Interactive Theorem Proving (ITP) Course

Thomas Tuerk (tuerk@kth.se)

KTH

Academic Year 2016/17, Period 4

version 42672d2 of Mon Apr 24 08:54:04 2017

1 / 67

Part I

Introduction

2/67

Motivation

- Complex systems almost certainly contain bugs.
- Critical systems (e.g. avionics) need to meet very high standards.
- It is infeasible in practice to achieve such high standards just by testing.
- Debugging via testing suffers from diminishing returns.

"Program testing can be used to show the presence of bugs, but never to show their absence!"

— Edsger W. Dijkstra

Famous Bugs

- Pentium FDIV bug (1994)
 (missing entry in lookup table, \$475 million damage)
- Ariane V explosion (1996)
 (integer overflow, \$1 billion prototype destroyed)
- Mars Climate Orbiter (1999)
 (destroyed in Mars orbit, mixup of units pound-force and newtons)
- Knight Capital Group Error in Ultra Short Time Trading (2012) (faulty deployment, repurposing of critical flag, \$440 lost in 45 min on stock exchange)
- ...

Fun to read

http://www.cs.tau.ac.il/~nachumd/verify/horror.html https://en.wikipedia.org/wiki/List_of_software_bugs

3/67 4/67

Proof

- proof can show absence of errors in design
- but proofs talk about a design, not a real system
- ◆ testing and proving complement each other

"As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality."

— Albert Einstein

Mathematical vs. Formal Proof

Mathematical Proof

- informal, convince other mathematicians
- checked by community of domain experts
- subtle errors are hard to find
- often provide some new insight about our world
- often short, but require creativity and a brilliant idea

Formal Proof

- formal, rigorously use a logical formalism
- checkable by stupid machines
- very reliable
- often contain no new ideas and no amazing insights
- often long, very tedious, but largely trivial

We are interested in formal proofs in this lecture.

5 / 67

6 / 67

Detail Level of Formal Proof

In **Principia Mathematica** it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

Automated vs Manual (Formal) Proof

Fully Manual Proof

- very tedious one has to grind through many trivial but detailed proofs
- easy to make mistakes
- hard to keep track of all assumptions and preconditions
- hard to maintain, if something changes (see Ariane V)

Automated Proof

- amazing success in certain areas
- but still often infeasible for interesting problems
- hard to get insights in case a proof attempt fails
- even if it works, it is often not that automated
 - run automated tool for a few days
 - ▶ abort, change command line arguments to use different heuristics
 - run again and iterate till you find a set of heuristics that prove it fully automatically in a few seconds

Interactive Proofs

- combine strengths of manual and automated proofs
- many different options to combine automated and manual proofs
 - ► mainly check existing proofs (e.g. HOL Zero)
 - user mainly provides lemmata statements, computer searches proofs using previous lemmata and very few hints (e.g. ACL 2)
 - most systems are somewhere in the middle
- typically the human user
 - provides insights into the problem
 - ► structures the proof
 - provides main arguments
- typically the computer
 - ► checks proof
 - ► keeps track of all use assumptions
 - provides automation to grind through lengthy, but trivial proofs

9 / 67

Typical Interactive Proof Activities

- provide precise definitions of concepts
- state properties of these concepts
- prove these properties
 - ► human provides insight and structure
 - ► computer does book-keeping and automates simple proofs
- build and use libraries of formal definitions and proofs
 - ▶ formalisations of mathematical theories like
 - ★ lists, sets, bags, . . .
 - ★ real numbers
 - **★** probability theory
 - specifications of real-world artefacts like
 - **★** processors
 - * programming languages
 - ★ network protocols
 - ► reasoning tools

There is a strong connection with programming. Lessons learned in Software Engineering apply.

