
Lecture 4 - k-layer Neural Networks

DD2424

April 8, 2017

A new class of scoring functions

Linear scoring function

s = Wx + b

xd

... s3

x3 s2

x2 s1

x1

Input: x Output: s = Wx+ b

Before

2-layer Neural Network

s1 = W1x + b1

h = max(0, s1)

s = W2h + b2

xd

... s1,m hm s3

x3 s2

x2 s1,1 h1 s1

x1

Input: x s1 = W1x+ b1 h = max(0, s1) s = W2h+ b2

Now

Not restricted to two layers

2-layer Neural Network

s1 = W1x + b1

h = max(0, s1)

s = W2h + b2

xd

... hm s3

x3 ... s2

x2 h1 s1

x1

Input: x s1 = W1x+ b1 Output: s = W2h+ b2

h = max(0, s1)

3-layer Neural Network

s1 = W1x + b1

h1 = max(0, s1)

s2 = W2h1 + b2

h2 = max(0, s2)

s = W3h2 + b3

xd

... h1,m1
h2,m2

s3

x3 s2

x2 h1,1 h2,1 s1

x1

Input: x s1 = W1x+ b1 s2 = W2h1 + b2 Output: s = W3h2 + b3

h1 = max(0, s1) h2 = max(0, s2)

Some terminology

3-layer Neural Network

s1 = W1x + b1 W1 is m1 × d

1st hidden layer activations → h1 = max(0, s1) ← apply non-linearity via activation fn

s2 = W2h1 + b2 W2 is m2 ×m1

2nd hidden layer activations → h2 = max(0, s2) ← apply non-linearity via activation fn

Output responses → s = W3h2 + b3 W3 is c×m2

xd

... h1,m1
h2,m2

s3

x3 s2

x2 h1,1 h2,1 s1

x1

Input: x s1 = W1x+ b1 s2 = W2h1 + b2 Output: s = W3h2 + b3

h1 = max(0, s1) h2 = max(0, s2)

Sometimes referred to as a 2-hidden-layer neural network.

Computational Graph of our 2-layer neural network

x s1 h s

W1 b1 W2 b2

W1x+ b1 max(0, s1) W2h+ b2

2-layer neural network with probabilistic outputs

x s1 h s p

W1 b1 W2 b2

W1x+ b1 max(0, s1) W2h+ b2 softmax(s)

Options for activation functions

Sigmoid tanh ReLu

−10 −5 5 10

0.5

1

x

σ(x)

−10 −5 5 10

−1

−0.5

0.5

1

x

tanh(x)

−10 −5 5 10

2

4

6

8

10

x

max (0, x)

σ(x) = 1
1+exp(−x) tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x) ReLu(x) = max(0, x)

Activation function is applied independently to each element of the score

vector.

Options for activation Functions

Leaky ReLu ELU

−10 −5 5 10

2

4

6

8

10

x

max (0.1x, x)

−10 −5 5 10

2

4

6

8

10

x

ELU(x)

max(0.1x, x) ELU(x) =

{
x if x > 0

α (exp(x)− 1)) otherwise

Activation function is generally applied independently to each element of

vector.

Options for Activation Functions

Sigmoid tanh ReLu

−10 −5 5 10

0.5

1

x

σ(x)

−10 −5 5 10

−1

−0.5

0.5

1

x

tanh(x)

−10 −5 5 10

2

4

6

8

10

x

max (0, x)

σ(x) = 1
1+exp(−x) tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x) ReLu(x) = max(0, x)

X
In modern networks ReLU is the most common activation function.

Effect of the number of hidden nodes in a 2 layer network

m = 3 m = 20 m = 30 m = 100

• m is the number of nodes in the hidden layer.

• No regularization.

Result depends on parameter initialization

m = 3 m = 20 m = 30 m = 100

• m is the number of nodes in the hidden layer.

• No regularization.

• Different random parameter initialization to previous slide.

Effect of regularization

J(D, λ,Θ) =
∑

(x,y)∈D
l(x, y,Θ) + λR(Θ)

λ = 0 λ = .001 λ = .01 λ = .1

• m = 100 nodes in the hidden layer.

• L2 regularization.

Do not use size of neural network as a regularizer.
Use stronger regularization.

