A new class of scoring functions

Linear scoring function 2-layer Neural Network
Lecture 4 - k-layer N | Networks s—Wx4b = Wix + by
h = max(0,s;)

DD2424 s=Wyh+b,

April 8, 2017

pat: x o= Wix by b .

Not restricted to two layers Some terminology

3-layer Neural Network

2-layer Neural Network 3-layer Neural Network s; = Wix+b;
s, = Wix+b s = Wyx+b 1st hidden layer activations — h; = max(0, 1) < apply non-linearity via activation fn
1 =W 1 1= Wi 1
h = max(0,s;) h; = max(0,s;) s2 = Wzhi + b,
s = Wyh + by 2 = Wyh + by 2nd hidden layer activations — hy = max(0,82) + apply non-linearity via activation fn

Output responses — s = Wihy + by

hy = max(0,s)
s = Wshy + by

O 1= Wi+ b

Sometimes referred to as a 2-hidden-layer neural network.




Computational Graph of our 2-layer neural network 2-layer neural network with probabilistic outputs

Wix + by max(0,51) Wah + by

me +by Omax(x1,s| )/h\weh + bzc_\soﬂmx(s)O

Options for activation functions Options for activation Functions

Sigmoid tanh RelLu Leaky ReLu

ife>0

0(@) = ey tanh(z) = SR@ewn Rel y(z) = max(0, x) 0.1z, ELU(z) = { "
et P Fen(e) max(0.12,z) @ = a(expx) — 1)) otherwise

Activation function is applied independently to each element of the score o L L
vector Activation function is generally applied independently to each element of
vector.



Options for Activation Functions  Effect of the number of hidden nodes in a 2 layer network

m=3 m = 20 m = 30

‘/ ® m is the number of nodes in the hidden layer.

Sigmoid tanh RelLu

m =100

tanh(z) = R@—expa)  Re| (1) = max(0, 7)

o(z) = exp(z) Fexp(—o)

1
T

* No regularization.
In modern networks RelU is the most common activation function.

Result depends on parameter initialization Effect of regularization

J(D,0,0)= Y Ux,4.0) + \R(©)
(xy)eD
m=3 m = 20 m = 30 m =100
® 1 is the number of nodes in the hidden layer.
* No regularization. ® m = 100 nodes in the hidden layer.
o Different random parameter initialization to previous slide. o L, regularization.

Do not use size of neural network as a regularizer.
Use stronger regularization.



High-level overview of how to train network

Big Model + Regularize vs Small Model Mini-batch SGD (or variant)

Small model Big model Big model Loop

. 1. Sample a batch of the training data.
+ Regularize

2. Forward propagate it through the graph and calculate
loss/cost.

3. Backward propagate to calculate the gradients.

4. Update the parameters using the gradient.

U

Gradient Computations for a k-layer neural network

Back propagation for 2-layer neural network

W2 + W

For a single labelled training example:

1. Forward propagate it through the graph and calculate loss.

2. Backward propagate to calculate the gradients.



Back propagation layer neural network Backward Pass: Gradient of current node

Starting point of our demonstration

IWA* + W

W31+ [

For a single labelled training example:

1. Forward propagate it through the graph and calculate loss.
1 this is straightforward. In Lecture 3 explicitly computed filled in /ocal Jacobians and
gradients.
2. Backward propagate to calculate the gradients. - rocus on this

ward Pass

Compute local Jacobian of node s w.r.t. its child h

W[+ W2l

s =Wsoh+ by

® The Jacobian we need to compute: 2= — P
ol o1 0108
s T oh s oh
e The individual derivatives: %IL = Waj

o In vector notation: 9% =W,



Backward Pass

Backward Pass

Compute gradient of J w.r.t. node s;

Compute local Jacobian of node h w.r.t. its child s;

o The Jacobian we need to compute: 2 = J
Dhn e 9J  9J oh
T T vy
nd “0 s ds1  Ohdsy
o The individual derivatives: 2 = 4 M40 >0 ifi=j
EERR ) otherwise
Backward Pass

2 diag(Ind(s: > 0))

® In vector notation: 73 =

Backward Pass
Compute gradient of J w.r.t. node b,

Compute local Jacobian of node s; w.r.t. its child b;

