
Algorithms and Complexity
2017

Mästarprov 2: Complexity

Mästarprov 2 should be solved individually in written form and presented orally.
No collaboration is allowed.

Written solutions should be handed in latest on Friday, April 21 17.00, to
Johan or Jonas in written or printed form (personally or physical mailbox). Be
sure to save a copy of your solutions. Mästarprov 2 is a mandatory and rated
part of the course. The test consists of four tasks. The test is roughly graded
as follows: Two task correctly solved give an E. Three tasks correctly solved
give a C and all tasks correctly solved give an A. You can read more about the
grading criteria and the final grade on the course web page. The report should
be written in English.

In all problems you should give an analysis of the time complexity of your
algorithm and you should be able to argue for its correctness. When making
reductions you are free to use any NP-Complete problems mentioned in the
course book or in the lecture notes.

1. Super connectors

We have a computer network. We fix a number C and say that a computer is
a super connector if it has at least C connections. (Connections are edges in
the network.) A group S of super connectors is a set of super connectors all
connected to each other. We can formulate a decision problem like this: Given
a network in form of a graph G and integers C,K, is there a group of size K
of super connectors in G? Show that this problem is NP-Complete by reducing
the known problem CLIQUE to this problem.

2. Different types of matchings

The problem TRIPARTITE MATCHING can be described (in a traditional
way) as this: Assume that we have a set {m1,m2, ...,mn} of n men, a set
{w1, w2, ..., wn} of n women and a set {d1, d2, ..., dn} of n dogs. We assume that
some three-groups of one man, one woman and one dog, like (m3, w9, d2) get
along well as a group and some others do not. Let us call a three-group who-
se members get along well a feasible three-group. (In the traditional descrip-
tion, they can form a household.) The problem is to decide if we can find
a selection of n feasible three-group such that each man, woman and dog is
in exactly one three-group in the selection. Such a selection is then called a
tripartite matching. So the problem TRIPARTITE MATCHING has the sets
{m1,m2, ...,mn}, {w1, w2, ..., wn}, {d1, d2, ..., dn} and the set of feasable three-
groups as input and the problem is to decide if there is a tripartite matching or
not.

1

This problem is known to be NP-complete. It is a variant of the ordinary problem
BIPARTITE MATCHING (or just MATCHING) where we have two-groups
(men and women). We can generalise the problem to four-groups, and so on.

a. Let us look at FOURPARTITE MATCHING where we have the men, wo-
men, dogs and a set {c,c2, ..., cn of n cats and a set of feasible four-groups.
Fourpartite matchings are defined in the same way as tripartite matchings.
It is easy to se that FOURPARTITE MATCHING is in NP. Show that
FOURPARTITEMATCHING is NP-complete by reducing from TRIPAR-
TITE MATCHING to FOURPARTITE MATCHING.

b. Let us assume that P 6= NP . The problem BIPARTITE MATCHING
can be solved efficiently, which means that the problem is in P. Explain
carefully why it is impossible to reduce from TRIPARTITE MATCHING
to BIPARTITE MATCHING.

3. The Plus Minus Game

We will define a very special two person game which we will call ”The Plus
Minus Game”. We have two players A and B. They each have n cards such that
each card has a natural number written on it. (To be more exact, each card has
one of the numbers 0, 1, 2, 3... and different cards can have the same number.)
A and B can see eacothers cards. The players take turns and makes moves. In
a move a player chooses one of his/her cards and the chooses a sign Plus or
Minus. We have a so called ”Bank”. If the player chooses a card with number
k and chooses Plus, then k is added to the bank. If the player chooses Minus,
k is subtracted from the bank. The bank is 0 when the game starts. Player A
makes the first move. We say that player B wins if the bank is 0 after the last
move (which is made by B) and player A wins otherwise.

We can now ask the question: Does player A have a winning strategy or not. To
be more specific, we assume we are given natural numbers a1, a2, ..., an, b1, b2, ..., bn
corresponding to the players cards and want to know if A has a winning strategy
or not. This is a well defined decision problem since the game runs for 2n moves
and the set of possible cards and signs to choose from is finite. The problem is
not neccesarily in NP. But we can still show that it probably is impossible to
solve algoritmmically in polynomial time by showing that it is NP-Hard. This
means that an NP-Complete problem can be reduced to it (which means that
all NP problems can by reduced to it, by Cook’s Theorem). Your task is to show
that the problem is NP-Hard.

2

4. The intricate amusement park

A certain amusement park has n different attractions. There are connections
(short roads) between the attractions such that the park can be represented
as a graph G with the attractions as nodes and the connections as edges. The
owner of the park is interested in finding possible ways of walking through the
park along the connections such that no attractions are visited more than once.
This concepts obviously is the same thing as paths in G. The owner would
like to find long paths, probably for recommendation to the visitors. But how
can she find long paths? It turns out that her clever daughter has designed an
algorithm PathFinder that takes any G and any positive integer K as input
and decides if there is a path of length ≥ K in G or not. So the computation
PathFinder(G,K) returns Yes if there is such a path and No otherwise. This is
nice, but what the owner would really like to have an algorithm for finding the
actual path of maximum length (or at least one such path if there are more than
one). But now the clever daughter, who is the only one who understands how
PathFinder works, has gone on a hiking trip to Mongolia. Your task is to help
the owner and construct an algorithm LongestPathF inder(G) which returns
a longest path in G as the set of edges in the path. The algorithm should use
a limited number of calls to PathFinder. The number of calls and all other
computations made should be as small as possible. You should give a suitable
upper bound for the complexity on the form O(p(|V |, |E|) T (|V |, |E|)) where
T (|V |, |E|) is the maximum value of the complexity of PathFinder(G,K) when
0 < K < |V |. Of course, V and E are the set of nodes and edges of G.

3