10 / 67

Different Interactive Provers

- there are many different interactive provers, e.g.
 - ► Isabelle/HOL
 - ► Coa
 - ► PVS
 - ► HOL family of provers
 - ► ACL2
 - ▶ ...
- important differences
 - ▶ the formalism used
 - level of trustworthiness
 - ► level of automation
 - ► libraries
 - ► languages for writing proofs
 - user interface
 - ▶ ...

Which theorem prover is the best one? :-)

- there is no **best** theorem prover
- better question: Which is the best one for a certain purpose?
- important points to consider
 - existing libraries
 - ▶ used logic
 - ► level of automation
 - user interface
 - ► importance development speed versus trustworthiness
 - ► How familiar are you with the different provers?
 - ▶ Which prover do people in your vicinity use?
 - ► your personal preferences
 - ▶ ...

In this course we use the HOL theorem prover, because it is used by the TCS group.

Part II

Organisational Matters

13 / 67

Dates

- Interactive Theorem Proving Course takes place in Period 4 of the academic year 2016/2017
- always in room 4523 or 4532
- each week

Mondays 10:15 - 11:45 lecture

Wednesdays 10:00 - 12:00 practical session

Fridays 13:00 - 15:00 practical session

o no lecture on Monday, 1st of May, instead on Wednesday, 3rd May

• last lecture: 12th of June

last practical session: 21st of June9 lectures, 17 practical sessions

Aims of this Course

Aims

- introduction to interactive theorem proving (ITP)
- being able to evaluate whether a problem can benefit from ITP
- hands-on experience with HOL
- learn how to build a formal model
- learn how to express and prove important properties of such a model
- learn about basic conformance testing
- use a theorem prover on a small project

Required Prerequisites

- some experience with functional programming
- knowing Standard ML syntax
- basic knowledge about logic (e.g. First Order Logic)

14 / 67

Exercises

- after each lecture an exercise sheet is handed out.
- work on these exercises alone, except if stated otherwise explicitly
- exercise sheet contains due date
 - ▶ usually 10 days time to work on it
 - ► hand in during practical sessions
 - ► lecture Monday → hand in at latest in next week's Friday session
- main purpose: understanding ITP and learn how to use HOL
 - ▶ no detailed grading, just pass/fail
 - ► retries possible till pass
 - ▶ if stuck, ask me or one another
 - practical sessions intend to provide this opportunity

Practical Sessions

- very informal
- main purpose: work on exercises
 - ▶ I have a look and provide feedback
 - ► you can ask questions
 - ▶ I might sometimes explain things not covered in the lectures
 - ▶ I might provide some concrete tips and tricks
 - ▶ you can also discuss with each other
- attendance not required, but highly recommended
 - ► exception: session on 21st April
- only requirement: turn up long enough to hand in exercises
- you need to bring your own computer

17 / 67

Passing the ITP Course

- there is only a pass/fail mark
- to pass you need to
 - ▶ attend at least 7 of the 9 lectures
 - ▶ pass 8 of the 9 exercises

Handing-in Exercises

- exercises are intended to be handed-in during practical sessions
- attend at least one practical session each week
- leave reasonable time to discuss exercises
 - ▶ don't try to hand your solution in Friday 14:55
- retries possible, but reasonable attempt before deadline required
- handing-in outside practical sessions
 - ▶ only if you have a good reason
 - ► decided on a case-by-case basis
- electronic hand-ins
 - ► only to get detailed feedback
 - ► does not replace personal hand-in
 - exceptions on a case-by-case basis if there is a good reason

18 / 67

▶ I recommend using a KTH GitHub repo

Communication

- we have the advantage of being a small group
- therefore we are flexible
- so please ask questions, even during lectures
- there are many shy people, therefore
 - ► anonymous checklist after each lecture
 - ► anonymous background questionnaire in first practical session
- further information is posted on Interactive Theorem Proving Course group on Group Web
- o contact me (Thomas Tuerk) directly, e.g. via email thomas@kth.se

