorname{uniform}(-6, 1)$$

 $n = 10^{\alpha}$

Evaluation: Model Ensembles

Grid Layout

"randomly chosen trials are more efficient for hyper-parameter optimization than trials on a grid"

 $\textbf{Random Search for Hyper-Parameter Optimization}, \ \mathsf{Bergstra} \ \mathsf{and} \ \mathsf{Bengio}, \ \mathsf{2012}$

Model Ensembles

- Train multiple independent models (same hyper-parameter settings, different initializations). (~ 5 models)
- · At test time apply each model and average their results.

Model Ensemble on the cheap

- Can also get a small boost from averaging multiple model checkpoints of a single model.
- At test time apply each model and average their results.

Estimating Test Error

(just so that everyone knows what is acceptable and what's not)

Measuring the performance of a classifier

- Have learnt a classification $f(\cdot \mid \hat{\pmb{\theta}})$ from the training data \mathcal{D}
- How well does $f(\cdot \mid \hat{\pmb{\theta}})$ generalize to unseen examples?
- Does $f(\mathbf{x}_{\text{new}} \mid \hat{\boldsymbol{\theta}}) = y_{\text{new}}$ for a large number of $(\mathbf{x}_{\text{new}}, y_{\text{new}})$?

Estimating the Generalization Ability

 To measure accuracy of $f(\cdot \mid \hat{\pmb{\theta}})$ ideally would compute the **Expected loss**:

$$\mathrm{E}\left[l(Y, f(\mathbf{X}\mid\hat{\boldsymbol{\theta}})\right] = \int_{\mathbf{x}} \int_{y} l\left(y, f(\mathbf{x}\mid\hat{\boldsymbol{\theta}})\right) \, p_{\mathbf{X},Y}(\mathbf{x},y) \, d\mathbf{x} \, dy$$

- $l(y, f(\mathbf{x} \mid \hat{\pmb{\theta}}))$ measures how well $f(\mathbf{x} \mid \hat{\pmb{\theta}})$ predicts labels y.

where

Estimating the Error rate

Estimating the Error rate

- Usually don't know the distribution $p_{\mathbf{X},Y}(\mathbf{x},y)$.
 - ⇒ cannot compute the Expected loss
- . Instead maybe one could consider the Training Error:

$$\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l\left(y, f(\mathbf{x} \mid \hat{\boldsymbol{\theta}})\right)$$

- Training error frequently not a good proxy for the test performance
- Especially if $\hat{\theta}$ has been estimated from \mathcal{D} (and some parameter tuning has occurred).
- · What is the standard thing to do then?

For a data-rich situation

Randomly divide the dataset into 2 parts: $\mathcal{D} = \mathcal{D}_{\text{train}} \cup \mathcal{D}_{\text{test}}$

Common split ratio 75%, 25%

- Use $\mathcal{D}_{\text{train}}$ to estimate f's parameters $\hat{\boldsymbol{\theta}}$.
- Use $\mathcal{D}_{\text{test}}$ to compute the **test loss** for $f(\cdot \mid \hat{\theta})$:

$$\mathsf{Err} = \frac{1}{|\mathcal{D}_{\mathsf{test}}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}_{\mathsf{test}}} l\left(y, f(\mathbf{x} \mid \hat{\pmb{\theta}})\right)$$

an estimate of the expected loss.

However, if labelled data is scarce then your test set may be small and not so representative.

- Usually don't know the distribution p_{X,Y}(x, y).
 - ⇒ cannot compute the Expected loss
- Instead maybe one could consider the Training Error:

$$\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} l\left(y, f(\mathbf{x} \mid \hat{\boldsymbol{\theta}})\right)$$

- Training error frequently not a good proxy for the test performance.
- Especially if $\hat{\theta}$ has been estimated from \mathcal{D} (and some parameter tuning has occurred).
- . What is the standard thing to do then?

When labelled data is scarce: $K ext{-Fold Cross-Validation}$

General Approach

1	2	3	4	5	
Train	Train	Test	Train	Train	

ullet Partition the data into K roughly equal-size subsets

$$D = D_1 \cup D_2 \cup \cdots \cup D_K$$

- Use \mathcal{D}_k to estimate the test loss of f where $\hat{\theta}$ is calculated from $\mathcal{D}\setminus\mathcal{D}_k$.
- Do this for k = 1, 2, ..., K and average the K estimates of the expected loss. The is the cross validation (CV) error.
- The cross validation error CV(f) is an estimate of the test loss.

