Interactive Theorem Proving (ITP) Course

Thomas Tuerk (tuerk@kth.se)
KTH

Academic Year 2016/17, Period 4

version 42672d2 of Mon Apr 24 08:54:04 2017

Part |

Introduction

/ 67

Motivation

@ Complex systems almost certainly contain bugs.
o Critical systems (e. g. avionics) need to meet very high standards.

@ It is infeasible in practice to achieve such high standards just by
testing.

@ Debugging via testing suffers from diminishing returns.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”
— Edsger W. Dijkstra

Famous Bugs

o Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)

@ Ariane V explosion (1996)
(integer overflow, $1 billion prototype destroyed)

@ Mars Climate Orbiter (1999)
(destroyed in Mars orbit, mixup of units pound-force and newtons)
e Knight Capital Group Error in Ultra Short Time Trading (2012)
(faulty deployment, repurposing of critical flag, $440 lost in 45 min
on stock exchange)

Fun to read
http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

4 /67

http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

Proof

@ proof can show absence of errors in design
@ but proofs talk about a design, not a real system

@ = testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,

they do not refer to reality.”

— Albert Einstein

Mathematical vs. Formal Proof

Mathematical Proof

@ informal, convince other
mathematicians

@ checked by community of
domain experts

@ subtle errors are hard to find

@ often provide some new
insight about our world

@ often short, but require
creativity and a brilliant idea

Formal Proof

o formal, rigorously use a
logical formalism

@ checkable by stupid
machines

@ very reliable

@ often contain no new ideas
and no amazing insights

@ often long, very tedious, but
largely trivial

We are interested in formal proofs in this lecture.

6

67

Detail Level of Formal Proof

In Principia Mathematica it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

7/67

Automated vs Manual (Formal) Proof

Fully Manual Proof
@ very tedious one has to grind through many trivial but detailed proofs
@ easy to make mistakes
@ hard to keep track of all assumptions and preconditions

@ hard to maintain, if something changes (see Ariane V)

Automated Proof
@ amazing success in certain areas
but still often infeasible for interesting problems

hard to get insights in case a proof attempt fails

even if it works, it is often not that automated
run automated tool for a few days
abort, change command line arguments to use different heuristics
run again and iterate till you find a set of heuristics that prove it fully
automatically in a few seconds

8/67

Interactive Proofs

@ combine strengths of manual and automated proofs
@ many different options to combine automated and manual proofs

» mainly check existing proofs (e.g. HOL Zero)

» user mainly provides lemmata statements, computer searches proofs
using previous lemmata and very few hints (e.g. ACL 2)

» most systems are somewhere in the middle

o typically the human user
» provides insights into the problem
» structures the proof
» provides main arguments
o typically the computer
» checks proof
> keeps track of all use assumptions
» provides automation to grind through lengthy, but trivial proofs

9/67

Typical Interactive Proof Activities

@ provide precise definitions of concepts

@ state properties of these concepts
@ prove these properties
» human provides insight and structure
» computer does book-keeping and automates simple proofs
build and use libraries of formal definitions and proofs
» formalisations of mathematical theories like
* lists, sets, bags, ...
* real numbers
* probability theory
» specifications of real-world artefacts like
* processors
* programming languages
* network protocols
> reasoning tools

There is a strong connection with programming.

Lessons learned in Software Engineering apply.

10 /67

Different Interactive Provers

@ there are many different interactive provers, e.g.

Isabelle/HOL

Coq

PVS

HOL family of provers
ACL2

v

vV vy VY VvYYyYy

@ important differences

» the formalism used
level of trustworthiness
level of automation
libraries
languages for writing proofs
user interface

vV VY vy VY VY

11/67

Which theorem prover is the best one? :-)

@ there is no best theorem prover

@ better question: Which is the best one for a certain purpose?