Big Model + Regularize vs Small Model

Small model Big model Big model
+ Regularize

High-level overview of how to train network

Mini-batch SGD (or variant)

Loop

1. Sample a batch of the training data.

2. Forward propagate it through the graph and calculate
loss/cost.

3. Backward propagate to calculate the gradients.

4. Update the parameters using the gradient.

Gradient Computations for a k-layer neural network

Back propagation for 2-layer neural network

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

For a single labelled training example:

1. Forward propagate it through the graph and calculate loss.

2. Backward propagate to calculate the gradients.

Back propagation for 2-layer neural network

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

For a single labelled training example:

1. Forward propagate it through the graph and calculate loss.
↑ this is straightforward.

2. Backward propagate to calculate the gradients. ← Focus on this.

Backward Pass: Gradient of current node

Starting point of our demonstration

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

In Lecture 3 explicitly computed filled in local Jacobians and
gradients.

Backward Pass

Compute local Jacobian of node s w.r.t. its child h

∂s
∂h

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

s = W2h + b2

• The Jacobian we need to compute: ∂s
∂h

=




∂s1
∂h1

· · · ∂s1
∂hm

.

.

.

.

.

.

.

.

.
∂sc
∂h1

· · · ∂sc
∂hm




• The individual derivatives: ∂si
∂hj

=W2,ij

• In vector notation: ∂s
∂h

=W2

Backward Pass

Compute gradient of J w.r.t. node h

∂J
∂h = ∂J

∂s
∂s
∂h

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

s = W2h + b2

∂J

∂h
=
∂J

∂s

∂s

∂h

Backward Pass

Compute local Jacobian of node h w.r.t. its child s1

∂h
∂s1

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

h = max(0, s1)

• The Jacobian we need to compute: ∂h
∂s1

=




∂h1
∂s1,1

· · · ∂h1
∂s1,m

.

.

.

.

.

.

.

.

.
∂hm
∂s1,1

· · · ∂hc
∂s1,m




• The individual derivatives: ∂hi
∂s1,j

=

{
Ind(s1,j > 0) if i = j

0 otherwise

• In vector notation: ∂h
∂s1

= diag(Ind(s1 > 0))

Backward Pass

Compute gradient of J w.r.t. node s1

∂J
∂s1

= ∂J
∂h

∂h
∂s1

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

h = max(0, s1)

∂J

∂s1
=
∂J

∂h

∂h

∂s1

Backward Pass

Compute local Jacobian of node s1 w.r.t. its child b1

∂s1
∂b1

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

s1 = W1x + b1

• The Jacobian we need to compute: ∂s1
∂b1

=




∂s1,1
∂b1,1

· · · ∂s1,1
∂b1,m

.

.

.

.

.

.

.

.

.
∂s1,m
∂b1,1

· · · ∂s1,m
∂b1,m




• The individual derivatives:
∂s1,i
∂b1,j

=

{
1 if i = j

0 otherwise

• In vector notation: ∂s1
∂b1

= Im

Backward Pass

Compute gradient of J w.r.t. node b1

∂J
∂b1

= ∂J
∂s1

∂s1
∂b1

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

s1 = W1x + b1

∂J

∂b1
=
∂J

∂s1

∂s1
∂b1

Backward Pass

Compute local Jacobian of node s1 w.r.t. its child W

∂s1
∂W1

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

s1 = W1x + b1 = (Im ⊗ x) vec(W1)

• Let v = vec(W1). Jacobian to compute: ∂s1
∂v

=




∂s1,1
∂v1

· · · ∂s1,1
∂vdm

.

.

.

.

.

.

.

.

.
∂s1,m
∂v1

· · · ∂s1,m
∂vdm




• The individual derivatives:
∂s1,i
∂vj

=




xj−(i−1)d if (i− 1)d+ 1 ≤ j ≤ id

0 otherwise

• In vector notation: ∂s1
∂v

= Im ⊗ xT

Backward Pass

Compute gradient of J w.r.t. node W1

∂J
∂b1

= ∂J
∂s1

∂s1
∂b1

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

s1 = W1x + b1 =
(
Im ⊗ xT

)
vec(W1) + b1

∂J

∂vec(W1)
=

∂J

∂s1

∂s1
∂vec(W1)

+
∂J

∂r

∂r

∂vec(W1)

=
(
g1x

T g2x
T · · · gmxT

)
+ λ vec(W1)

T ← gradient needed for learning

if we set g = ∂J
∂s1

.