K-Fold Cross-validation: Detailed description

- The mapping κ: {1,...,n} → {1,...,K} indicates example i belongs to partition $\kappa(i)$.
- Denote estimate of the parameters using data D \ D_k by θ̂^{-k}.
- Cross-validation estimate of the test loss is:

$$CV(f) = \frac{1}{n} \sum_{i=1}^{n} l\left(y_i, f(x_i \mid \hat{\boldsymbol{\theta}}^{-\kappa(i)})\right)$$

- Typical choices for K are 5 or 10.
- The case K = n is known as leave-one-out cross-validation.

Model/Classifier Selection

Selecting between different classifiers

You can generate different classifiers f_1, \ldots, f_m because you

- 1. Investigate different types of classifiers
 - Random forest.
 - Linear SVM.
 - Bayesian classifier, ...
- 2. Have same type of classifier but different architectures
 - Random forest but depth of trees differs.
 - Neural networks but number of nodes and lavers differ.
 - Bayesian classifier with different class likelihoods. . . .
- 3. Have same type of classifier but different tuning parameters
- - Linear SVMs but C parameter differs,
 - Neural networks with different # of training iterations, - Kernel SVMs with different kernel parameters, ...
- 4. Any mixture of the above.

How do we choose the best classifier?

For a data-rich situation

Randomly divide the dataset into 3 parts: $D = D_{train} \cup D_{val} \cup D_{test}$ Validation Train Test

Common split ratio 50%, 25%, 25%,

Model Selection

- Use training set, D_{train}, to estimate θ̂_i for each f_i.
- Use validation set, D_{val}, to estimate the test loss for each f_i.
- Choose f_{i*} as the f_i with the lowest test loss estimate.

Assessment of the chosen model

- Use D_{train} ∪ D_{val} to estimate θ̂_{i*} for f_{i*}.
- Use test set D_{test} unseen till now to estimate f_{j*}'s test loss.

When labelled data is scarce: K-Fold Cross-Validation

General Approach

1	2	3	4	5	
Train	Train	Validation	Train	Train	

· Partition the data into K roughly equal-size subsets

$$D = D_1 \cup D_2 \cup \cdots \cup D_K$$

- Use the D_k to estimate the expected loss of f_j where θ̂_j is calculated from D \ D_k.
- Do this for $k=1,2,\ldots,K$ and average the K estimates of the expected loss. Compute the cross-validation error $CV(f_j)$ for each classifier.
- Select the classifier, f_{j^*} , with lowest cross validation error.

Option 1

Option 1

- \bullet For each classifier f_j compute its K-fold cross-validation error $CV(f_j)$
- Choose the classifier f_{i^*} such that

$$j^* = \underset{1 \le j \le m}{\operatorname{arg \, min}} \ CV(f_j)$$

• The estimate of the test error of the best classifier is given by

$$CV(f_{j^*})$$

Cross-Validation for

Model Selection & Model Assessment

- \bullet For each classifier f_j compute its K-fold cross-validation error $CV(f_j)$
- Choose the classifier f_{j*} such that

$$j^* = \underset{1 \le j \le m}{\operatorname{arg \, min}} \ CV(f_j)$$

• The estimate of the test error of the best classifier is given by

$$CV(f_{i^*})$$

You may have some concerns.

Have used the same training data for

- model selection and
- model assessment
- Chance you have over-estimated generalization ability of selected model.

Option 2: Nested CV

Measures the performance of your model selection process.