@ important points to consider
> existing libraries

YV VY VY VY VY VY VvYY

used logic

level of automation

user interface

importance development speed versus trustworthiness
How familiar are you with the different provers?
Which prover do people in your vicinity use?

your personal preferences

In this course we use the HOL theorem prover,
because it is used by the TCS group.

12 /67

Part Il

Organisational Matters

13/67

Aims of this Course

Aims
e introduction to interactive theorem proving (ITP)

@ being able to evaluate whether a problem can benefit from ITP

hands-on experience with HOL
learn how to build a formal model
learn how to express and prove important properties of such a model

learn about basic conformance testing

use a theorem prover on a small project

Required Prerequisites
@ some experience with functional programming

@ knowing Standard ML syntax

@ basic knowledge about logic (e.g. First Order Logic)

14 /67

Dates

Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016/2017

always in room 4523 or 4532
each week

Mondays 10:15 - 11:45 lecture
Wednesdays 10:00 - 12:00 practical session
Fridays 13:00 - 15:00 practical session

no lecture on Monday, 1st of May, instead on Wednesday, 3rd May
last lecture: 12th of June
last practical session: 21st of June

9 lectures, 17 practical sessions

15 /67

Exercises

@ after each lecture an exercise sheet is handed out

@ work on these exercises alone, except if stated otherwise explicitly
@ exercise sheet contains due date

» usually 10 days time to work on it

» hand in during practical sessions

> lecture Monday — hand in at latest in next week's Friday session
@ main purpose: understanding ITP and learn how to use HOL

» no detailed grading, just pass/fail
retries possible till pass
if stuck, ask me or one another
practical sessions intend to provide this opportunity

v

v

v

16 /67

Practical Sessions

@ very informal
@ main purpose: work on exercises

v

| have a look and provide feedback

» you can ask questions

> | might sometimes explain things not covered in the lectures
> | might provide some concrete tips and tricks

> you can also discuss with each other

@ attendance not required, but highly recommended
> exception: session on 21st April

@ only requirement: turn up long enough to hand in exercises

@ you need to bring your own computer

17 /67

Handing-in Exercises

@ exercises are intended to be handed-in during practical sessions

@ attend at least one practical session each week
@ leave reasonable time to discuss exercises
» don’t try to hand your solution in Friday 14:55

@ retries possible, but reasonable attempt before deadline required
@ handing-in outside practical sessions

» only if you have a good reason

» decided on a case-by-case basis
@ electronic hand-ins

» only to get detailed feedback

» does not replace personal hand-in

> exceptions on a case-by-case basis if there is a good reason

» | recommend using a KTH GitHub repo

18 /67

Passing the ITP Course

o there is only a pass/fail mark
@ to pass you need to

» attend at least 7 of the 9 lectures
> pass 8 of the 9 exercises

19 /67

Communication

e 6 o6 o

we have the advantage of being a small group
therefore we are flexible
so please ask questions, even during lectures

there are many shy people, therefore

» anonymous checklist after each lecture

» anonymous background questionnaire in first practical session
further information is posted on Interactive Theorem Proving
Course group on Group Web

contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se

20 /67

Part Il

HOL 4 History and Architecture

21/67

LCF - Logic of Computable Functions

e Standford LCF 1971-72 by Milner et al.
@ formalism devised by Dana Scott in 1969

@ intended to reason about recursively defined
functions

@ intended for computer science applications

@ strengths

» powerful simplification mechanism
» support for backward proof

@ limitations

Robin Milner
» proofs need a lot of memory (1934 - 2010)

» fixed, hard-coded set of proof commands

22/67

LCF - Logic of Computable Functions Il

@ Milner worked on improving LCF in Edinburgh

@ research assistants

v

Lockwood Morris
Malcolm Newey
Chris Wadsworth
Mike Gordon

Edinburgh LCF 1979
introduction of Meta Language (ML)

v vy

ML was invented to write proof procedures
ML become an influential functional programming language

using ML allowed implementing the LCF approach

23 /67

LCF Approach

@ implement an abstract datatype thm to represent theorems

@ semantics of ML ensure that values of type thm can only be created
using its interface

@ interface is very small

> predefined theorems are axioms
» function with result type theorem are inferences

@ —> However you create a theorem, it is valid.