Backward Pass

Compute gradient of J w.r.t. node W1

∂J
∂b1

= ∂J
∂s1

∂s1
∂b1

x s1 h s p l J

W1 b1 W2 b2 y λ

r

W1x+ b1 max(0, s1) W2h+ b2 softmax(s) − log(yTp) l + λr

‖W1‖2 + ‖W2‖2

s1 = W1x + b1 =
(
Im ⊗ xT

)
vec(W1) + b1

Can convert
∂J

∂vec(W1)
=
(
g1x

T g2x
T · · · gmxT

)
+ 2λ vec(W1)

T

(where g = ∂J
∂s1

) from a vector (1×md) back to a 2D matrix (m× d):

∂J

∂W1
=




g1x
T

g2x
T

...
gCx

T


+ 2λW1 = gTxT + 2λW1

Aggregated backward pass for a 2-layer neural network

1. Let

g = − yT

yTp

(
diag(p)− ppT

)

2. Gradient of J w.r.t. second bias vector is the 1× c vector

∂J

∂b2
= g

3. Gradient of J w.r.t. second weight matrix W2 is the c×m matrix

∂J

∂W2
= gThT + 2λW2

4. Propagate the gradient vector g to the first layers

g = gW2

g = g diag(Ind(s1 > 0))← assuming ReLu activation

5. Gradient of J w.r.t. the first bias vector is the 1× d vector

∂J

∂b1
= g

6. Gradient of J w.r.t. the first weight matrix W1 is the m× d matrix

∂J

∂W1
= gTxT + 2λW1

Gradient Computations for a mini-batch

2-layer scoring function + SOFTMAX + cross-entropy loss + Regularization

• Compute gradients of l w.r.t. W1,W2,b1,b2 for each (x, y) ∈ D(t):

- Set all entries in ∂L
∂b1

, ∂L
∂b2

, ∂L
∂W1

and ∂L
∂W2

to zero.

- for (x, y) ∈ D(t)

1. Let g = − yT

yT p

(
diag(p)− ppT

)

2. Add gradient of l w.r.t. b2 computed at (x, y)

∂L

∂b2

+= g,
∂L

∂W2

+= g
T
h
T

3. Propagate the gradients

g = gW2

g = g diag(Ind(s1 > 0))

4. Add gradient of l w.r.t. first layer parameters computed at (x, y)

∂L

∂b1

+= g,
∂L

∂W1

+= g
T
x
T

- Divide by the number of entries in D(t):

∂L

∂Wi

/= |D(t)|,
∂L

∂bi

/= |D(t)| for i = 1, 2

• Add the gradient for the regularization term
∂J

∂Wi

=
∂L

∂Wi

+ 2λWi,
∂J

∂bi

=
∂L

∂bi

for i = 1, 2

Forward pass for a k-layer neural network

• Let x(0) = x represent the input.

• for i = 1, . . . , k − 1

s(i) =Wix
(i−1) + bi

x(i) = max
(
0, s(i)

)

• Apply the final linear transformation

s(k) =Wkx
(k−1) + bk

• Apply SOFTMAX operation to turn final scores into probabilities

p =
exp(s(k))

1T exp(s(k))

• Apply cross-entropy loss and regularization to measure performance w.r.t.
ground truth label y

J = − log(yTp) + λ
k∑

i=1

‖Wi‖2

Assumed ReLu is the activation function at each intermediary layer.

Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (x, y):

• Let

g = − yT

yTp

(
diag(p)− ppT

)

• for i = k, k − 1, . . . , 1

1. The gradient of J w.r.t. bias vector bi

∂J

∂bi
= g

2. Gradient of J w.r.t. weight matrix Wi

∂J

∂Wi
= gTx(i)T + 2λWi

3. Propagate the gradient vector g to the previous layer (if i > 1)

g = gWi

g = g diag(Ind(s(i) > 0))

Training Neural Networks a little bit of history

A bit of history

• Perceptron algorithm invented by Frank
Rosenblatt (1957).

• Mark 1 Perceptron machine

First implementation of the perceptron algorithm.

• Machine was connected to camera producing
20× 20 pixel image and recognized letters.

• Perceptron classification fn:

f(x;w) =

{
1 if wTx+ b > 0

0 otherwise

• For labelled training example (x, y) (y ∈ {−1, 1})
the Perceptron loss is

lp(x, y;w) = max(0,−y(wTx+ b))

• Update rule: Use SGD to learn w. If training
example (xi, yi) is incorrectly classified then

w← w + yixi

A bit of history

• ADALINE (Adaptive Linear Element) developed by Widrow and Hoff at
Stanford in 1960.

• Adaline a single layer neural network with one output

ŷ = wTx+ b

• Loss function: for labelled training example (x, y)

l(x, y,w) = (y − (wTx+ b))2 = (y − ŷ)2

• Update rule: Use SGD with learning rate η to learn w:

w← w + η(y − ŷ)x

• Extension Madaline: a three-layer, fully connected, feed-forward artificial
neural network architecture for classification.