WAl + [[Wa

W + (Wl

sy 1x + by
P51 P51
o The Jacobian we need to compute: e — . 07
B . . aJ _ d.J sy
Oby sy Oby
1ifi=
o The individual derivatives: 2:1: a
1.4 0 otherwise

=1Im

© In vector notation: et



W2+ Wl

[51 = Wix + b1 = (In @ x) vec(I11)

91,1 LAWY
vy Fdm
® Let v =vec(W1). Jacobian to compute: 2L —
P51,m P51m
vy Tdm
if(i—1)d+1<j<id
o The individual derivatives: St

otherwise

® In vector notation: 2L = I,,, @ x”

Can convert

o)
(where g =

©/©

[51= Wix+ by = (In x7) vec(W1) + by |

% = (<" o< 9uxT) + 2Avec(W)"
£ from a vector (1 x md) back to a 2D matrix (m x d):
ylx]
a7 gox"

— s Ty T -
- +2AW =g x' + 220

gox

W31+ [

‘ s1 = Wix + by = (I, ®x7) vec(W1) + by ‘

0] _ 01 0 9] __or
vec(Wr) — Os1 dvec(Wy) ' Or dvec(Wh)

= (gix" gx" gimxT) + Avec(W1)T  « gradient needed for feaning
if we set g = 22

Aggregated backward pass f

a 2-layer neural network

1. Let
"
Y (g T
&= — 5 (diag(p) —pP
5 (@e®) )
2. Gradient of J w.r.t. second bias vector is the 1 x ¢ vector
al
by 8

w

Gradient of J w.r.t. second weight matrix W is the ¢ x m matrix

2 Ty T
— =g h 2AW3
oW, g + 2

4. Propagate the gradient vector g to the first layers
g=gl2
g = g diag(Ind(s1 > 0))« sssuming Rel activation
5. Gradient of J w.r.t. the first bias vector is the 1 x d vector
a1
N
6. Gradient of J w.r.t. the first weight matrix W is the m x d matrix
aJ T ,
_ AW
;8 X + 22w



Gradient Computations for a mini-batch Forward pass for a k-layer neural network

2-layer scoring function + SOFTMAX + cross-entropy loss + Regularization

o Compute gradients of [ w.r.t. Wi, Wa, by, by for each (x,y) € D“):
- Set all entries in %, %‘(7%1

- for (x,y) € D®
1. Letg=-Y diag(p) — pp” )

oL
and i to zero.

2. Add gradient of [ w.r.t. by computed at (x, y)

3. Propagate the gradients

4. Add gradient of [ w.r.t. firs

by = W,

- Divide by the number of entries in D(*)

oL . oL o
/:\‘D()\, —_— D[)\ fori=1,2
s b,
o Add the gradient for the regularization term
0 _ oL o _ oL
DL w21 PL i
o, ow, b, ~ ob,

Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (x,y):

® Let

(diog(p) — pP")

o fori=kk—1,...,1
1. The gradient of J w.r.t. bias vector b;

7.
b, ©
2. Gradient of J w.r.t. weight matrix W;

o) _ T er .
g, =80T 0w

3. Propagate the gradient vector g to the previous layer (if i > 1)

g=gW;
g = g diag(Ind(s”) > 0))

o Let x(¥ = x represent the input.

o fori=1,.. k-1

s@ = wix"Y 4 b,
X0 — max (0,89)
© Apply the final linear transformation
s = Wix® Y 4 by
® Apply SOFTMAX operation to turn final scores into probabilities

exp(s™)

P = ITexp(s)

® Apply cross-entropy loss and regularization to measure performance

ound truth |z

J gy p)+ A Wi

Assumed ReLu is the activation function at each intermediary layer

Training Neural Networks a little bit of history



A bit of history A bit of history

Perceptron algorithm invented by Frank
Rosenblatt (1957).

© Mark 1 Perceptron machine

First implementation of the perceptron algorithm.

