Interactive Theorem Proving (ITP) Course

Thomas Tuerk (tuerk@kth.se)
KTH

Academic Year 2016/17, Period 4

version e3alacb of Wed Apr 19 09:04:27 2017

Part |

Introduction

/ 42

Motivation

@ Complex systems almost certainly contain bugs.
o Critical systems (e. g. avionics) need to meet very high standards.

@ It is infeasible in practice to achieve such high standards just by
testing.

@ Debugging via testing suffers from diminishing returns.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”
— Edsger W. Dijkstra

Famous Bugs

o Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)

@ Ariane V explosion (1996)
(integer overflow, $1 billion prototype destroyed)

@ Mars Climate Orbiter (1999)
(destroyed in Mars orbit, mixup of units pound-force and newtons)
e Knight Capital Group Error in Ultra Short Time Trading (2012)
(faulty deployment, repurposing of critical flag, $440 lost in 45 min
on stock exchange)

Fun to read
http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

Proof

@ proof can show absence of errors in design
@ but proofs talk about a design, not a real system

@ = testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,

they do not refer to reality.”

— Albert Einstein

Mathematical vs. Formal Proof

Mathematical Proof

@ informal, convince other
mathematicians

@ checked by community of
domain experts

@ subtle errors are hard to find

@ often provide some new
insight about our world

@ often short, but require
creativity and a brilliant idea

Formal Proof

o formal, rigorously use a
logical formalism

@ checkable by stupid
machines

@ very reliable

@ often contain no new ideas
and no amazing insights

@ often long, very tedious, but
largely trivial

We are interested in formal proofs in this lecture.

6

42

Detail Level of Formal Proof

In Principia Mathematica it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

7/42

Automated vs Manual (Formal) Proof

Fully Manual Proof
@ very tedious one has to grind through many trivial but detailed proofs
@ easy to make mistakes
@ hard to keep track of all assumptions and preconditions

@ hard to maintain, if something changes (see Ariane V)

Automated Proof
@ amazing success in certain areas
but still often infeasible for interesting problems

hard to get insights in case a proof attempt fails

even if it works, it is often not that automated
run automated tool for a few days
abort, change command line arguments to use different heuristics
run again and iterate till you find a set of heuristics that prove it fully
automatically in a few seconds

Interactive Proofs

@ combine strengths of manual and automated proofs
@ many different options to combine automated and manual proofs
» mainly check existing proofs (e.g. HOL Zero)
» user mainly provides lemmata statements, computer searches proofs
using previous lemmata and very few hints (e.g. ACL 2)
» most systems are somewhere in the middle
o typically the human user
» provides insights into the problem
» structures the proof
» provides main arguments
o typically the computer
» checks proof
> keeps track of all use assumptions
» provides automation to grind through lengthy, but trivial proofs

Typical Interactive Proof Activities

@ provide precise definitions of concepts

@ state properties of these concepts
@ prove these properties
» human provides insight and structure
» computer does book-keeping and automates simple proofs
build and use libraries of formal definitions and proofs
» formalisations of mathematical theories like
* lists, sets, bags, ...
* real numbers
* probability theory
» specifications of real-world artefacts like
* processors
* programming languages
* network protocols
> reasoning tools

There is a strong connection with programming.

Lessons learned in Software Engineering apply.

10/42

Different Interactive Provers

@ there are many different interactive provers, e.g.

Isabelle/HOL

Coq

PVS

HOL family of provers
ACL2

v

vV vy VY VvYYyYy

@ important differences

» the formalism used
level of trustworthiness
level of automation
libraries
languages for writing proofs
user interface

vV VY vy VY VY

11/42

Which theorem prover is the best one? :-)

@ there is no best theorem prover

@ better question: Which is the best one for a certain purpose?

@ important points to consider
> existing libraries

YV VY VY VY VY VY VvYY

used logic

level of automation

user interface

importance development speed versus trustworthiness
How familiar are you with the different provers?
Which prover do people in your vicinity use?

your personal preferences

In this course we use the HOL theorem prover,
because it is used by the TCS group.

Part Il

Organisational Matters

13/42

Aims of this Course

Aims
e introduction to interactive theorem proving (ITP)

@ being able to evaluate whether a problem can benefit from ITP

hands-on experience with HOL
learn how to build a formal model
learn how to express and prove important properties of such a model

learn about basic conformance testing

use a theorem prover on a small project

Required Prerequisites
@ some experience with functional programming

@ knowing Standard ML syntax

@ basic knowledge about logic (e.g. First Order Logic)

14 /42

Dates

Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016/2017

always in room 4523 (?), between 10 am and noon
each week

Mondays 10:15 - 11:45 lecture
Wednesdays 10:00 - 12:00 practical session
Fridays 10:00 - 12:00 practical session

no lecture on Monday, 1st of May, instead on Wednesday, 3rd May
last lecture: 19th of June
last practical session: 21st of June