A bit of history

Learning Internal Representations by Error Propagation, D. Rumelhart, G, Hinton and R. Williams, Parallel

Distributed Processing: Explorations in the Microstructure of Cognition, 1986.

First time back-propagation became popular

A bit of history

New wave of research in Deep Learning.

• Ability to train networks with
many layers.

• Mixture of unsupervised and
supervised training.

• Unsupervised: Encoding layers
first learnt in stagewise manner
using RBMs (restricted Boltzman
machines).

• Decode layers using an
auto-encoder.

• Supervised: Back-prop used to
do final update of weights.

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov, Science, 2006.

First Very Convincing Results

• Context-Dependent Pre-trained Deep Neural Networks for Large
Vocabulary Speech Recognition, G. Dahl, D. Yu, L. Deng, A. Acero,
2010. DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

• Beat the widely established approach of GMM-HMM with a DNN-HMM.

• Improved results on popular datasets by 5.8% and 9.2%.

First Very Convincing Results

• ImageNet classification with deep convolutional neural networks A.
Krizhevsky, I. Sutskever, G. Hinton, 2012.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

• Beat the stagnating established approaches of

Handcrafted features + kernel SVM.

• Improved results on ImageNet by ∼11%.

Better understanding of gradient flows during BackProp helped
with these breakthroughs
Understanding Effect of Activation Functions

Sigmoid

σ(x) =
1

1 + exp(−x)

−10 −5 5 10

0.5

1

x

σ(x)

• Squashes numbers to range [0, 1].

• Has nice interpretation as a saturating firing rate of a neuron.

Sigmoid

σ(x) =
1

1 + exp(−x)

−10 −5 5 10

0.5

1

x

σ(x)
dσ(x)
dx

Problems

1. Saturated activations kill the gradients.

- Have a sigmoid activation

s =Wx+ b

h = σ(s)

- Derivative of the sigmoid function is:

∂hi

∂sj
=

{
exp(−si)

(1+exp(−si))2
(= σ′(si)) if i = j

0 otherwise

- As
∂J

∂si
=

∂J

∂hi

∂hi

∂si
=

∂J

∂hi
σ′(si)

What happens to gradient of J w.r.t. si when |si| > 5?

Sigmoid

σ(x) =
1

1 + exp(−x)

−10 −5 5 10

0.5

1

x

σ(x)
dσ(x)
dx

Problems

1. Saturated activations kill the gradients.

2. Sigmoid outputs are not zero-centered.

- Have a sigmoid activation

s =Wx+ b

h = σ(s)

- Then
∂J

∂wi
=

∂J

∂hi

∂hi

∂si

∂si

∂wi
=

∂J

∂hi
σ′(si) xT

What happens to ∂J
∂wi

when all entries in x are positive?

Sigmoid

σ(x) =
1

1 + exp(−x)

−10 −5 5 10

0.5

1

x

σ(x)
dσ(x)
dx

Problems

1. Saturated activations kill the gradients.

2. Sigmoid outputs are not zero-centered.

- Have a sigmoid activation

s =Wx+ b, h = σ(s)

- Then
∂J

∂wi
=

∂J

∂hi

∂hi

∂si

∂si

∂wi
=

∂J

∂hi
↑

positive or negative

σ′(si)
↑

positive

xT
↑

all positive

What happens to ∂J
∂wi

when all entries in x are positive?

=⇒ entries of ∂J
∂wi

are either all positive or all negative.

Sigmoid

σ(x) =
1

1 + exp(−x)

−10 −5 5 10

0.5

1

x

σ(x)
dσ(x)
dx

Problems

1. Saturated activations kill the gradients.

2. Sigmoid outputs are not zero-centered.

- Have a sigmoid activation

s =Wx+ b, h = σ(s)

- Then
∂J

∂wi
=

∂J

∂hi

∂hi

∂si

∂si

∂wi
=

∂J

∂wi
=

∂J

∂hi

∂hi

∂si

∂si

∂wi
=

∂J

∂hi
σ′(si) xT

What is ∂J
∂wi

when all entries in x are +tive? (occurs after applying sigmoid)

=⇒ entries of ∂J
∂wi

are either all positive or all negative.
=⇒ inefficient zig-zag update paths to find optimal wi

Sigmoid

σ(x) =
1

1 + exp(−x)