Machine was connected to camera producing
20 x 20 pixel image and recognized letters.

o Perceptron classification fn:
1 ifw'x+b>0
0 otherwise

For labelled training example (x,y) (y € {~1,1})
the Perceptron loss is

Lp(x, y; w) = max(0, —y(w” x + b))

o Update rule: Use SGD to learn w. If training
example (xi,y;) is incorrectly classified then

W W X

A bit of history

Learning Internal Representations by Error Propagation, D. Rumelhart, G, Hinton and R. Williams, Parallel

Distributed Processing: Explorations in the Microstructure of Cogition, 1986,

-

oy £ Bl o

First time back-propagation became popular

ADALINE (Adaptive Linear Element) developed by Widrow and Hoff at
Stanford in 1960.

o Adaline a single layer neural network with one output

g=wix+b
© Loss function: for labelled training example (x,y)
oy, w) = (y = (w'x +8)* = (y - 9)°
* Update rule: Use SGD with learning rate 7 to learn w:

W w iy —§)x

® Extension Madaline: a three fully connected, feed-fc

neural n < architecture for classification

A bit of history

New wave of research in Deep Learning.

Ability to train networks with
many layers.

g

Mixture of unsupervised and
supervised training.

0
di

Il
B3

o Unsupervised: Encoding layers
first learnt in stagewise manner
using RBMs (restricted Boltzman
machines).

fl-&
33

[l

Decode layers using an
auto-encoder.

Supervised: Back-prop used to
do final update of weights.
Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov, Science, 2006



First Very Convincing Results First Very Convincing Results
o Context-D. Pre-trained Deep Neural for Large . ifi with deep ional neural networks A.
Vocabulary Speech Recognition, G. Dahl, D. Yu, L. Deng, A. Acero, Krizhevsky, |. Sutskever, G. Hinton, 2012.
2010.

Trationprobabites

Obsaruation

® Beat the stagnating established approaches of

s ?T_!“" Handcrafted features + kernel SVM.
SV B A,

o Improved results on ImageNet by ~11%.
o Beat the widely established approach of GMM-HMM with a DNN-HMM.

o Improved results on popular datasets by 5.8% and 9.2%.

Better understanding of gradient flows during BackProp helped
with these breakthroughs
Understanding Effect of Activation Functions

_ 1
T 1+ exp(

® Squashes numbers to range [0, 1].

e Has nice interpretation as a saturating firing rate of a neuron



Sigmoid Sigmoid
T Tt exp(—a) / .

Problems
1. Saturated activations kill the gradients
- Have a sigmoid activation
s=Wx+b
h=o(s)
- Derivative of the sigmoid function is:
5 exp(-s) ie
O _ [ rexpian (S Wiz
Ds; 0 otherwise
- As
8] _ 9J o _ 0J
P o (si)
9si  Oh; 0s;  Oh;

Sigmoid

What happens to gradient of J w.r.t. s; when |

1

7(@) = 1+ exp(—x)

Problems
1. Saturated activations kill the gradients.

2. Sigmoid outputs are not zero-centered

- Have a sigmoid activation
s=Wx+b, h=o(s)
- Then
aJ _ dJ Oh; dsi _ aJ o(s) e
ow; Ohi 9s; Ow; Ohi T
i postive a1l positiv
positive or negative

when all entries in x are positive?

What happens to 2
= entries of 2L are either all positive or all negative

Problems
1. Saturated activations kill the gradients.

2. Sigmoid outputs are not zero-centered

- Have a sigmoid activation
—Wx+b
h=o(s)
- Then
;ii = o s e = B 7
when all entries in x are positive?

What happens to 22

Sigmoid

T 1+exp(—x)

Problems
1. Saturated activations kill the gradients.

2. Sigmoid outputs are not zero-centered

- Have a sigmoid activation
s=Wx+b, h=o(

- Then
9 _ 9 0h; dsi _ DI 9J dhi dsi _ 9J
= s gw — B = o e e = o X"
Owi  Ohi ds; Ow;  dw; Oh; 9s; dwi  Ohy
What is -2 when all entries in x are +-tive? (occurs after applying sigmoid)
22

— entries of
— inefficient 7ig-zag update paths to find optimal w;



Sigmoid tanh

1 (z) — exp(—x)
o(z) = ———— tanh(z) = W) — Xp=T)
1+ exp(— @) exp(x) + exp(—z)
Problems Properties
1. Saturated activations kill the gradients. 1. Squashes numbers to range [—1,1].
2. Sigmoid outputs are not zero-centered 2. Tanh outputs are zero-centered

3. exp() is expensive to compute 3. Saturated activations kill the gradients.