@ together with similar abstract datatypes for types and terms, this
forms the kernel

24 /67

LCF Approach I

Modus Ponens Example

Inference Rule SML function
N'Fa=b Ara val MP : thm -> thm -> thm
FTUAFDb MP(TFa= b)(Ata)=(TUAF b)

@ very trustworthy — only the small kernel needs to be trusted

o efficient — no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds.

25 /67

LCF Style Systems

There are now many interactive theorem provers out there that use an
approach similar to that of Edinburgh LCF.

e HOL family

HOL theorem prover
HOL Light

HOL Zero

Proof Power

v

v v VvYy

Isabelle
Nuprl
Coq

26 /67

History of HOL

1979 Edinburgh LCF by Milner, Gordon, et al.

@ 1981 Mike Gordon becomes lecturer in Cambridge
@ 1985 Cambridge LCF

» Larry Paulson and Geérard Huet

» implementation of ML compiler

» powerful simplifier

» various improvements and extensions

1988 HOL

» Mike Gordon and Keith Hanna
» adaption of Cambridge LCF to classical higher order logic
> intention: hardware verification

1990 HOL90
reimplementation in SML by Konrad Slind at University of Calgary

1998 HOL98
implementation in Moscow ML and new library and theory mechanism

since then HOL Kananaskis releases, called informally HOL 4

27 /67

Family of HOL

Edinburgh LCF
o ProofPower
commercial version of HOL88 by Roger
Jones, Rob Arthan et al. Cambridge LCF
o HOL Light
lean CAML / OCaml port by John Harrison HOLSS
e HOL Zero /
trustworthy proof checker by Mark Adams hoto0 fabelle/HOL
o Isabelle Frooffower
» 1990 by Larry Paulson HO Light
» meta-theorem prover that supports
multiple logics
» however, mainly HOL used, ZF a little holos HOL Zero
» nowadays probably the most widely used
HOL system
» originally designed for software verification HOL4

28 /67

Part IV

HOL's Logic

29 /67

HOL Logic

o the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

@ this sounds complicated, but is intuitive for SML programmers
@ (S)ML and HOL logic designed to fit each other
@ if you understand SML, you understand HOL logic

HOL = functional programming + logic

Ambiguity Warning

The acronym HOL refers to both the HOL interactive theorem prover and
the HOL logic used by it. It's also a common abbreviation for higher order
logic in general.

30/67

Types

@ SML datatype for types

» Type Variables (’a, «, ’b, 8, ...)
Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

» Atomic Types (c)
Atomic types denote fixed types. Examples: num, bool, unit

» Compound Types ((o1,...,0,)0p)
op is a type operator of arity n and oy, ...,0, argument types. Type
operators denote operations for constructing types.
Examples: num list or ’a # ’b.

» Function Types (o1 — 03)
01 — 03 is the type of total functions from o7 to o5.

@ types are never empty in HOL, i.e.
for each type at least one value exists

@ all HOL functions are total

31/67

Terms

SML datatype for terms

Variables (x,y,...)

Constants (c,...)

Function Application (f a)

Lambda Abstraction (\x. f x or Ax. fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

vy vy VvYyy

terms have to be well-typed
same typing rules and same type-inference as in SML take place

terms very similar to SML expressions

notice: predicates are functions with return type bool, i.e. no
distinction between functions and predicates, terms and formulae

