Interactive Theorem Proving (ITP) Course

Thomas Tuerk (tuerk@kth.se)

KTH

Academic Year 2016/17, Period 4

version e3a0acb of Wed Apr 19 09:04:27 2017

1 / 42

Part I

Introduction

2/42

Motivation

- Complex systems almost certainly contain bugs.
- Critical systems (e.g. avionics) need to meet very high standards.
- It is infeasible in practice to achieve such high standards just by testing.
- Debugging via testing suffers from diminishing returns.

"Program testing can be used to show the presence of bugs, but never to show their absence!"

— Edsger W. Dijkstra

Famous Bugs

- Pentium FDIV bug (1994)
 (missing entry in lookup table, \$475 million damage)
- Ariane V explosion (1996)
 (integer overflow, \$1 billion prototype destroyed)
- Mars Climate Orbiter (1999)
 (destroyed in Mars orbit, mixup of units pound-force and newtons)
- Knight Capital Group Error in Ultra Short Time Trading (2012) (faulty deployment, repurposing of critical flag, \$440 lost in 45 min on stock exchange)
- ...

Fun to read

http://www.cs.tau.ac.il/~nachumd/verify/horror.html https://en.wikipedia.org/wiki/List_of_software_bugs

3/42 4/42

Proof

- proof can show absence of errors in design
- but proofs talk about a design, not a real system
- ◆ testing and proving complement each other

"As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality."

— Albert Einstein

Mathematical vs. Formal Proof

Mathematical Proof

- informal, convince other mathematicians
- checked by community of domain experts
- subtle errors are hard to find
- often provide some new insight about our world
- often short, but require creativity and a brilliant idea

Formal Proof

- formal, rigorously use a logical formalism
- checkable by stupid machines
- very reliable
- often contain no new ideas and no amazing insights
- often long, very tedious, but largely trivial

We are interested in formal proofs in this lecture.

5 / 42

6 / 42

Detail Level of Formal Proof

In **Principia Mathematica** it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

Automated vs Manual (Formal) Proof

Fully Manual Proof

- very tedious one has to grind through many trivial but detailed proofs
- easy to make mistakes
- hard to keep track of all assumptions and preconditions
- hard to maintain, if something changes (see Ariane V)

Automated Proof

- amazing success in certain areas
- but still often infeasible for interesting problems
- hard to get insights in case a proof attempt fails
- even if it works, it is often not that automated
 - run automated tool for a few days
 - ▶ abort, change command line arguments to use different heuristics
 - run again and iterate till you find a set of heuristics that prove it fully automatically in a few seconds

Interactive Proofs

- combine strengths of manual and automated proofs
- many different options to combine automated and manual proofs
 - ► mainly check existing proofs (e.g. HOL Zero)
 - user mainly provides lemmata statements, computer searches proofs using previous lemmata and very few hints (e.g. ACL 2)
 - most systems are somewhere in the middle
- typically the human user
 - provides insights into the problem
 - ► structures the proof
 - provides main arguments
- typically the computer
 - ► checks proof
 - ► keeps track of all use assumptions
 - provides automation to grind through lengthy, but trivial proofs

9 / 42

Typical Interactive Proof Activities

- provide precise definitions of concepts
- state properties of these concepts
- prove these properties
 - human provides insight and structure
 - ► computer does book-keeping and automates simple proofs
- build and use libraries of formal definitions and proofs
 - ▶ formalisations of mathematical theories like
 - ★ lists, sets, bags, . . .
 - ★ real numbers
 - ★ probability theory
 - specifications of real-world artefacts like
 - **★** processors
 - * programming languages
 - ★ network protocols
 - ► reasoning tools

There is a strong connection with programming. Lessons learned in Software Engineering apply.

10 / 42

Different Interactive Provers

- there are many different interactive provers, e.g.
 - ► Isabelle/HOL
 - ► Coa
 - ► PVS
 - ► HOL family of provers
 - ► ACL2
 - ▶ ...
- important differences
 - ▶ the formalism used
 - level of trustworthiness
 - ► level of automation
 - ► libraries
 - ► languages for writing proofs
 - user interface
 - •

Which theorem prover is the best one? :-)

- there is no **best** theorem prover
- better question: Which is the best one for a certain purpose?
- important points to consider
 - existing libraries
 - ▶ used logic
 - ► level of automation
 - user interface
 - ► importance development speed versus trustworthiness
 - ► How familiar are you with the different provers?
 - ▶ Which prover do people in your vicinity use?
 - ▶ your personal preferences
 - ▶ ...

In this course we use the HOL theorem prover, because it is used by the TCS group.