19/67 20/67

Part III

HOL 4 History and Architecture

21 / 67

LCF Approach

- \bullet implement an abstract datatype thm to represent theorems
- semantics of ML ensure that values of type thm can only be created using its interface
- interface is very small
 - ► predefined theorems are axioms
 - ► function with result type theorem are inferences
- $\bullet \implies$ However you create a theorem, it is valid.
- together with similar abstract datatypes for types and terms, this forms the kernel

LCF - Logic of Computable Functions

- Standford LCF 1971-72 by Milner et al.
- formalism devised by Dana Scott in 1969
- intended to reason about recursively defined functions
- intended for computer science applications
- strengths
 - ► powerful simplification mechanism
 - ► support for backward proof
- limitations
 - ▶ proofs need a lot of memory
 - ► fixed, hard-coded set of proof commands

Robin Milner (1934 - 2010)

22 / 67

LCF - Logic of Computable Functions II

- Milner worked on improving LCF in Edinburgh
- research assistants
 - ► Lockwood Morris
 - ► Malcolm Newey
 - ► Chris Wadsworth
 - ► Mike Gordon
- Edinburgh LCF 1979
- introduction of Meta Language (ML)
- ML was invented to write proof procedures
- ML become an influential functional programming language
- using ML allowed implementing the LCF approach

23/67 24/67

LCF Approach II

Modus Ponens Example

 $\Gamma \cup \Delta \vdash b$

Inference Rule

$\Gamma \vdash a \Rightarrow b \qquad \Delta \vdash a$

SML function

val MP : thm -> thm -> thm MP(
$$\Gamma \vdash a \Rightarrow b$$
)($\Delta \vdash a$) = ($\Gamma \cup \Delta \vdash b$)

- very trustworthy only the small kernel needs to be trusted
- efficient no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type theorem is produced, it has been created through the small trusted interface. Therefore the statement really holds.

25 / 67

History of HOL

- 1979 Edinburgh LCF by Milner, Gordon, et al.
- 1981 Mike Gordon becomes lecturer in Cambridge
- 1985 Cambridge LCF
 - ► Larry Paulson and Gèrard Huet
 - ► implementation of ML compiler
 - ► powerful simplifier
 - various improvements and extensions
- 1988 HOL
 - ► Mike Gordon and Keith Hanna
 - ► adaption of Cambridge LCF to classical higher order logic
 - ► intention: hardware verification
- 1990 HOL90 reimplementation in SML by Konrad Slind at University of Calgary
- 1998 HOL98 implementation in Moscow ML and new library and theory mechanism
- since then HOL Kananaskis releases, called informally HOL 4

LCF Style Systems

There are now many interactive theorem provers out there that use an approach similar to that of Edinburgh LCF.

- HOL family
 - ► HOL theorem prover
 - ► HOL Light
 - ► HOL Zero
 - ► Proof Power
 - ▶ ..
- Isabelle
- Nuprl
- Coq
- . . .

26 / 67

Family of HOL

ProofPower

commercial version of HOL88 by Roger Jones, Rob Arthan et al.

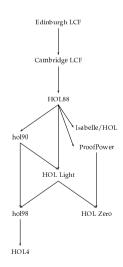
HOL Light

lean CAML / OCaml port by John Harrison

HOL Zero

trustworthy proof checker by Mark Adams

- Isabelle
 - ▶ 1990 by Larry Paulson
 - ► meta-theorem prover that supports multiple logics
 - ► however, mainly HOL used, ZF a little
 - nowadays probably the most widely used HOL system
 - originally designed for software verification