32/67

Terms Il

HOL term SML expression type HOL / SML

0 0 num / int

x:’a x:’a variable of type ’a

x:bool x:bool variable of type bool

x + 5 X +5 applying function + to x and 5

\x. x + 5 fn x => x + 5 anonymous (a. k. a. inline) function
of type num -> num

(5, T) (5, true) num # bool / int * bool

[5;3;2]1++[6] [5,3,2]@[6] num list / int list

33 /67

Free and Bound Variables / Alpha Equivalence

@ in SML, the names of function arguments does not matter (much)

similarly in HOL, the names of variables used by lambda-abstractions
does not matter (much)

the lambda-expression Ax. t is said to bind the variables x in term t
variables that are guarded by a lambda expression are called bound
all other variables are free

Example: x is free and y is bound in (x =5) A (Ay. (¥ <x)) 3

the names of bound variables are unimportant semantically

e 6 6 o6 o o

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

(]

Example: Ax. x and \y. y are alpha-equivalent

@ Example: x and y are not alpha-equivalent

34 /67

Theorems

@ theorems are of the form I' - p where
» [is a set of hypothesis
» pis the conclusion of the theorem
> all elements of I and p are formulae, i.e. terms of type bool
o [p records that using [the statement p has been proved
@ notice difference to logic: there it means can be proved
@ the proof itself is not recorded
@ theorems can only be created through a small interface in the kernel

35/67

HOL Light Kernel

o the HOL kernel is hard to explain

» for historic reasons some concepts are represented rather complicated
» for speed reasons some derivable concepts have been added

instead consider the HOL Light kernel, which is a cleaned-up version

there are two predefined constants
= ’a -> ’a -> bool

» @ : (a -> bool) —> ’a

@ there are two predefined types

> bool
> ind

>

@ the meaning of these types and constants is given by inference rules
and axioms

36 /67

HOL Light Inferences |

REFL
lFs=t
Atbt=u
— TRANS
rUAFS:u
AFu=v
types fit

COMB

lEs=t
x not free in T

ABS
M- x.s=MXx.t

—— BETA
F(Ax. t)x =t

ASSUME
{p}Fp

37/67

HOL Light Inferences Il

N-pe AF
p=4q pEQ,MP
FTUAFgq
MNe=p Al gq

DEDUCT_ANTISYM_RULE

(Mr—{ehu(Aa—-{ph)Fpegq

Flx1, .. xa] Foplx, .-y X

INST
Mt1, ... ta] Fplta, ..., ta]

Moa,...,an| F plaa, ..., an)

INST_TYPE
M-yl byl

38 /67

HOL Light Axioms and Definition Principles

@ 3 axioms needed

ETA_AX (Ax. tx)=t
SELECT_AX P x = P((©)P))
INFINITY_AX predefined type ind is infinite

definition principle for constants

» constants can be introduced as abbreviations
» constraint: no free vars and no new type vars

definition principle for types
> new types can be defined as non-empty subtypes of existing types
@ both principles
> lead to conservative extensions
> preserve consistency

39 /67

HOL Light derived concepts

Everything else is derived from this small kernel.

T
AN

—
v
=

—def
—def
—def
—def
—def

(Ap. p) = (Ap. p)

Apg. (M. fpg)=(\f.fTT)
Apq. (PAq<p)
AP.(P=Mx.T)

AP. (Vq. (Vx. P(x) = q) = q)

40 /67

Multiple Kernels

o Kernel defines abstract datatypes for types, terms and theorems
@ one does not need to look at the internal implementation
@ therefore, easy to exchange

@ there are at least 3 different kernels for HOL

» standard kernel (de Bruijn indices)
» experimental kernel (name / type pairs)
» OpenTheory kernel (for proof recording)

41 /67

HOL Logic Summary

HOL theorem prover uses classical higher order logic

HOL logic is very similar to SML
> syntax
> type system
> type inference
HOL theorem prover very trustworthy because of LCF approach