9 lectures, 15 practical sessions

15 /42

Exercises

@ after each lecture an exercise sheet is handed out

@ work on these exercises alone, except if stated otherwise explicitly
@ exercise sheet contains due date

» usually 10 days time to work on it

» hand in during practical sessions

> lecture Monday — hand in at latest in next week's Friday session
@ main purpose: understanding ITP and learn how to use HOL

» no detailed grading, just pass/fail
retries possible till pass
if stuck, ask me or one another
practical sessions intend to provide this opportunity

v

v

v

16 /42

Practical Sessions

@ very informal
@ main purpose: work on exercises

v

| have a look and provide feedback

» you can ask questions

> | might sometimes explain things not covered in the lectures
> | might provide some concrete tips and tricks

> you can also discuss with each other

@ attendance not required, but highly recommended
> exception: session on 21st April

@ only requirement: turn up long enough to hand in exercises

@ you need to bring your own computer

17 /42

Passing the ITP Course

o there is only a pass/fail mark
@ to pass you need to

» attend at least 7 of the 9 lectures
> pass 8 of the 9 exercises

18 /42

Communication

we have the advantage of being a small group
therefore we are flexible

so please ask questions, even during lectures

e 6 o6 o

there are many shy people, therefore

» anonymous checklist after each lecture
» anonymous background questionnaire in first practical session

o further information is posted on Interactive Theorem Proving
Course group on Group Web

@ contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se

19 /42

Part Il

HOL 4 History and Architecture

20/ 42

LCF - Logic of Computable Functions

e Standford LCF 1971-72 by Milner et al.
@ formalism devised by Dana Scott in 1969

@ intended to reason about recursively defined
functions

@ intended for computer science applications

@ strengths

» powerful simplification mechanism
» support for backward proof

@ limitations

Robin Milner
» proofs need a lot of memory (1934 - 2010)

» fixed, hard-coded set of proof commands

21/42

LCF - Logic of Computable Functions Il

@ Milner worked on improving LCF in Edinburgh

@ research assistants

v

Lockwood Morris
Malcolm Newey
Chris Wadsworth
Mike Gordon

Edinburgh LCF 1979
introduction of Meta Language (ML)

v vy

ML was invented to write proof procedures
ML become an influential functional programming language

using ML allowed implementing the LCF approach

22 /42

LCF Approach

@ implement an abstract datatype thm to represent theorems

@ semantics of ML ensure that values of type thm can only be created
using its interface

@ interface is very small

> predefined theorems are axioms
» function with result type theorem are inferences

@ —> However you create a theorem, it is valid.

@ together with similar abstract datatypes for types and terms, this
forms the kernel

LCF Approach I

Modus Ponens Example

Inference Rule SML function
N'Fa=b Ara val MP : thm -> thm -> thm
FTUAFDb MP(TFa= b)(Ata)=(TUAF b)

@ very trustworthy — only the small kernel needs to be trusted

o efficient — no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds.

LCF Style Systems

There are now many interactive theorem provers out there that use an
approach similar to that of Edinburgh LCF.

e HOL family

HOL theorem prover
HOL Light

HOL Zero

Proof Power

v

v v VvYy

Isabelle
Nuprl
Coq

History of HOL

1979 Edinburgh LCF by Milner, Gordon, et al.

@ 1981 Mike Gordon becomes lecturer in Cambridge
@ 1985 Cambridge LCF

» Larry Paulson and Geérard Huet

» implementation of ML compiler

» powerful simplifier

» various improvements and extensions

1988 HOL

» Mike Gordon and Keith Hanna
» adaption of Cambridge LCF to classical higher order logic
> intention: hardware verification

1990 HOL90
reimplementation in SML by Konrad Slind at University of Calgary

1998 HOL98
implementation in Moscow ML and new library and theory mechanism

since then HOL Kananaskis releases, called informally HOL 4

26 /42

Family of HOL

@ ProofPower
commercial version of HOL88 by Roger
Jones, Rob Arthan et al.

o HOL Light
lean CAML / OCaml port by John Harrison

e HOL Zero
trustworthy proof checker by Mark Adams
o Isabelle
» 1990 by Larry Paulson
» meta-theorem prover that supports
multiple logics
» however, mainly HOL used, ZF a little
» nowadays probably the most widely used
HOL system
» originally designed for software verification

HOLSS

hol90 ProofPower Isabelle/HOL

HOL Light

hol98 HOL Zero

HOL4

diagram from HOL Light tutorial

27 /42

Part IV

HOL's Logic

28 /42

HOL Logic

o the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

@ this sounds complicated, but is intuitive for SML programmers
@ (S)ML and HOL logic designed to fit each other
@ if you understand SML, you understand HOL logic

HOL = functional programming + logic

Ambiguity Warning
The acronym 'HOL' refers to both the HOL interactive theorem prover
and the HOL logic used by it.