- 1. Partition the data into K_0 folds $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \cdots \cup \mathcal{D}_{K_0}$.
- 2. for $k = 1, ..., K_0$ - Set $\mathcal{E} = \mathcal{D} \setminus \mathcal{D}_k$
 - Perform K_1 -fold cross-validation using ${\mathcal E}$ to select the best classifier $f_{i_*^*}$.
 - Compute the average loss of this classifier on $\mathcal{D}_{\boldsymbol{k}}$

$$\mathsf{Err}_k = \frac{1}{|\mathcal{D}_k|} \sum_{(\mathbf{x}, y) \in \mathcal{D}_k} l\left(y, f_{j_k^*}(\mathbf{x}; \hat{\boldsymbol{\theta}}_{j_k^*})\right)$$

3. The cross-validation score for the model selection process is

$$CV(\text{model selection process}) = \frac{1}{K_0} \sum_{k=1}^{K_0} \text{Err}_k$$

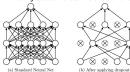
One validation set

- Usually have one validation fold as opposed to cross-validation.
- · Simplifies the code base
- · Makes things computationally feasible.

And for deep neural network hyper-parameter tuning.

Regularization Via Dropout

· Randomly set some activations to zero in forward pass



[Srivastava et al.]

- · Training practice introduced by Hinton.
- . Note: Each training sample in the mini-batch has its own random dropout mask.

Set $p \in (0,1]$ \leftarrow probability of keeping an activation active.

The Forward Pass (for a 2-laver network)

1. Compute the first set of activation values:

$$\mathbf{x}^{(1)} = \max(0, W_1 \mathbf{x}^{(0)} + \mathbf{b}_1)$$

2. Randomly choose which entries of $x^{(1)}$ to switch off

$$\mathbf{u}_1 = \operatorname{rand}(\operatorname{size}(\mathbf{x}^{(1)}))
 $\mathbf{x}^{(1)} = \mathbf{x}^{(1)}. * \mathbf{u}_1$$$

3. Repeat the process for the next laver

$$\begin{split} \mathbf{x}^{(2)} &= \max(0, W_2\mathbf{x}^{(1)} + \mathbf{b_2}) \\ \mathbf{u}_2 &= \operatorname{rand}(\operatorname{size}(\mathbf{x}^{(2)}))$$

4. Output: $\mathbf{x}^{(3)} = \operatorname{SoftMax}(W_3\mathbf{x}^{(2)} + \mathbf{b}_3)$

Why is this a good idea?

Why is this a good idea?

- Another interpretation
 - Dropout is training a large ensemble of
 - Each binary mask is one model, gets

- Forces the network to have a redundant representation.
- Another interpretation
 - Dropout is training a large ensemble of models.
 - Each binary mask is one model, gets trained on only ~one datapoint.

At test time At test time

- Ideally: Want to integrate out all the noise.
- Monte Carlo approximation
 - Do many forward passes with different dropout masks.
 - Average all the predictions.

- · Can do this with a single forward pass (approximately).
- · Leave all the activations turned on (no dropout).
- · Surely we must compensate?

At test time

At test time

Consider this simple partial network

· During testing if we do not compensate:

$$a_{\text{test}} = w_0 x + w_1 y$$

Consider this simple partial network

- During dropout training:
 - 1. Each input activation x and y is switched off with probability 1-p.
 - $\begin{array}{ccc} \hbox{2. The possible input activations are} \\ & \hbox{inputs} & \hbox{probability} \end{array}$

(0,0)	$(1 - p)^2$
(x,0)	p(1 - p)
(0, y) (x, y)	$(1-p)p$ p^2

3.
$$\mathsf{E}[a_{\text{training}}] = (1-p)^2(w_00+w_10) + p(1-p)(w_0x+w_10) \\ + p(1-p)(w_00+w_1y) + p^2(w_0x+w_1y) \\ = p(w_0x+w_1y)$$

Consider this simple partial network

. During testing if we do not compensate:

$$a_{test} = w_0x + w_1y$$

• During dropout training:

$$E[a_{\text{training}}] = p(w_0x + w_1y) = p a_{\text{test}}$$

 \implies have to compensate at test time by scaling the activations by p.

