
Virtual Machine II

EP1200 Introduction to
Computing Systems Engineering

slide 2

The compilation challenge

class Main {
 static int x;

 function void main() {
 // Inputs three numbers
 var int a, b, c;
 let a = Keyboard.readInt(“Enter a number”);
 let b = Keyboard.readInt(“Enter a number”);
 let c = Keyboard.readInt(“Enter a number”);
 let x = solve(a,b,c);
 return;
 }
}

 // Solves a quadratic equation (sort of)
 function int solve(int a, int b, int c) {
 var int x;
 if (~(a = 0))
 x=(-b+sqrt(b*b–4*a*c))/(2*a);
 else
 x=-c/b;
 return x;
 }
}

Source code (high-level language)

Our ultimate goal:

Translate high-level
programs into
executable code.

Compiler

0000000000010000
1110111111001000
0000000000010001
1110101010001000
0000000000010000
1111110000010000
0000000000000000
1111010011010000
0000000000010010
1110001100000001
0000000000010000
1111110000010000
0000000000010001
0000000000010000
1110111111001000
0000000000010001
1110101010001000
0000000000010000
1111110000010000
0000000000000000
1111010011010000
0000000000010010
1110001100000001
0000000000010000
1111110000010000
0000000000010001

 ...

Target code

slide 3

The compilation challenge / two-tier setting

if (~(a = 0))
 x = (-b+sqrt(b*b–4*a*c))/(2*a)
else
 x = -c/b

Jack source code push a
 push 0
 eq
 if-goto elseLabel
 push b
 neg
 push b
 push b
 call mult
 push 4
 push a
 call mult
 push c
 call mult
 sub
 call sqrt
 add
 push 2
 push a
 call mult
 call div
 pop x
 goto contLable
elseLabel:
 push c
 neg
 push b
 call div
 pop x
contLable:

Compiler

VM (pseudo) code

0000000000010000
1110111111001000
0000000000010001
1110101010001000
0000000000010000
1111110000010000
0000000000000000
1111010011010000
0000000000010010
1110001100000001
0000000000010000
1111110000010000
0000000000010001
0000000000010000
1110111111001000
0000000000010001
1110101010001000
0000000000010000
1111110000010000
0000000000000000
1111010011010000
0000000000010010
1110001100000001
0000000000010000
1111110000010000
0000000000010001
0000000000010010
1110001100000001
...

VM translator

Machine code

 We’ll develop the Jack-VM
compiler later

 Focus now:

 complete the definition of
the VM language

 translate each VM
command into assembly
commands that perform the
desired semantics

slide 4

// Computes x = (-b + sqrt(b^2 -4*a*c)) / 2*a

if (~(a = 0))
 x = (-b + sqrt(b * b – 4 * a * c)) / (2 * a)
else
 x = - c / b

Typical compiler’s source code input:

The compilation challenge

arithmetic
expressions

function call and
return logic

Boolean
expressions

program flow logic
(branching)

How to translate such high-level code into assembly?

 In a two-tier compilation model, the overall translation challenge is broken between a front-end
compilation stage and a subsequent back-end translation stage

 In our Hack-Jack platform, all the above sub-tasks (handling arithmetic / Boolean expressions and
program flow / function calling commands) are done by the back-end, i.e. by the VM translator.

(previous lecture) (previous lecture) (this lecture) (this lecture)

slide 5

Program flow commands in the VM language

How to translate these three abstractions into assembly?
 Label declaration

 Can be translated directly to assembly commands
 Goto and Conditional goto commands

 Combination of assembly commands that effect the
same semantics (change to stack and program
execution)

label c // label declaration

goto c // unconditional jump to the
 // VM command following the label c

if-goto c // pops the topmost stack element;
 // if it’s not zero, jumps to the
 // VM command following the label c

In the VM language, the program flow abstraction is
delivered using three commands:

VM code example:
function mult 1
 push constant 0
 pop local 0
label loop
 push argument 0
 push constant 0
 eq
 if-goto end
 push argument 0
 push 1
 sub
 pop argument 0
 push argument 1
 push local 0
 add
 pop local 0
 goto loop
label end
 push local 0
 return

slide 6

Subroutines (Functions or Methods)

Subroutines = a major programming artifact

Basic idea: the given language can be extended at will by user-defined
commands (aka subroutines / functions / methods ...)

Important: the language’s primitive commands and the user-defined
commands have the same look-and-feel

This transparent extensibility is the most important abstraction
delivered by high-level programming languages

The challenge: implement this abstraction, i.e. allow the program
control to flow effortlessly between one subroutine to the other

// Compute x = (-b + sqrt(b^2 -4*a*c)) / 2*a
if (~(a = 0))
 x = (-b + sqrt(b * b – 4 * a * c)) / (2 * a)
else
 x = - c / b

slide 7

Subroutines in the VM language

The invocation of the VM’s primitive
commands and subroutines
follow exactly the same rules:

 Caller
 Pushes the necessary argument(s)
 Calls the callee

 Callee
 Removes the argument(s) from the stack,
 Pushes results onto the stack

function mult 1
 push constant 0
 pop local 0 // result (local 0) = 0
label loop
 push argument 0
 push constant 0
 eq
 if-goto end // if arg0 == 0, jump to end
 push argument 0
 push 1
 sub
 pop argument 0 // arg0--
 push argument 1
 push local 0
 add
 pop local 0 // result += arg1
 goto loop
label end
 push local 0 // push result
 return

Called code, aka “callee” (example)
...
// computes (7 + 2) * 3 - 5
push constant 7
push constant 2
add
push constant 3
call mult 2
push constant 5
sub
...