11/42 12/42

Part II

Organisational Matters

13 / 42

Dates

- Interactive Theorem Proving Course takes place in Period 4 of the academic year 2016/2017
- always in room 4523 (?), between 10 am and noon
- each week

Mondays 10:15 - 11:45 lecture

Wednesdays 10:00 - 12:00 practical session

Fridays 10:00 - 12:00 practical session

o no lecture on Monday, 1st of May, instead on Wednesday, 3rd May

• last lecture: 19th of June

last practical session: 21st of June

• 9 lectures, 15 practical sessions

Aims of this Course

Aims

- introduction to interactive theorem proving (ITP)
- being able to evaluate whether a problem can benefit from ITP
- hands-on experience with HOL
- learn how to build a formal model
- learn how to express and prove important properties of such a model
- learn about basic conformance testing
- use a theorem prover on a small project

Required Prerequisites

- some experience with functional programming
- knowing Standard ML syntax
- basic knowledge about logic (e.g. First Order Logic)

14 / 42

Exercises

- after each lecture an exercise sheet is handed out
- work on these exercises alone, except if stated otherwise explicitly
- exercise sheet contains due date
 - ▶ usually 10 days time to work on it
 - ► hand in during practical sessions
 - ► lecture Monday → hand in at latest in next week's Friday session
- main purpose: understanding ITP and learn how to use HOL
 - ▶ no detailed grading, just pass/fail
 - ► retries possible till pass
 - ▶ if stuck, ask me or one another
 - practical sessions intend to provide this opportunity

15/42 16/42

Practical Sessions

- very informal
- main purpose: work on exercises
 - ▶ I have a look and provide feedback
 - ► you can ask questions
 - ▶ I might sometimes explain things not covered in the lectures
 - ► I might provide some concrete tips and tricks
 - ▶ you can also discuss with each other
- attendance not required, but highly recommended
 - ► exception: session on 21st April
- only requirement: turn up long enough to hand in exercises
- you need to bring your own computer

Passing the ITP Course

- there is only a pass/fail mark
- to pass you need to

17 / 42

- ▶ attend at least 7 of the 9 lectures
- ▶ pass 8 of the 9 exercises

18 / 42

Communication

- we have the advantage of being a small group
- therefore we are flexible
- so please ask questions, even during lectures
- there are many shy people, therefore
 - ► anonymous checklist after each lecture
 - ► anonymous background questionnaire in first practical session
- further information is posted on Interactive Theorem Proving
 Course group on Group Web
- contact me (Thomas Tuerk) directly, e.g. via email thomas@kth.se

Part III

HOL 4 History and Architecture

19 / 42 20 / 42

LCF - Logic of Computable Functions

- Standford LCF 1971-72 by Milner et al.
- formalism devised by Dana Scott in 1969
- intended to reason about recursively defined functions
- intended for computer science applications
- strengths
 - ► powerful simplification mechanism
 - ► support for backward proof
- limitations
 - ▶ proofs need a lot of memory
 - ► fixed, hard-coded set of proof commands

Robin Milner (1934 - 2010)

21 / 42

LCF - Logic of Computable Functions II

- Milner worked on improving LCF in Edinburgh
- research assistants
 - ► Lockwood Morris
 - Malcolm Newey
 - ► Chris Wadsworth
 - ► Mike Gordon
- Edinburgh LCF 1979
- introduction of Meta Language (ML)
- ML was invented to write proof procedures
- ML become an influential functional programming language
- using ML allowed implementing the LCF approach

22 / 42

LCF Approach

- implement an abstract datatype **thm** to represent theorems
- semantics of ML ensure that values of type thm can only be created using its interface
- interface is very small
 - predefined theorems are axioms
 - ► function with result type theorem are inferences
- \Longrightarrow However you create a theorem, it is valid.
- together with similar abstract datatypes for types and terms, this forms the kernel

LCF Approach II

$\begin{array}{lll} \text{Modus Ponens Example} \\ & \textbf{Inference Rule} \\ & & \\ \hline & \Gamma \cup \Delta \vdash b \end{array} \qquad \begin{array}{lll} \textbf{SML function} \\ & \text{val MP : thm -> thm -> thm} \\ & \text{MP}(\Gamma \vdash a \Rightarrow b)(\Delta \vdash a) = (\Gamma \cup \Delta \vdash b) \end{array}$

- very trustworthy only the small kernel needs to be trusted
- efficient no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type theorem is produced, it has been created through the small trusted interface. Therefore the statement really holds.

23 / 42 24 / 42

LCF Style Systems

There are now many interactive theorem provers out there that use an approach similar to that of Edinburgh LCF.