Types

@ SML datatype for types

» Type Variables (’a, «, ’b, 8, ...)
Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

» Atomic Types (c)
Atomic types denote fixed types. Examples: num, bool, unit

» Compound Types ((o1,...,0,)0p)
op is a type operator of arity n and oy, ...,0, argument types. Type
operators denote operations for constructing types.
Examples: num list or ’a # ’b.

» Function Types (o1 — 03)
01 — 03 is the type of total functions from o7 to o5.

@ types are never empty in HOL, i.e.
for each type at least one value exists

@ all HOL functions are total

30 /42

Terms

SML datatype for terms

Variables (x,y,...)

Constants (c,...)

Function Application (f a)

Lambda Abstraction (\x. f x or Ax. fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

vy vy VvYyy

terms have to be well-typed
same typing rules and same type-inference as in SML take place

terms very similar to SML expressions

notice: predicates are functions with return type bool, i.e. no
distinction between functions and predicates, terms and formulae

31/42

Terms Il

HOL term SML expression
0 0

x:’a x:’a

x:bool x:bool

x + 5 x + 5

\x. x +5 fn x => x + 5
(5, T) (5, true)

[5;3;2]++[6] [5,3,2]e[6]

type HOL / SML

num / int

variable of type ’a

variable of type bool

applying function + to x and 5
anonymous (a. k. a. inline) function
of type num -> num

num # bool / int * bool

num list / int list

Free and Bound Variables / Alpha Equivalence

the lambda-expression Ax. t is said to bind the variables x in term t
variables that are guarded by a lambda expression are called bound
all other variables are free

Example: x is free and y is bound in (x =5) A (Ay. (y < x)) 3

the names of bound variables are unimportant semantically

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

Example: Ax. x and Ay. y are alpha-equivalent

@ Example: x and y are not alpha-equivalent

33 /42

Theorems

theorems are of the form I' - p where

» [is a set of hypothesis
» pis the conclusion of the theorem
> all elements of [and p are terms of type bool

[+ p records that using I' the statement p has been proved
notice difference to logic: there it means can be proved
the proof itself is not recorded

theorems can only be created through a small interface in the kernel

34 /42

HOL Light Kernel

o the HOL kernel is hard to explain

» for historic reasons some concepts are represented rather complicated
» for speed reasons some derivable concepts have been added

instead let's look at the HOL Light kernel, which is cleaned-up version

there are two predefined constants
= ’a -> ’a -> bool

» @ : (a -> bool) —> ’a

@ there are two predefined types

> bool
> ind

|

@ the meaning of these types and constants is given by the following
inference rules and axioms

35 /42

HOL Light Inferences |

REFL

Ft=t

lEs=t

AFt=u
————— TRANS
FTUAFs=u

ls=t

ArFu=v

types fit

i COMB

FUAF s(u) =t(v)

lFs=t
x not free in I

M= Ax. s = Ax.t

ABS

——— BETA
F(\x. t)x=t

ASSUME

{ptFp

Fpeqg Abp

EQ_MP
TUAFgq <

36

42

HOL Light Inferences Il

MN=p Al q

DEDUCT_ANTISYM_RULE
(Fr—{gh)u(A-{p})Fp=gq

Mx1, ..oy xa] Foplx, .-y %)

INST
Mt1, ..., ta] E plt1, ..., tn]

Maa, ..., an] b plat, ..., an)

r[/yla” . 77"] I_ P[’Ylw . ~a’7n]

INST_TYPE

37 /42

HOL Light Axioms and Definition Principles

@ 3 Axioms needed

ETA_AX (Ax. tx) =t
SELECT_AX Px = P((Q)P))
INFINITY_AX predefined type ind is infinite

definition principle for constants

» constants can be introduced as abbreviations
» constraint: no free vars and no new type vars

definition principle for types
> new types can be defined as non-empty subtypes of existing types
@ both principles
> lead to conservative extensions
> preserve consistency

38 /42

HOL Light derived concepts

Everything else is derived from this small kernel.

T
AN

—
v
=

—def
—def
—def
—def
—def

(Ap. p) = (Ap. p)

(Apg. (M. fpqg)=(\.fTT)
Apq. (PAq<p)

AP. (P =)x.T)

AP. (Vq. (Vx. P(x) = q) = q)

39 /42

Multiple Kernels

o Kernel defines abstract datatypes
@ one does not need to look at the internal implementation
@ therefore, easy to exchange

@ there are at least 3 different kernels for HOL

» standard kernel (de Bruijn indices)
» experimental kernel (name / type pairs)
» OpenTheory kernel (for proof recording)

40 /42

HOL Logic Summary

@ HOL theorem prover uses classical higher order logic
@ HOL logic is very similar to SML
> syntax
> type system
> type inference
@ HOL theorem prover very trustworthy because of LCF approach
@ there is a small kernel
@ you don't need to know the details of the kernel
@ usually one works at a much higher level of abstraction

41 /42

Part V

Forward Proofs

42/42

	Introduction
	Motivation
	Types of Proofs