ReLu(z) = max(0,z)

Relu(z) = max(0, z) Problems

1. Output is not zero-centered

Pros 2. Negative inputs result in zero gradients
1. Does not saturate for large positive z - Have a Relu activation
s=Wx+b
2. Very computationally efficient h = max(0,s)

- Derivative of the ReLu function is:

3. In practice training of a ReLu network converges much faster than oh {1 fizj&s; >0

0 otherwise

one with sigmoid/tanh activation functions, %5, =
g

- Then

a7 _ 8J o 7{;,’7«’ if ;>0

Bs;  Oh; dsi |0 otherwise



Relu(z) = max(0, z)
Leaky RelLu(z) = max(.01lz,z)

Problems

Pros
1. Output is not zero-centered

1. Does not saturate
2. Negative activations have zero gradients and freezes some

parameter weights.
As

N

Computationally efficient

s=Wx+b, h=max(0,s)

w

In practice training of a Leaky ReLu network converges much faster
then than one with sigmoid/tanh activation functions.

O _ 9J 0k 0si _ [HEXT ifsi>0
Ow;  Oh; Os; Ow;

= dead ReLU will never activate [Mass et al., 2013] [He et al., 2015]

— never update parameter weights.

b

0 otherwise Activations do not die.

Exponential Line Activation Function
2 ifr>0 In practice
ELU(z) = ;
afexp(z) — 1) otherwise e Use RelU.
- Be careful with your learning rates.
Pros & Cons Initialize bias vectors to be slightly positive
1. All the benefits of ReLu

e Try out Leaky ReLU / ELU.

~

Activati ! t d
ctivations do not die e Try out tanh but don't expect much.

Lt

Closer to zero mean outputs B R
P e Don't use sigmoid.

4. Computation requires exp()

[Clevert et al., 2015]



Pathological weight initialization

2-layer Neural Network

Effect of weight initialization & activation function on gradient
flow

Ot 5= Wb+ by

What happens when you initialize each weight matrix entry to
zero? (each W, = 0)

Initialize with small random numbers Initialize with small random numbers

Witm ~ N(w;0,.01%) Wigm ~ N(w;0,.01%)

What happens in this case? What happens in this case?

Works okay for small networks, but can lead to non-homogeneous
distributions of activations across the layers of a deep network.



Some activation histograms Some activation histograms

e lInitialize a 10-layer network with 500 nodes at each layer. © Initialize a 10-layer network with 500 nodes at each layer.
 Use a tanh activation function at each layer © Use a tanh activation function at each layer.
o Initialize weights will small random numbers.

o Initialize weights will small random numbers !
o Generate random input data (N(0,12)) with d = 500.

® Generate random input data (N (0,1?)) with d = 500.

SR £ S W R E
Layer 1 Layer 2 Layer 3 Layer 4
Layer 5 Layer 6 Layer 7 Layer 8

Histograms of activations at each layer

Some activation histograms Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (x,y):
e All activations become zero at the layers > 2. o Let

o What happens in the backward pass of the back-prop algorithm? ) o
(d'ag(p) ~PP )

o fori=kk—1,..1
o o 1. The gradient of J w.r.t. bias vector b;
IS N W ) ‘ a‘,
b, &
Layer 1 Layer 2 Layer 3 Layer 4 i
2. Gradient of .J w.r.t. weight matrix W;
0 _ gtxOT oW,
oW,
3. Propagate the gradient vector g to the previous layer (if i > 1)
Layer 5 Layer 6 Layer 7 Layer 8 g=gW;

Histograms of activations at each layer g = g diag(Ind(s'") > 0))



nge the initialization to bigger random numbers Change the initialization to bigger random numbers

e lInitialize a 10-layer network with 500 nodes at each layer. © Initialize a 10-layer network with 500 nodes at each layer.
 Use a tanh activation function at each layer © Use a tanh activation function at each layer.

R s o B
o Initialize weights with bigger random numbers: W; i, ~ N (w;0,1%) ® Initialize weights with bigger random numbers: W, 1 ~ N(w;0,17).