- HOL family
 - ► HOL theorem prover
 - ► HOL Light
 - ► HOL Zero
 - ► Proof Power
 - ▶ ...
- Isabelle
- Nuprl
- Coq
-

25 / 42

Family of HOL

ProofPower

commercial version of HOL88 by Roger Jones, Rob Arthan et al.

- HOL Light lean CAML / OCaml port by John Harrison
- HOL Zero trustworthy proof checker by Mark Adams
- Isabelle
 - ▶ 1990 by Larry Paulson
 - ► meta-theorem prover that supports multiple logics
 - ► however, mainly HOL used, ZF a little
 - nowadays probably the most widely used HOL system
 - ► originally designed for software verification

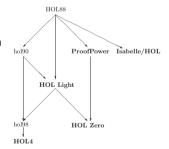


diagram from HOL Light tutorial

History of HOL

- 1979 Edinburgh LCF by Milner, Gordon, et al.
- 1981 Mike Gordon becomes lecturer in Cambridge
- 1985 Cambridge LCF
 - ► Larry Paulson and Gèrard Huet
 - ► implementation of ML compiler
 - ► powerful simplifier
 - various improvements and extensions
- 1988 HOL
 - ► Mike Gordon and Keith Hanna
 - ► adaption of Cambridge LCF to classical higher order logic
 - ▶ intention: hardware verification
- 1990 HOL90 reimplementation in SML by Konrad Slind at University of Calgary
- 1998 HOL98 implementation in Moscow ML and new library and theory mechanism
- since then HOL Kananaskis releases, called informally HOL 4

26 / 42

Part IV

HOL's Logic

HOL Logic

- the HOL theorem prover uses a version of classical higher order logic: classical higher order predicate calculus with terms from the typed lambda calculus (i. e. simple type theory)
- this sounds complicated, but is intuitive for SML programmers
- (S)ML and HOL logic designed to fit each other
- if you understand SML, you understand HOL logic

HOL = functional programming + logic

Ambiguity Warning

The acronym 'HOL' refers to both the HOL interactive theorem prover and the HOL logic used by it.

29 / 42

Terms

- SML datatype for terms
 - ► Variables (x, y, . . .)
 - ► Constants (c,...)
 - ► Function Application (f a)
 - ▶ Lambda Abstraction (\x . f x or λx . fx) Lambda abstraction represents anonymous function definition. The corresponding SML syntax is fn x => f x.
- terms have to be well-typed
- same typing rules and same type-inference as in SML take place
- terms very similar to SML expressions
- notice: predicates are functions with return type bool, i.e. no distinction between functions and predicates, terms and formulae

Types

- SML datatype for types
 - ▶ Type Variables ('a, α , 'b, β , ...) Type variables are implicitly universally quantified. Theorems containing type variables hold for all instantiations of these. Proofs using type variables can be seen as proof schemata.
 - ► Atomic Types (c)
 Atomic types denote fixed types. Examples: num, bool, unit
 - Compound Types ((\sigma_1,...,\sigma_n)op) op is a type operator of arity n and \sigma_1,...,\sigma_n argument types. Type operators denote operations for constructing types. Examples: num list or 'a # 'b.
 - ► Function Types $(\sigma_1 \to \sigma_2)$ $\sigma_1 \to \sigma_2$ is the type of **total** functions from σ_1 to σ_2 .
- types are never empty in HOL, i.e. for each type at least one value exists
- all HOL functions are total

30 / 42

Terms II

HOL term	SML expression	type HOL / SML
0	0	num / int
x:'a	x:'a	variable of type 'a
x:bool	x:bool	variable of type bool
x + 5	x + 5	applying function + to x and 5
\x . x + 5	$fn x \Rightarrow x + 5$	anonymous (a. k. a. inline) function
		of type num -> num
(5, T)	(5, true)	<pre>num # bool / int * bool</pre>
[5;3;2]++[6]	[5,3,2]@[6]	<pre>num list / int list</pre>

Free and Bound Variables / Alpha Equivalence

- the lambda-expression λx . t is said to **bind** the variables x in term t
- variables that are guarded by a lambda expression are called bound
- all other variables are free
- Example: x is free and y is bound in $(x = 5) \land (\lambda y. (y < x))$ 3
- the names of bound variables are unimportant semantically
- two terms are called alpha-equivalent iff they differ only in the names of bound variables
- Example: $\lambda x. x$ and $\lambda y. y$ are alpha-equivalent
- Example: x and y are not alpha-equivalent