−10 −5 5 10

0.5

1

x

σ(x)
dσ(x)
dx

Problems

1. Saturated activations kill the gradients.

2. Sigmoid outputs are not zero-centered.

3. exp() is expensive to compute

tanh

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
−10 −5 5 10

−1

1

x

tanh(x)
d tanh(x)

dx

Properties

1. Squashes numbers to range [−1, 1].

2. Tanh outputs are zero-centered.

3. Saturated activations kill the gradients.

Rectified Linear Unit (ReLu)

ReLu(x) = max(0, x)

−10 −5 5 10

2

4

6

8

10

x

max (0, x)
dmax (0,x)

dx

Pros

1. Does not saturate for large positive x.

2. Very computationally efficient.

3. In practice training of a ReLu network converges much faster than
one with sigmoid/tanh activation functions.

Rectified Linear Unit (ReLu)

ReLu(x) = max(0, x)

−10 −5 5 10

2

4

6

8

10

x

max (0, x)
dmax (0,x)

dx

Problems

1. Output is not zero-centered

2. Negative inputs result in zero gradients.
- Have a ReLu activation

s =Wx+ b

h = max(0, s)

- Derivative of the ReLu function is:

∂hi

∂sj
=

{
1 if i = j & sj > 0

0 otherwise

- Then

∂J

∂si
=

∂J

∂hi

∂hi

∂si
=

{
∂J
∂hi

if si > 0

0 otherwise

Rectified Linear Unit (ReLu)

ReLu(x) = max(0, x)

−10 −5 5 10

2

4

6

8

10

x

max (0, x)
dmax (0,x)

dx

Problems

1. Output is not zero-centered

2. Negative activations have zero gradients and freezes some
parameter weights.
As

s =Wx+ b, h = max(0, s)

then

∂J

∂wi
=

∂J

∂hi

∂hi

∂si

∂si

∂wi
=

{
∂J
∂hi

xT if si > 0

0 otherwise

=⇒ dead ReLU will never activate

=⇒ never update parameter weights.

Leaky ReLu

Leaky ReLu(x) = max(.01x, x)

−10 −5 5 10

2

4

6

8

10

x

max (0.1x, x)

Pros

1. Does not saturate.

2. Computationally efficient.

3. In practice training of a Leaky ReLu network converges much faster
than one with sigmoid/tanh activation functions.

4. Activations do not die.

[Mass et al., 2013] [He et al., 2015]

Exponential Linear Units (ELU)

ELU(x) =

{
x if x > 0

α(exp(x)− 1) otherwise

−10 −5 5 10

2

4

6

8

10

x

ELU(x)

Pros & Cons

1. All the benefits of ReLu.

2. Activations do not die.

3. Closer to zero mean outputs.

4. Computation requires exp()

[Clevert et al., 2015]

Which Activation Function?

In practice

• Use ReLU.

- Be careful with your learning rates.

- Initialize bias vectors to be slightly positive.

• Try out Leaky ReLU / ELU.

• Try out tanh but don’t expect much.

• Don’t use sigmoid.

Effect of weight initialization & activation function on gradient
flow

Pathological weight initialization

2-layer Neural Network
xd

... hm s3

x3 ... s2

x2 h1 s1

x1

Input: x s1 = W1x+ b1 Output: s = W2h+ b2

h = max(0, s1)

What happens when you initialize each weight matrix entry to
zero? (each Wi,lm = 0)

Initialize with small random numbers

Wi,lm ∼ N(w; 0, .012)

What happens in this case?

Initialize with small random numbers

Wi,lm ∼ N(w; 0, .012)

What happens in this case?

Works okay for small networks, but can lead to non-homogeneous
distributions of activations across the layers of a deep network.

Some activation histograms

• Initialize a 10-layer network with 500 nodes at each layer.

• Use a tanh activation function at each layer.

• Initialize weights will small random numbers.

• Generate random input data (N(0, 12)) with d = 500.

Some activation histograms

• Initialize a 10-layer network with 500 nodes at each layer.

• Use a tanh activation function at each layer.

• Initialize weights will small random numbers.

• Generate random input data (N(0, 12)) with d = 500.

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

Layer 1 Layer 2 Layer 3 Layer 4

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

Layer 5 Layer 6 Layer 7 Layer 8

Histograms of activations at each layer

Some activation histograms

• All activations become zero at the layers > 2.

• What happens in the backward pass of the back-prop algorithm?