G 1t d il t data (N(0,1% ith d = 500.
o Generate random input data (N'(0,1%)) with d = 500. ® Generate random input data (N'(0,1%)) wi 5

1 1 A1 |

Layer 1 Layer 2 Layer 3 Layer 4

Layer 5 Layer 6 Layer 7 Layer 8
Histograms of activations at each layer

nge the initialization to bigger random numbers

The gradient computation for one training example (x,y):
® Let

® Almost all neurons completely saturated, either -1 or +1

® — Gradients will be all zero

@ (Remember the pictre of the gracient of <ann)

(diag(p) — pP")

o fori=kk—1,...,1
1. The gradient of .J w.r.t. bias vector b;

:iL J:iL J:iL J‘:L i w

x x Tb, g
Layer 1 Layer 2 Layer 3 Layer 4 2. Gradient of .J w.r.t. weight matrix Wi
:‘:1 =g"xOT + 2w,
"l L i "l L i ] L 1 'l L 1 3. Propagate the gradient vector g to the previous layer (if i > 1)
- : " T g=gW
Layer 5 Layer 6 Layer 7 Layer 8

g = g diag(tanh’(s'

- - )
Histograms of activations at each layer



Change the initialization to Xavier initialization Change the initialization to Xavier initialization

® Initialize a 10-layer network with 500 nodes at each layer. © Initialize a 10-layer network with 500 nodes at each layer.

o Use a tanh activation function at each layer. ® Use a tanh activation function at each layer.
o Initialize weights with Xavier initialization: Wi im ~ N (w; 0, 1/v/500)

® Generate random input data (N (0,1?)) with d = 500.

,1/v/500).

o Initialize weights with Xavier initialization: ;1. ~ N(
o Generate random input data (N(0,12)) with d = 500.

I P S 1 N N

Layer 1 Layer 2 Layer 3 Layer 4
Layer 5 Layer 6 Layer 7 Layer 8

Histograms of activations at each layer

Xavier initialization doesn't work for ReLu activation Proper Initialization an active area of research

o Initialize a 10-layer network with 500 nodes at each layer.  Understanding the difficulty of training deep feedforward neural
e Use a ReLu activation function at each layer. networks by Glorot and Bengio, 2010
o Initialize weights with Xavier initialization: Wi.im ~ N (w;0,1/v/500). . " . N "
niialize weghts with Xavir infiaization 1V, (;0,1/+/500) o Exact solutions to the nonlinear dynamics of learning in deep linear
® Generate random input data (N(0,1%)) with d = 500. neural networks by Saxe et al, 2013
 Random walk initialization for training very deep feedforward
' ! ! ! . networks by Sussillo and Abbott, 2014
| | | | | © Delving deep into rectifi ing h level p on
' ' ' ' ' ImageNet classification by He et al., 2015
® Dat itializations of C ional Neural b
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Koot <t ol 2015 u d
 All you need is a good init, Mishkin and Matas, 2015
Layer 6 Layer 7 Layer 8 Layer 9 Layer 10

Histograms of activations at each layer



Batch Normalizatio

e Want unit Gaussian activations at each layer?
Just make them unit Guassian!

o Idea introduced in:
Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Lessening the effect of initialization: Batch normalization Covariate Shift, S. loffe, C. Szegedy, arXiv 2015.

o Consider activations at some layer for a batch: s,s{ ... s\

* To make each dimension unit gaussian, apply:

s0) = diag(on,...,om) " (sV) - )

where
Z(s, = 1)
atch Normalizat| Scale & shift range
e Usually apply normalization after the fully connected layer o Can also allow the network to squash and shift the range
before non-linearity.
g0 — A5 4 3G)
o Therefore for a k*layer network have sV =918+ 5
- fori=1
for (x(i=1), ) € D « Apply ith linear transformation to batch of the §(V’s at each layer.
0 = Wix(= 1 b,
end e Can learn the +()'s and ()'s and add them as parameters of
Compute batch mean and variances of ith layer: the network.
Ae LS (0 =) e = -
1Pl iver e To keep things simple this added complexity is often omitted.