> there is a small kernel
» proofs are not stored explicitly

you don't need to know the details of the kernel

usually one works at a much higher level of abstraction

42 /67

Part V

Basic HOL Usage

43 /67

HOL Technical Usage Issues

(]

practical issues are discussed in practical sessions
» how to install HOL

which key-combinations to use in emacs-mode

detailed signature of libraries and theories

all parameters and options of certain tools

vV vy VvYy

@ exercise sheets sometimes

> ask to read some documentation
> provide examples
> list references where to get additional information

if you have problems, ask me outside lecture (tuerk@kth.se)

covered only very briefly in lectures

44 /67

mailto:tuerk@kth.se

Installing HOL

webpage: https://hol-theorem-prover.org

HOL supports two SML implementations

» Moscow ML (http://mosml.org)
» PolyML (http://www.polyml.org)

| recommend using PolyML

please use emacs with
> hol-mode
> sml-mode
» hol-unicode, if you want to type Unicode

please install recent revision from git repo or Kananaskis 11 release

documentation found on HOL webpage and with sources

45 /67

https://hol-theorem-prover.org
http://mosml.org
http://www.polyml.org

General Architecture

@ HOL is a collection of SML modules
o starting HOL starts a SML Read-Eval-Print-Loop (REPL) with

» some HOL modules loaded

» some default modules opened

> an input wrapper to help parsing terms called unquote
@ unquote provides special quotes for terms and types

» implemented as input filter

> ‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]

» ‘‘“:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]
@ main interfaces

» emacs (used in the course)

> vim

> bare shell

46 /67

Filenames

@ *Script.sml — HOL proof script file

>

| 3
>
>

script files contain definitions and proof scripts

executing them results in HOL searching and checking proofs
this might take very long

resulting theorems are stored in *Theory.{sml|sig} files

o *Theory.{sml|sig} — HOL theory

>

>

>

auto-generated by corresponding script file
load quickly, because they don't search/check proofs
do not edit theory files

e *Syntax.{sml|sig} — syntax libraries

>

>

contain syntax related functions
i.e. functions to construct and destruct terms and types

@ *Lib.{sml|sig} — general libraries

e *Simps.{sml|sig} — simplifications

@ selftest.sml — selftest for current directory

47 /67

Directory Structure

@ bin — HOL binaries
@ src — HOL sources
o examples — HOL examples
> interesting projects by various people
» examples owned by their developer
» coding style and level of maintenance differ a lot
@ help — sources for reference manual

» after compilation home of reference HTML page
@ Manual — HOL manuals

» Tutorial

» Description

> Reference (PDF version)
> Interaction

» Quick (cheat pages)

» Style-guide

> L.

48 / 67

Unicode

HOL supports both Unicode and pure ASCII input and output
advantages of Unicode compared to ASCII

» easier to read (good fonts provided)
> no need to learn special ASCII syntax

disadvanges of Unicode compared to ASCII

» harder to type (even with hol-unicode.el)
> less portable between systems

whether you like Unicode is highly a matter of personal taste
HOL's policy

» no Unicode in HOL's source directory src

» Unicode in examples directory examples is fine

@ | recommend turning Unicode output off initially

» this simplifies learning the ASCII syntax
» no need for special fonts
> it is easier to copy and paste terms from HOL's output

49 /67

Where to find help?

reference manual
» available as HTML pages, single PDF file and in-system help

description manual

Style-guide (still under development)

HOL webpage (https://hol-theorem-prover.org)
mailing-list hol-info

DB.match and DB.find

*Theory.sig and selftest.sml files

ask someone, e. g. me :-) (tuerk@kth.se)

50 /67

https://hol-theorem-prover.org
mailto:tuerk@kth.se

Part VI

Forward Proofs

51/67

Kernel too detailed

@ we already discussed the HOL Logic

o the kernel itself does not even contain basic logic operators
@ usually one uses a much higher level of abstraction

» many operations and datatypes are defined
> high-level derived inference rules are used

@ let's now look at this more common abstraction level

52 /67

Common Terms and Types

type vars

type annotated term
true

false

negation

conjunction

disjunction

implication

equivalence

disequation
all-quantification
existential quantification
Hilbert's choice operator