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

Layer 1 Layer 2 Layer 3 Layer 4

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

Layer 5 Layer 6 Layer 7 Layer 8

Histograms of activations at each layer

Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (x, y):

• Let

g = − yT

yTp

(
diag(p)− ppT

)

• for i = k, k − 1, . . . , 1

1. The gradient of J w.r.t. bias vector bi

∂J

∂bi
= g

2. Gradient of J w.r.t. weight matrix Wi

∂J

∂Wi
= gTx(i)T + 2λWi

3. Propagate the gradient vector g to the previous layer (if i > 1)

g = gWi

g = g diag(Ind(s(i) > 0))

Change the initialization to bigger random numbers

• Initialize a 10-layer network with 500 nodes at each layer.

• Use a tanh activation function at each layer.

• Initialize weights with bigger random numbers: Wi,lm ∼ N(w; 0, 12).

• Generate random input data (N(0, 12)) with d = 500.

Change the initialization to bigger random numbers

• Initialize a 10-layer network with 500 nodes at each layer.

• Use a tanh activation function at each layer.

• Initialize weights with bigger random numbers: Wi,lm ∼ N(w; 0, 12).

• Generate random input data (N(0, 12)) with d = 500.

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

Layer 1 Layer 2 Layer 3 Layer 4

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

Layer 5 Layer 6 Layer 7 Layer 8

Histograms of activations at each layer

Change the initialization to bigger random numbers

• Almost all neurons completely saturated, either -1 or +1.

• =⇒ Gradients will be all zero
• (Remember the picture of the gradient of tanh.)

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

Layer 1 Layer 2 Layer 3 Layer 4

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1
0

0.2

0.4

0.6

0.8

1

Layer 5 Layer 6 Layer 7 Layer 8

Histograms of activations at each layer

Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (x, y):

• Let

g = − yT

yTp

(
diag(p)− ppT

)

• for i = k, k − 1, . . . , 1

1. The gradient of J w.r.t. bias vector bi

∂J

∂bi
= g

2. Gradient of J w.r.t. weight matrix Wi

∂J

∂Wi
= gTx(i)T + 2λWi

3. Propagate the gradient vector g to the previous layer (if i > 1)

g = gWi

g = g diag(tanh′(s(i)))

Change the initialization to Xavier initialization

• Initialize a 10-layer network with 500 nodes at each layer.

• Use a tanh activation function at each layer.

• Initialize weights with Xavier initialization: Wi,lm ∼ N(w; 0, 1/
√
500).

• Generate random input data (N(0, 12)) with d = 500.

Change the initialization to Xavier initialization

• Initialize a 10-layer network with 500 nodes at each layer.

• Use a tanh activation function at each layer.

• Initialize weights with Xavier initialization: Wi,lm ∼ N(w; 0, 1/
√
500).

• Generate random input data (N(0, 12)) with d = 500.

−1 0 1

0.05

0.1

0.15

−1 0 1

0.05

0.1

0.15

−1 0 1

0.05

0.1

0.15

−1 0 1

0.05

0.1

0.15

Layer 1 Layer 2 Layer 3 Layer 4

−1 0 1

0.05

0.1

0.15

−1 0 1

0.05

0.1

0.15

−1 0 1

0.05

0.1

0.15

−1 0 1

0.05

0.1

0.15

Layer 5 Layer 6 Layer 7 Layer 8

Histograms of activations at each layer

Xavier initialization doesn’t work for ReLu activation

• Initialize a 10-layer network with 500 nodes at each layer.

• Use a ReLu activation function at each layer.

• Initialize weights with Xavier initialization: Wi,lm ∼ N(w; 0, 1/
√
500).

• Generate random input data (N(0, 12)) with d = 500.

−1 0 1
0

0.2

0.4

0.6

−1 0 1
0

0.2

0.4

0.6

−1 0 1
0

0.2

0.4

0.6

−1 0 1
0

0.2

0.4

0.6

−1 0 1
0

0.2

0.4

0.6

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

−1 0 1
0

0.2

0.4

0.6

−1 0 1
0

0.2

0.4

0.6

−1 0 1
0

0.2

0.4

0.6

−1 0 1
0

0.2

0.4

0.6

−1 0 1
0

0.2

0.4

0.6

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10

Histograms of activations at each layer

Proper Initialization an active area of research

• Understanding the difficulty of training deep feedforward neural
networks by Glorot and Bengio, 2010

• Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks by Saxe et al, 2013

• Random walk initialization for training very deep feedforward
networks by Sussillo and Abbott, 2014

• Delving deep into rectifiers: Surpassing human-level performance on
ImageNet classification by He et al., 2015

• Data-dependent Initializations of Convolutional Neural Networks by
Krähenbühl et al., 2015

• All you need is a good init, Mishkin and Matas, 2015

Lessening the effect of initialization: Batch normalization

Batch Normalization

• Want unit Gaussian activations at each layer?
Just make them unit Guassian!