33 / 42

HOL Light Kernel

- the HOL kernel is hard to explain
 - ▶ for historic reasons some concepts are represented rather complicated
 - ▶ for speed reasons some derivable concepts have been added
- instead let's look at the HOL Light kernel, which is cleaned-up version
- there are two predefined constants
 - ► = : 'a -> 'a -> bool ► @ : ('a -> bool) -> 'a
- there are two predefined types
 - ▶ bool
 - ▶ ind
- the meaning of these types and constants is given by the following inference rules and axioms

Theorems

- theorems are of the form $\Gamma \vdash p$ where
 - Γ is a set of hypothesis
 - ▶ p is the conclusion of the theorem
 - ▶ all elements of Γ and p are terms of type bool
- $\Gamma \vdash p$ records that using Γ the statement p has been proved
- notice difference to logic: there it means can be proved
- the proof itself is not recorded
- theorems can only be created through a small interface in the kernel

34 / 42

HOL Light Inferences I

$$\begin{array}{c} \Gamma \vdash s = t \\ \hline + t = t \end{array} \text{REFL} \qquad \qquad \begin{array}{c} \Gamma \vdash s = t \\ \hline x \ \textit{not free in } \Gamma \\ \hline \Gamma \vdash \lambda x. \ s = \lambda x. t \end{array} \text{ABS} \\ \hline \Gamma \vdash s = t \\ \hline \Delta \vdash t = u \\ \hline \Gamma \cup \Delta \vdash s = u \end{array} \text{TRANS} \qquad \qquad \begin{array}{c} \hline \vdash (\lambda x. \ t) x = t \end{array} \text{BETA} \\ \hline \Gamma \vdash s = t \\ \Delta \vdash u = v \\ \hline types \ \textit{fit} \\ \hline \Gamma \cup \Delta \vdash s(u) = t(v) \end{array} \text{COMB} \qquad \qquad \begin{array}{c} \Gamma \vdash p \Leftrightarrow q \quad \Delta \vdash p \\ \hline \Gamma \cup \Delta \vdash q \end{array} \text{EQ_MF}$$

HOL Light Inferences II

$$\frac{\Gamma \vdash p \quad \Delta \vdash q}{(\Gamma - \{q\}) \cup (\Delta - \{p\}) \vdash p \Leftrightarrow q} \text{ DEDUCT_ANTISYM_RULE}$$

$$\frac{\Gamma[x_1, \dots, x_n] \vdash p[x_1, \dots, x_n]}{\Gamma[t_1, \dots, t_n] \vdash p[t_1, \dots, t_n]} \text{ INST}$$

$$\frac{\Gamma[\alpha_1, \dots, \alpha_n] \vdash p[\alpha_1, \dots, \alpha_n]}{\Gamma[\gamma_1, \dots, \gamma_n] \vdash p[\gamma_1, \dots, \gamma_n]} \text{ INST_TYPE}$$

37 / 42

HOL Light derived concepts

Everything else is derived from this small kernel.

$$T =_{def} (\lambda p. p) = (\lambda p. p)$$

$$\wedge =_{def} (\lambda p. q. (\lambda f. f. p. q) = (\lambda f. f. T. T)$$

$$\Longrightarrow =_{def} \lambda p. q. (p \land q \Leftrightarrow p)$$

$$\forall =_{def} \lambda P. (P = \lambda x. T)$$

$$\exists =_{def} \lambda P. (\forall q. (\forall x. P(x) \Longrightarrow q) \Longrightarrow q)$$
...

HOL Light Axioms and Definition Principles

3 Axioms needed

ETA_AX $(\lambda x. \ tx) = t$ SELECT_AX $Px \Longrightarrow P((@)P)$ INFINITY_AX predefined type ind is infinite

- definition principle for constants
 - ► constants can be introduced as abbreviations
 - ► constraint: no free vars and no new type vars
- definition principle for types
 - ▶ new types can be defined as non-empty subtypes of existing types
- both principles
 - ► lead to conservative extensions
 - preserve consistency

38 / 42

Multiple Kernels

- Kernel defines abstract datatypes
- one does not need to look at the internal implementation
- therefore, easy to exchange
- there are at least 3 different kernels for HOL
 - ► standard kernel (de Bruijn indices)
 - ► experimental kernel (name / type pairs)
 - ► OpenTheory kernel (for proof recording)

HOL Logic Summary

- HOL theorem prover uses classical higher order logic
- HOL logic is very similar to SML
 - ► syntax
 - ▶ type system
 - ► type inference
- HOL theorem prover very trustworthy because of LCF approach
- there is a small kernel
- you don't need to know the details of the kernel
- usually one works at a much higher level of abstraction

Part V

Forward Proofs