Calling code (example)

VM subroutine
call-and-return
commands

slide 8

The function-call-and-return protocol

The caller’s view:

 When I start executing, my argument segment has been initialized with actual
argument values passed by the caller

 My local variables segment has been allocated and variables are initialized to zero

 The static segment that I see has been set to the static segment of the VM file to
which I belong, and the working stack that I see is empty

 Before exiting, I must push a value onto the stack and then use the command return.

 Before calling a function g, I must push onto the stack as many
arguments as needed by g

 Next, I invoke the function using the command call g nArgs

 After g returns:

 The arguments that I pushed before the call have disappeared
from the stack, and a return value (that always exists)
appears at the top of the stack

 All my memory segments (local, argument, this, that,
pointer) are the same as before the call.

The callee’s (g ‘s) view:

Blue = VM function
writer’s responsibility

Black = black box magic,
delivered by the
VM implementation

Thus, the VM implementation
writer must worry about
the “black operations” only.

function g nVars

call g nArgs

return

slide 9

The implementation of the VM’s stack on the host Hack RAM

Global stack:
the entire RAM area dedicated
for holding the stack

Working stack:
The stack that the current
function sees

At any point of time, only one
function (the current function) is
executing; other functions may
be waiting up the calling chain

Shaded areas: irrelevant to the
current function

The current function sees only the
working stack, and has access
only to its memory segments

The rest of the stack holds the
frozen states of all the
functions up the calling
hierarchy. working stack of

the current function

argument nArgs-1

ARG

saved state of the calling
function. Used by the VM
implementation to restore
the segments of the calling
function just after the
current function returns.

saved THIS

saved ARG

 saved returnAddress

saved LCL

local 0

local 1

. . .
local nVars-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

local variables of
the current function

arguments pushed by the
caller for the current function

slide 10

Implementing the call g nArgs command

Implementation: If the VM is implemented as a
program that translates VM code into assembly code,
the translator must emit the above logic in assembly.

 saved argument nArgs-1

ARG

saved THIS

saved ARG

returnAddress

saved LCL

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

saved THAT

 // In the course of implementing the code of f
 // (the caller), we arrive to the command call g nArgs.
 // we assume that nArgs arguments have been pushed
 // onto the stack. What do we do next?
 // We generate a symbol, let’s call it returnAddress;
 // Next, we effect the following logic:
 push returnAddress // saves the return address
 push LCL // saves the LCL of f
 push ARG // saves the ARG of f
 push THIS // saves the THIS of f
 push THAT // saves the THAT of f
 ARG = SP-nArgs-5 // repositions SP for g
 LCL = SP // repositions LCL for g
 goto g // transfers control to g
returnAddress: // the generated symbol

call g nArgs

None of this code is executed yet ...
At this point we are just generating
code (or simulating the VM code on
some platform)

slide 11

Implementing the function g nVars command

argument nArgs-1

ARG

saved THIS

saved ARG

 saved returnAddress

saved LCL

local 0

local 1

. . .
local nVars-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

Implementation: If the VM is implemented as a program
that translates VM code into assembly code, the
translator must emit the above logic in assembly.

function g nVars

// to implement the command function g nVars,
// we effect the following logic:

g:

 repeat nVars times:
 push 0

slide 12

Implementing the return command

working stack of
the current function

argument nArgs-1

ARG

saved THIS

saved ARG

 saved returnAddress

saved LCL

local 0

local 1

. . .
local nVars-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

Implementation: If the VM is implemented as a program
that translates VM code into assembly code, the
translator must emit the above logic in assembly.

// In the course of implementing the code of g,
// we arrive to the command return.
// We assume that a return value has been pushed
// onto the stack.
// We effect the following logic:
 frame = LCL // frame is a temp. variable
 retAddr = *(frame-5) // retAddr is a temp. variable
 *ARG = pop // repositions the return value
 // for the caller
 SP=ARG+1 // restores the caller’s SP
 THAT = *(frame-1) // restores the caller’s THAT
 THIS = *(frame-2) // restores the caller’s THIS
 ARG = *(frame-3) // restores the caller’s ARG
 LCL = *(frame-4) // restores the caller’s LCL
 goto retAddr // goto returnAddress

return

slide 13

Bootstrapping

SP = 256 // initialize the stack pointer to 0x0100
call Sys.init // call the function that calls Main.main

A high-level jack program (aka application) is a set of class files.
 By a Jack convention, one class must be called Main, and this class must have at
least one function, called main.

The contract: when we tell the computer to execute a Jack program,
the function Main.main starts running

Implementation:
 After the program is compiled, each class file is translated into a .vm file
 The operating system is also implemented as a set of .vm files (aka “libraries”)

that co-exist alongside the program’s .vm files
 One of the OS libraries, called Sys.vm, includes a method called init.

The Sys.init function starts with some OS initialization code (we’ll deal with this
later, when we discuss the OS), then it does call Main.main

 Thus, to bootstrap, the VM implementation has to effect (e.g. in assembly),
the following operations:

slide 14

Proposed API

slide 15

Project

Read Chapter 8 of the book
Do Project 7 from the course web page
• Implement the remaining parts of the VM to assembly compiler by

extending the code you wrote for Project 6
• Submit your solution by 8am on 27 April, 2017

	Virtual Machine II
	The compilation challenge
	The compilation challenge / two-tier setting
	The compilation challenge
	Program flow commands in the VM language
	Subroutines (Functions or Methods)
	Subroutines in the VM language
	The function-call-and-return protocol
	The implementation of the VM’s stack on the host Hack RAM
	Implementing the call g nArgs command
	Implementing the function g nVars command
	Implementing the return command
	Bootstrapping
	Proposed API
	Project