More common: Inverted Dropout

During training:

$$\mathbf{x}^{(1)} = \max(0, W_1\mathbf{x}^{(0)} + \mathbf{b}_1)$$
 $\mathbf{u}_2 = (\operatorname{rand}(\operatorname{size}(\mathbf{x}^{(1)})) < p)/p \leftarrow \operatorname{Note}/p$
 $\mathbf{x}^{(1)} = \mathbf{x}^{(1)} * \mathbf{u}_2$
 $\mathbf{x}^{(2)} = \max(0, W_2\mathbf{x}^{(1)} + \mathbf{b}_2)$
 $\mathbf{u}_2 = (\operatorname{rand}(\operatorname{size}(\mathbf{x}^{(2)})) < p)/p \leftarrow \operatorname{Note}/p$
 $\mathbf{x}^{(2)} = \mathbf{x}^{(2)} * \mathbf{u}_3$
 $\mathbf{x}^{(3)} = \operatorname{SoftMax}(W_2\mathbf{x}^{(2)} + \mathbf{b}_2)$

• => At test time no scaling necessary:

$$\mathbf{x}^{(1)} = \max(0, W_1 \mathbf{x}^{(0)} + \mathbf{b}_1)$$

 $\mathbf{x}^{(2)} = \max(0, W_2 \mathbf{x}^{(1)} + \mathbf{b}_2)$
 $\mathbf{x}^{(3)} = \text{SoftMax}(W_3 \mathbf{x}^{(2)} + \mathbf{b}_3)$

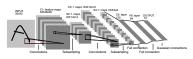
- Must scale the activations so for each neuron:
 output at test time = expected output at training time
- · Don't drop activations but have to compensate

$$\mathbf{x}^{(1)} = \max(0, W_1\mathbf{x}^{(0)} + \mathbf{b}_1) * p$$

 $\mathbf{x}^{(2)} = \max(0, W_2\mathbf{x}^{(1)} + \mathbf{b}_2) * p$
 $\mathbf{x}^{(3)} = \text{SoftMax}(W_3\mathbf{x}^{(2)} + \mathbf{b}_3)$

Convolutional Neural Networks (ConvNets)

Convolutional Neural Networks

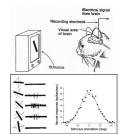


LeNet-5 (LeCun '98)

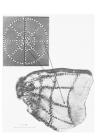
ConvNets: Some history

Hubel & Wiesel cat experiments 1968

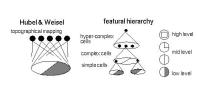
Hubel & Wiesel



- Discovered visual cortex consists of a hierarchy of simple, complex, and hyper-complex cells. (Experiments in 50's & 60's)
- Hubel & Wiesel won the Nobel prize (1981).

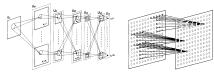


Topographical mapping in the cortex: nearby cells in cortex represented nearby regions in the visual field.



Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position by Kunihiko Eukushima. 1980.

Inspired by Hubel & Wiesel model

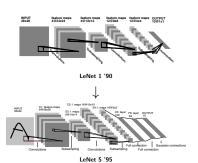


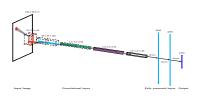
sandwich architecture (SCSCSC...)

simple cells: modifiable parameters, complex cells: perform pooling

LeCun's LeNet ConvNets

AlexNet





ImageNet Classification with Deep Convolutional Neural Networks by Krizhevsky, Sutskever, Hinton, 2012

Fast-forward to today: ConvNets are everywhere

Fast-forward to today: ConvNets are everywhere

[Farabet et al., 2012]

[Faster R-CNN: Ren. He. Girshick. Sun 2015] Fei-Fei Li & Andrei Karpathy & Justin Johnson

Lecture 6 - 74 25 Jan 2016

Fei-Fei Li & Andrei Karpathy & Justin Johnson

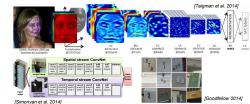
Lecture 6 - 73

25 Jan 2016

Fast-forward to today: ConvNets are everywhere

self-driving cars

Fast-forward to today: ConvNets are everywhere



Fast-forward to today: ConvNets are everywhere

(Toshev. Szegedy 2014)

Fast-forward to today: ConvNets are everywhere

(Ciresan et al. 2013)

[Ciresan et al.]

Image Captioning

25 Jan 2016

Fei-Fei Li & Andrei Karpathy & Justin Johnson

Lecture 6 - 77

25 Jan 2016

Fei-Fei Li & Andrei Karpathy & Justin Johnson

Lecture 6 - 78

Whale recognition, Kaggle Challenge

Mnih and Hinton, 2010

[Vinyals et al., 2015]

25 Jan 2016 Fei-Fei Li & Andrej Karpathy & Justin Johnson