Unicode
a, B, ...
term:type
T
F
—b
bl A b2
bl V b2
bl = b2
bl < b2
vl # v2
Vx. P x
dx. P x
@x. P x

ASCII
’a, ’b, ...
term:type

T

F

~b
bl /\ b2
bl \/ b2
bl ==> b2
bl <=> b2
vl <> v2

Ix. P x

?x. P x

0x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don't start variable names with an underscore

53 /67

Syntax conventions

@ common function syntax
» prefix notation, e.g. SUC x
> infix notation, e.g. x + y
» quantifier notation, e.g. Vx. P x means (V) (\x. P x)
@ infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are the sameasx + y
@ quantifiers of the same type don't need to be repeated
Example: Vx y. P x yisshort for Vx. Vy. P x y
@ there is special syntax for some functions
Example: if ¢ then vl else v2 is nice syntax for COND ¢ v1 v2
@ associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

54 /67

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.

55 /67

Creating Terms |l

Parser Syntax Funs

““:bool"" mk_type ("bool", []) or bool type of Booleans

ceTes mk_const ("T", bool) or T term true

R A mk_neg (negation of
mk_var ("b", bool)) Boolean var b

el /N LY mkeconj (L., L) conjunction

oo N/ Lo mkdisj Gol., L) disjunction

Coooe==> .0 mkiimp (..., ...) implication

el = Lo mkeq (..., ...) equation

oLl <= L0 Y mkeq (L., olll) equivalence

L. <> L0 mkneg (mkeq (..., ...)) negated equation

56 /67

Inference Rules for Equality

REFL

Ft=t

lEs=t
x not free in T

M= Ax. s = Ax.t

lFs=t
ArFu=v
types fit

FUAF s(u) =t(v)

MK_COMB

lFs=t
— GSYM
l—t=s
lEs=t
AFt=u
———— TRANS
FTUAFs=u
NlN-p&e AF
peq P B MP
FTUAFgq
BETA

F(Ax. t)x=t

57 /67

Inference Rules for free Variables

M[x1, ..oy xa] Foplx, ..y X
Mt1, ..., ta] F plt1, ..., tn]

INST

Maa, ..., an] Fplat, ..., an)

INST_TYPE
r[717 .. 77"] F P[’Yh CIEaE 77n]

58 /67

Inference Rules for Implication

-p=g¢g
AFp
—— © MP, MATCH.MP e
FTUAF g p DISCH
r—{g}Fg=p
rFrp=gq EQ_IMP_RULE
TEp— o QMP- Mq—
rFp=gq 9= P ynpiscu
N-g—op ru{qttop
N-p=gq N-p=—F
AFg— p i NOT_INTRO
— T 7" IMP_ANTISYM_RULE ~P
FTUAFp=gq
re-p NOT_ELIM
-p=gq M-p— }
AF-qg=r
IMP_TRANS

TUAF p=—r

59 /67

Inference Rules for Conjunction / Disjunction

"P isn

[A+ R
p qCONJ N-p V q

FTUAFpPp A g

"9 Dbige
F-p A I
P~ 9 conguNcTI F=pVva
MN=p

lpVvag

FEp A AL U{ptEr
#CONJUNCT2 A;U%Z{H
Fq DISJ_CASES

FTUATUA T

60 /67

Inference Rules for Quantifiers

- p[u/x] EXISTS
M= t free in - o -
P X NOt Tree In GEN I+ Jx. p

N=-vx.p
N-3x. p
[F Vx. AU u/x|t = r
rl—[u/)l:] SPEC u not free{[iJrE F/,]A},p and r
P CHOOSE

FTUAETr

61 /67

Forward Proofs

@ axioms and inference rules are used to derive theorems
@ this method is called forward proof

> one starts with basic building blocks
» one moves step by step forward
» finally the theorem one is interested in is derived

