


KTH Royal Institute of Technology
SEMINAR 2 - 29 March 2017

Simone Stefani - sstefani@kth.se



WHAT IS THIS SEMINAR ABOUT

Branching

Merging and rebasing

Git team workflows

Pull requests and forks



WHAT IS THIS SEMINAR NOT ABOUT

How to setup Git on your computer

Git/GitHub Clients with GUI

Comparison of workflows



The most important lesson:

If you don’t know which is the best next 
move ask your peers for help.

You’ll learn more and have less 
problems



PART 3
The Branches



A quick reminder

We left PART 1 & 2 with single line of development which is labeled 
master. This represents the story of the project as a chain of 
snapshots (commits). It also may have been pushed to a remote 
hosting service as a remote named origin.



The best idea



Many lines of development

One of the best features of Git is the possibility to create lightweight 
branches allowing for easy and simultaneous development of 
features. A branch is a line of development that “branch off” another 
line of development. The work done on a branch does not affect the 
other branches. A branch can be thought as a label to the last 
commit in a line of development.



Create a branch

$ git branch my-feature

my-feature

master

The command git branch <branch-name> creates a new branch 
with the given name that detaches from the currently selected branch.
Initially is hard to visualise the two branches because they contain the 
same commits. As soon new commits are added to one or the other 
branch, the two lines of development will appear more clearly.



Make a commit on master

Switch to feature-branch

Make a commit on feature-branch
Create two different commits, one on each branch.



my-feature

master

Now it is possible to see more clearly the two lines of development 
represented by the branches master and my-feature.
The blue circle represents the selected branch.



my-feature

master

my-feature

master

$ git checkout my-feature

The command git checkout 
<branch-name> allows to switch 
to a specified branch. All the 
commits will now be added to this 
branch and the working directory 
is set to represent the current 
state in the selected branch.



Merging and rebasing



Merge a specific branch into the 
current branch

$ git merge <branch>
The command git merge <branch-name> allows to integrate 
the commits on the specified branch into the current branch. This 
may happen, for example, when a feature is completed on a 
branch and needs to be integrated in the main project.



1. Fast-forward merge

2. Three-way merge

It comes in two flavours:

At this point is important to consider how the merge of 
commits may happen. Git will choose between two 
strategies: fast-forward and three-way merge.



Fast-forward merge

master

master

my-feature my-feature

Let’s consider the case when my-feature needs to be merged into master. 
A fast-forward merge will happen when commits have been added on 
my-feature but not on master. In this case the merge consist in chaining 
all the new commits from my-feature to the last commit of master. Now 
the two branches look like the same and contain the same commits.



Three-way merge

master

my-feature my-feature

master
If different commits have been added on master and 
my-feature then Git will proceed with a three-way 
merge. In this case Git will join the content of the two 
branches and make a new commit containing all the 
changes introduced in the two lines of development.



Merge conflicts may happen in case of 
a three-way merge

A conflictual story

$ git merge my-feature

Auto-merging hobbit.txt
CONFLICT (content): merge conflict in hobbit.txt
Automatic merge failed; fix conflicts and then commit the result.

It may happen that two different commits on different 
branches change the same file in the same place. In this case 
Git is not able to tell which version should be kept and it throws 
a merge CONFLICT. The developer needs to manually inspect 
the file and decide how the final version should look like. Then 
commit to complete the merge.



Merge conflicts resolution is an art

Conflicts will happen:
get used to them!

There are many resources to learn how to resolve merge conflicts but the 
best way it’s probably doing it once with someone more experienced. This is 
one of the situations where it’s clearly important to reach for help.



A strategy to avoid conflicts:

$ git checkout feature
$ git rebase master

The command git rebase <target-branch> allows to copy the 
commits of the current branch and link them to the last commit of the 
target-branch. In this way if a merge is executed right after the 
rebase, Git will use the fast-forward strategy.



master

feature feature

master

After the executing git rebase master, the feature branch 
is “mounted” on top of the last commit in the master branch. 
Observe that the commits in the feature branch after the 
rebase are actually copies of the original ones. Now executing a 
fast-forward merge results to be a trivial operation.



Never use rebase on public branches 

The golden rule of rebasing:

Rebase should only be used with branches in the local repository. It 
should never be used with public branches because it would result in 
re-written history and would create problems to other developers.



masterfeature

master

Rebasing the master branch is always a bad 
idea especially if the repository has been pushed 
and other developers are working on the same 
“history”. In the picture the master branch has 
been rebased on top of feature but all the other 
developers are building their work on top of it. 
This will generate a large number of conflicts and 
loss of informations.



Fork & Pull Requests



Fork a repository

Alice’s GitHub
repository

Bob’s GitHub
repository

Create a copy of someone else 
repository linking back to the source



Where do I fork?

From GitHub!
And the repository will be copied to my 

GitHub account 

If you are on GitHub visiting someone else repository and you press the button Fork, then GitHub will make a 
copy of that repository and save it on your account. The two repositories are independent from each other 
but yours will remember that it was originally copied from the other.



Pull request

Start a discussion with the team about a feature and notify 
them about any progress

A pull request has nothing to do with 
the pull command. It is an operation 
that can be triggered in the GitHub 
interface with the final goal of asking 
another developer to integrate the 
work from a branch of one of your 
projects into a branch of hers project.

GitHub will then open an interface to 
ease the code integration procedure. 
This includes code comparison 
features, notifications, a system to 
track issues and bugs and a comment 
thread to discuss the operation with 
other developers.