• Idea introduced in:
Batch Normalization: Accelerating Deep Network Training by Reducing Internal

Covariate Shift, S. Ioffe, C. Szegedy, arXiv 2015.

• Consider activations at some layer for a batch: s
(j)
1 , s

(j)
2 . . . , s

(j)
n

• To make each dimension unit gaussian, apply:

ŝ
(j)
i = diag(σ1, . . . , σm)−1

(
s
(j)
i − µ

)

where

µ =
1

n

n∑

i=1

s
(j)
i , σ2

p =
1

n

n∑

i=1

(s
(j)
i , p− µp)2

Batch Normalization

• Usually apply normalization after the fully connected layer
before non-linearity.

• Therefore for a k−layer network have
- for i = 1, . . . , k − 1

for (x(i−1), y) ∈ D ← Apply ith linear transformation to batch

s(i) =Wix
(i−1) + bi

end
Compute batch mean and variances of ith layer:

µ =
1

|D|
∑

s(i)∈D
s
(i)
, σ

2
j =

1

|D|
∑

s(i)∈D

(
s
(i)
j − µj

)2
for j = 1, . . . ,mi

for (s(i), y) ∈ D ← Apply BN and activation function

ŝ(i) = BatchNormalise(s(i),µ, σ1, . . . , σmi)

x(i) = max
(
0, ŝ(i)

)

end
end

- Apply final linear transformation: s(k) =Wkx
(k−1) + bk

Batch Normalization: Scale & shift range

• Can also allow the network to squash and shift the range

ŝ(i) = γ(i)ŝ(i) + β(i)

of the ŝ(i)’s at each layer.

• Can learn the γ(i)’s and β(i)’s and add them as parameters of
the network.

• To keep things simple this added complexity is often omitted.

Benefits of Batch Normalization

• Improves gradient flow through the network.

• Reduces the strong dependence on initialization.

• =⇒ learn deeper networks more reliably.

• Allows higher learning rates.

• Acts as a form of regularization.

If training a deep network, you should use Batch Normalization.

Batch Normalization at Test Time

• At test time do not have a batch.

• Instead fixed empirical mean and variances of activations at
each level are used.

• These quantities estimated during training (with running
averages).

Back-Prop for a Batch Normalization layer.

Computational Graph for a BN layer

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

• Compute the mean and variance for the scores in the batch:

µb =
1

n

n∑

i=1

si, vb,j =
1

n

n∑

i=1

(si,j − µb,j)2

where vb = (vb,1, vb,2, . . . , vb,m)T . (n = 2 in the figure.) Define

Vb = diag (vb + ε)

• Apply batch normalization function to each score vector:

ŝi = V
− 1

2
b (si − µb)

Gradient Computations for a BN layer

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

• Want to compute ∂J
∂si

for each si in the batch.

• The children of node si are {ŝi,vb,µb} thus

∂J

∂si
=
∂J

∂ŝi

∂ŝi
∂si

+
∂J

∂vb

∂vb
∂si

+
∂J

∂µb

∂µb
∂si

• Let’s look at the individual gradients and Jacobians.

Gradient Computations for a BN layer

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

∂J

∂si
=

∂J

∂ŝi
↑

assume already computed

∂ŝi
∂si

+
∂J

∂vb

∂vb
∂si

+
∂J

∂µb

∂µb
∂si

Gradient Computations for a BN layer

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

∂J

∂si
=
∂J

∂ŝi

∂ŝi
∂si

+
∂J

∂vb

∂vb
∂si

+
∂J

∂µb

∂µb
∂si

• The equation relating ŝi to vb (remember Vb = diag(vb + ε))

ŝi = V
− 1

2
b (si − µb)

• Therefore

∂ŝi
∂si

= V
− 1

2
b

Gradient Computations for a BN layer

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

∂J

∂si
=
∂J

∂ŝi

∂ŝi
∂si

+
∂J

∂vb

∂vb
∂si

+
∂J

∂µb

∂µb
∂si

• The children of node vb are {ŝ1, . . . , ŝn}
• Therefore

∂J

∂vb
=

n∑

i=1

∂J

∂ŝi

∂ŝi
∂vb

Gradient Computations for a BN layer

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

∂J

∂si
=
∂J

∂ŝi

∂ŝi
∂si

+
∂J

∂vb

∂vb
∂si

+
∂J

∂µb

∂µb
∂si

• The children of node vb are {ŝ1, . . . , ŝn}
• Therefore

∂J

∂vb
=

n∑

i=1

∂J

∂ŝi
↑

assume known

∂ŝi
∂vb

Gradient Computations for a BN layer

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

∂J

∂si
=
∂J

∂ŝi

∂ŝi
∂si

+
∂J

∂vb

∂vb
∂si

+
∂J

∂µb

∂µb
∂si

• The children of node vb are {ŝ1, . . . , ŝn}
• Therefore

∂J

∂vb
=

n∑

i=1

∂J

∂ŝi

∂ŝi
∂vb
↑

compute now

Gradient Computations for a BN layer

• The equation relating ŝi to vb (remember Vb = diag(vb + ε))