D« Apply BN and activation function

50 = BatchNormalise(s”), 1, 01, ..., om,)

X = max (0,69

end
end
- Apply final linear transformation: s() = Wyx(:=1) 4 by,



Benefits of Batch Normalization Batch Normalization at Test Time

o Improves gradient flow through the network. o At test time do not have a batch.
e Reduces the strong dependence on initialization. o Instead fixed empirical mean and variances of activations at

each level are used.

e —> learn deeper networks more reliably.
o These quantities estimated during training (with running
o Allows higher learning rates. averages).

e Acts as a form of regularization.

If training a deep network, you should use Batch Normalization.

Computational Graph for a BN layer

Back-Prop for a Batch Normalization layer.

® Compute the mean and variance for the scores in the batch:

L Lo
== s vy = (i~ bs)’
n i=1 n i=1
where vy = (Uh,1, V5,2, Up,m) - ( e tne ) Define
Vi = diag (ve + )
o Apply batch normalization function to each score vector:

1
S=V, 7 (si— )



Gradient Computations for a BN layer Gradient Computations for a BN layer

9%, 0 dvy 0] o,

s T ovy 0s, | Op, 0si

© Want to compute 22 for each s; in the batch.

assume already computed

 The children of node s; are {8:,vs, 1} thus

OJ _ 905 0T 0vi | 0T O,
Os;  05,0s; O, 0s; O, 05

® Let's look at the individual gradients and Jacobians.

Gradient Computations for a BN layer Gradient Computations for a BN layer

8J Ovy

K2 01 97 0% _ 0J vy 0J 9
v, O, e o

Ds. 080, T Ov, Os: T Opsy 08

® The equation relating §; to v; (remember V;, = diag(vy, + ) o The child £ nod o
e children of node v;, are {8,

1
Si=V, % (s — ) o Therefore
o Therefore a7

B -1 v,
s




Gradient Computations for a BN layer

0J _ 078 0J vy 9 dp,

Bs; 08, 0s;  Ov, Os;  Op, Os;

e The children of node vy are {31,...,8,}
o Therefore

A N~ B8
vy 2 % vy
= B

assume known

Gradient Computations for a BN layer

® The equation relating $; to Vi (remember V;, = diag(vy, + )

Fsi—m)
© The local Jacobian we want to compute

03,1

BT
25
vy,
" Piim Piim
LTy o

© Computing the derivative for each individual element:

Fun

® In matrix form

95 _ 1 -3
B = 3V (i)

951y Lok + )2 (s — ) Fi=k
0 otherwise

Gradient Computations for a BN layer

00 _ 0105 01 0vy | 9] g,

Bs, 08, 0s;  Ov, Os;  Opy, Osi

o The children of node vy are {31, 5,}
® Therefore

01 _§~ 01

compute now

Gradient Computations for a BN layer

aJ DJ 98 AJ Ovy AJ Op,

Ds: 080 T vy Os, T Opsy 05

o Next 2% = 2 diag (s; — pr,).
o As

=15 - m?

Oung _ [2(si5—my) #i=k
Bsir |0 otherwise



Gradient Computations for a BN layer Gradient Computations for a BN layer

aJ AJ 05 ()J vy
D

85, Op, v Ers

O _0I08 0T 0w, 0] oy
s 08 0si | Ovy 9s; | Op, Os;

® The equation relating §; to p;, (remember Vi, = diag(vy, + )

o The children of node 1, are {81,...,8,,vs}.
® Therefore &= V,,’% (si — )
a7 Z 01 0. 01 ovy o The local Jacobian we want to compute
08 Dub vy Oy, 95 _ -1
oy, TP
Gradient Computations for a BN layer Gradient Computations for a BN layer
aJ "9 98 | O vy
vy Oy ;Toub vy Opy

O,

© Next it = — 2 diag (1, (si — 1))
o As
1
v = "Z(*w w)°
and

oy _ {f%zr:. (15 =) 5=k

0 otherwise



Gradient Computations for a BN layer Putting everything together

9 dvy | DT O,

Ds: ~ 5 0s T Ovy Os; T Opay Osi

o7 _ 0 05

® The equation relating p, to s;'s is

1
=0 E St
=1
aJ L 209J aJ 1
o ? 4 ———diag(si — p,) + -
s, novy T By

® Therefore
o _ 1

Is; n