@ one can also implement own proof tools

62 /67

Forward Proofs — Example |
Let's prove Vp. p = p.

val IMP_REFL_THM = let

val tml = ‘‘p:bool‘‘; > val tml = “‘p‘‘: term

val thml = ASSUME tml; > val thml = [p] |- p: thm

val thm2 = DISCH tml thml; > val thm2 = |- p ==> p: thm
in

GEN tml thm2 > val IMP_REFL_THM =

|- 'p. p ==> p: thm

end
fun IMP_REFL t = > val IMP_REFL =

SPEC t IMP_REFL_THM; fn: term -> thm

63 /67

Forward Proofs — Example Il

Let's prove VP v. (3x. (x = V) AP x) <= P v.

val tm_v = ‘‘v:’a‘‘;
val tm_P = ‘‘P:’a -> bool‘‘;
val tm_lhs = “‘?x. (x = v) /\ P x°¢

val tm_rhs = mk_comb (t_P, t_v);

val thml = let
val thmla = ASSUME tm_rhs;
val thmlb =
CONJ (REFL tm_v) thmla;
val thmlc =
EXISTS (tm_lhs, tm_v) thmlb
in
DISCH tm_rhs thmlc
end

val thmia = [P v] |- P v: thm
val thmlb =

[Pv] |- (v=v)/\Pv: thm
val thmlc =

[Pv] |I-7x. (x=v) /\Px

val thml = [] |-
Pv==>7x. (x=v) /\Px: thm

64

67

Forward Proofs — Example Il cont.

val thm2 = let
val thm2a =
ASSUME ‘“(u:’a =v) /\ P u‘*
val thm2b = AP_TERM t_P
(CONJUNCT1 thm2a);
val thm2c = EQ_MP thm2b
(CONJUNCT2 thm2a) ;
val thm2d =
CHOOSE (‘‘u:’a‘‘,
ASSUME tm_lhs) thm2c

in
DISCH tm_lhs thm2d
end
val thm3 = IMP_ANTISYM_RULE thm2 thmil
val thm4 = GENL [t_P, t_v] thm3

val thm2a
(u=v)

val thm2b
P u <=>

val thm2c
Pv

val thm2d
Pv

val thm2
7x. (x

val thm3

/

oo

7x. (x =

val thm4
7x. (x

[(w=v) /\Pul |-
\ P u: thm

[(w=v) /\NPul |-

v

[(w=v) /\NPul |-
[7x. (x =v) /\ P x] |-
11-

v) /\Px==>Pyv

1 1-

v) /\Px<=>Pv
[11-1'Pv.

v) /\Px<=>Pv

65

67

Derived Tools

HOL lives from implementing reasoning tools in SML

rules — use theorems to produce new theorems

» SML-type thm -> thm
» functions with similar type often called rule as well

@ conversions — convert a term into an equal one

» SML-type term -> thm
» given term t produces theorem of form [] |- t = t’
> may raise exceptions HOL_ERR or UNCHANGED

66 /67

Conversions

@ HOL has very good tool support for equality reasoning

@ conversions are important for HOL's automation

@ there is a lot of infrastructure for conversions

>

vV VY vy VY VY

RAND_CONV, RATOR_CONV, ABS_CONV
DEPTH_CONV

THENC, TRY_CONV, FIRST_CONV
REPEAT_CONV

CHANGED_CONV, QCHANGED_CONV
NO_CONV, ALL_CONV

@ important conversions

>

>

REWR_CONV
REWRITE_CONV

> ..

67 /67

	Introduction
	Motivation
	Types of Proofs
	Interactive Theorem Provers

	Organisational Matters
	HOL 4 History and Architecture
	LCF
	History and Family of HOL

	HOL's Logic
	HOL Logic
	Kernel
	HOL Logic Summary

	Basic HOL Usage
	Forward Proofs
	Term Syntax
	Inference Rules
	Forward Proofs
	Rules and Conversions