Pull request: in words

1. A developer creates the feature in a dedicated branch in the local repo

2. The developer pushes the branch to a his public GitHub repository

3. The developer files a pull request via GitHub

4. The rest of the team reviews the code, discusses it, and alters it

5. The project maintainer merges the feature into the official repository and 

closes the pull request



Pull request: in picture

source branch destination branch

Shared
GitHub repo

(source)

Shared
GitHub repo
(destination)

Observe that a pull request 
is an operation that start 
from a source branch and 
targets a destination 
branch (usually on different 
repositories).

Pull requests are especially 
used as part of a more 
extensive workflow.



PART 4
Team Workflows



When working in a team it is important 
to establish a common routine to 

manage Git actions



Workflows



There is no such thing as a 
“right” workflow.

Choose something that fits 
your team’s needs



Gitflow



Gitflow is a workflow developed by the developer Vincent Driessen as a “successful Git branching 
model” shaped after several years of working with Git in teams. The original post can be found at: 
http://nvie.com/posts/a-successful-git-branching-model/
This model relies on heavy use of branches and it is especially useful in small teams.

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/


A) Set of rules to identify and 
manage branches

B) Set of actions to work in a 
team on a single project



Branches conventions



master: should always represent the 
current state of the project in 
production 

develop: originating from the master 
branch, this is the place where 
development happens

Production is the technical word to describe the “live” version of a 
project. If the project is a website or web service it can refer to the 
version running on a live server. If the project is an app it is the 
released version (possibly published on some online store)



The master branch corresponds to the release history, always 
reflecting the production state. The commits may be have a tag do 
describe the version. The develop branch, which is created after the 
repository initialisation, is used to integrate developed features.



feature: used to add new features to 
the project

● Name convention: feature/<name>

● Originates from: develop

● Merged into: develop
Every new feature should be developed inside 
its own feature/<name> branch. When the 
feature is ready it can be merged into develop.
No feature should be merged directly into 
master. 





release: used to prepare the code 
for a release while development on 
the develop branch continues

● Name convention: release/<version>

● Originates from: develop

● Merged into: first master then develop

The release branch is not necessary in 
every project but can be useful when the 
development team implements a release 
workflow. The release branch allows to 
freeze the software in a stable condition 
(allowing only further testing and bug fix) 
while the development may continue on 
the develop branch.





hotfix: used for severe bugfixes that 
prevent production from running 
properly

● Name convention: hotfix/<name>

● Originates from: master

● Merged into: master and develop
The hotfix branch is used only when a 
bug is found in the production code and 
allows a quick fix that is then integrated 
both into master and develop.





The big picture



Maintainer creates main 
repository

Add all configuration files,
README and .gitignore

A repository can be created, for example on 
GitHub, by a team member who has the role 
of project maintainer. This repository is 
defined as main (or central) by a team 
convention (all repositories are equal for Git).



Developers fork the main 
repository

Using the built-in functionality of GitHub, the 
other team members fork the central repository 
thus making a copy of it on their accounts.



Developers clone their forked 
repositories

origin: developer’s own fork
upstream: the main repository

Every developer in the team 
clones her own fork of the 
repository in order to have a copy 
on the local machine. When 
cloning the repository, Git 
establishes a link setting the 
developer’s own GitHub repository 
as a remote with name origin. 
The developer should also add 
another remote called upstream 
to link to the main repository (on 
the maintainer’s GitHub account).



Developers work on their 
features

Make local commits

Developers can work independently 
on their machines making commits in 
the local repository. For this purpose 
feature branches should be used.



Developers publish their 
features

Push to their forks (remote/origin)

The developers then push their 
work (contained in feature 
branches) from the local 
repositories to their remote forks 
using the remote/origin.



The project maintainer 
integrates their features

Developers use pull requests 

The project maintainer has the 
task of integrating the work of the 
developers into the main 
repository. In order to do this, each 
developer opens a pull request 
from the feature branch on her 
own fork to the maintainer’s 
develop branch (on the main 
repository). After the integration is 
discussed in the pull request 
thread and all the possible 
conflicts are solved, the maintainer 
merges the developers’ work into 
the main repository.



Developers use pull request to ask the 
maintainer to integrate their features

own fork main repository
Possible types of pull 
requests. The most 
common is from the 
developer’s feature 
branch to the 
maintainer’s develop 
branch. In case of 
hotfix and release 
branches the pull 
request should target 
both develop and 
master in the 
maintainer’s main 
repository.



Developers synchronize with 
the main repository

Pull from remote/upstream

The last step is to synchronize the 
developers’ repositories with the main 
repository. This is needed because only 
the maintainer’s repository reflects the 
current state of the project after a merge, 
with the new feature integrated in the 
develop branch. In order to do this, each 
developer execute a git pull 
command (on the local machine) from 
the main remote repository, available as 
remote/upstream. Finally the developer 
can execute a push to remote/origin 
to keep her own local and remote 
repositories synchronized.



Learn more about gitflow at:

www.github.com/eschmar/gitflow



Credits

All the graphics in this presentation are from 
Atlassian Getting Right Git guide reachable at:

www.atlassian.com/git

The content is licensed under a 
Creative Commons Attribution 2.5 Australia License

http://www.atlassian.com/git
http://www.atlassian.com/git
https://creativecommons.org/licenses/by/2.5/au/
https://creativecommons.org/licenses/by/2.5/au/