ŝi = V
− 1

2
b (si − µb)

• The local Jacobian we want to compute

∂ŝi

∂vb

=




∂ŝi,1
∂vb,1

· · · ∂ŝi,1
∂vb,m

.

.

.

.

.

.

.

.

.
∂ŝi,m
∂vb,1

· · · ∂ŝi,m
∂vb,m




• Computing the derivative for each individual element:

∂ŝi,j
∂vb,k

=

{
− 1

2
(vb,k + ε)−

3
2 (si,k − µb,k) if j = k

0 otherwise

• In matrix form

∂ŝi
∂vb

= −1

2
V
− 3

2
b (si − µb)

Gradient Computations for a BN layer

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

∂J

∂si
=
∂J

∂ŝi

∂ŝi
∂si

+
∂J

∂vb

∂vb
∂si

+
∂J

∂µb

∂µb
∂si

• Next ∂vb
∂si

= 2
n

diag (si − µb).

• As

vb,j =
1

n

n∑

l=1

(
sl,j − µb,j

)2

and

∂vb,j

∂si,k
=

{
2
n

(
si,j − µb,j

)
if j = k

0 otherwise

Gradient Computations for a BN layer

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

∂J

∂si
=
∂J

∂ŝi

∂ŝi
∂si

+
∂J

∂vb

∂vb
∂si

+
∂J

∂µb

∂µb
∂si

• The children of node µb are {ŝ1, . . . , ŝn,vb}.
• Therefore

∂J

∂µb
=

n∑

i=1

∂J

∂ŝi

∂ŝi
∂µb

+
∂J

∂vb

∂vb
∂µb

Gradient Computations for a BN layer

∂J

∂µb
=

n∑

i=1

∂J

∂ŝi

∂ŝi
∂µb

+
∂J

∂vb

∂vb
∂µb

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

• The equation relating ŝi to µb (remember Vb = diag(vb + ε))

ŝi = V
− 1

2
b (si − µb)

• The local Jacobian we want to compute

∂ŝi
∂µb

= −V −
1
2

b

Gradient Computations for a BN layer

∂J

∂µb
=

n∑

i=1

∂J

∂ŝi

∂ŝi
∂µb

+
∂J

∂vb
↑

already calculated

∂vb
∂µb

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

Gradient Computations for a BN layer

∂J

∂µb
=

n∑

i=1

∂J

∂ŝi

∂ŝi

∂µb
+

∂J

∂vb

∂vb

∂µb

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

• Next ∂vb
∂µb

= − 2
n

diag
(∑n

i=1 (si − µb)
)
.

• As

vb,j =
1

n

n∑

i=1

(
si,j − µb,j

)2

and

∂vb,j

∂µb,k
=

{
− 2
n

∑n
i=1

(
si,j − µb,j

)
if j = k

0 otherwise

Gradient Computations for a BN layer

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

∂J

∂si
=
∂J

∂ŝi

∂ŝi
∂si

+
∂J

∂vb

∂vb
∂si

+
∂J

∂µb

∂µb
∂si

• The equation relating µb to sl’s is

µb =
1

n

n∑

l=1

sl

• Therefore

∂µb
∂si

=
1

n

Putting everything together

x1 s1 ŝ1 h1

W b µb vb

x2 s2 ŝ2 h2

Wx1 + b max(0, ŝ1)

Wx2 + b

max(0, ŝ2)

∂J

∂vb
= −1

2

n∑

i=1

∂J

∂ŝi
V
− 3

2
b (si − µb)

∂J

∂µb
= −

n∑

i=1

∂J

∂ŝi
V
− 1

2
b − 2

n

∂J

∂vb
diag

(
n∑

i=1

(si − µb)

)

∂J

∂si
=
∂J

∂ŝi
V
− 1

2
b +

2

n

∂J

∂vb
diag (si − µb) +

∂J

∂µb

1

n