Part IV

HOL's Logic

29 / 67

Types

- SML datatype for types
 - ▶ Type Variables ('a, α , 'b, β , ...) Type variables are implicitly universally quantified. Theorems containing type variables hold for all instantiations of these. Proofs using type variables can be seen as proof schemata.
 - ► Atomic Types (c)
 Atomic types denote fixed types. Examples: num, bool, unit
 - ▶ Compound Types $((\sigma_1, \ldots, \sigma_n)op)$ op is a **type operator** of arity n and $\sigma_1, \ldots, \sigma_n$ argument types. Type operators denote operations for constructing types. Examples: num list or 'a # 'b.
 - ▶ Function Types $(\sigma_1 \to \sigma_2)$ $\sigma_1 \to \sigma_2$ is the type of **total** functions from σ_1 to σ_2 .
- types are never empty in HOL, i.e. for each type at least one value exists
- all HOL functions are total

HOL Logic

- the HOL theorem prover uses a version of classical **h**igher **o**rder **l**ogic: classical higher order predicate calculus with terms from the typed lambda calculus (i. e. simple type theory)
- this sounds complicated, but is intuitive for SML programmers
- (S)ML and HOL logic designed to fit each other
- if you understand SML, you understand HOL logic

HOL = functional programming + logic

Ambiguity Warning

The acronym *HOL* refers to both the *HOL interactive theorem prover* and the *HOL logic* used by it. It's also a common abbreviation for *higher order logic* in general.

30 / 67

Terms

- SML datatype for terms
 - ► Variables (x, y, ...)
 - ► Constants (c,...)
 - ► Function Application (f a)
 - Lambda Abstraction (\x. f x or λx. fx) Lambda abstraction represents anonymous function definition. The corresponding SML syntax is fn x => f x.
- terms have to be well-typed
- same typing rules and same type-inference as in SML take place
- terms very similar to SML expressions
- notice: predicates are functions with return type bool, i. e. no distinction between functions and predicates, terms and formulae

31/67 32/67

Terms II

HOL term	SML expression	type HOL / SML
0	0	num / int
x:'a	x:'a	variable of type 'a
x:bool	x:bool	variable of type bool
x + 5	x + 5	applying function + to x and 5
\x . x + 5	$fn x \Rightarrow x + 5$	anonymous (a. k. a. inline) function
		of type num -> num
(5, T)	(5, true)	<pre>num # bool / int * bool</pre>
[5;3;2]++[6]	[5,3,2]@[6]	${ t num \ list \ / \ int \ list}$

33 / 67

Theorems

- theorems are of the form $\Gamma \vdash p$ where
 - Γ is a set of hypothesis
 - ▶ p is the conclusion of the theorem
 - \triangleright all elements of Γ and p are formulae, i. e. terms of type bool
- $\Gamma \vdash p$ records that using Γ the statement p has been proved
- notice difference to logic: there it means can be proved
- the proof itself is not recorded
- theorems can only be created through a small interface in the kernel

Free and Bound Variables / Alpha Equivalence

- in SML, the names of function arguments does not matter (much)
- similarly in HOL, the names of variables used by lambda-abstractions does not matter (much)
- the lambda-expression λx . t is said to **bind** the variables x in term t
- variables that are guarded by a lambda expression are called bound
- all other variables are free
- Example: x is free and y is bound in $(x = 5) \land (\lambda y. (y < x))$ 3
- the names of bound variables are unimportant semantically
- two terms are called alpha-equivalent iff they differ only in the names of bound variables
- Example: λx . x and λy . y are alpha-equivalent
- Example: x and y are not alpha-equivalent

34 / 67

HOL Light Kernel

- the HOL kernel is hard to explain
 - ▶ for historic reasons some concepts are represented rather complicated
 - ▶ for speed reasons some derivable concepts have been added
- instead consider the HOL Light kernel, which is a cleaned-up version
- there are two predefined constants
 - ► = : 'a -> 'a -> bool ► @ : ('a -> bool) -> 'a
- there are two predefined types
 - ► bool
 - ▶ ind
- the meaning of these types and constants is given by inference rules and axioms

HOL Light Inferences I

37 / 67

HOL Light Axioms and Definition Principles

3 axioms needed

ETA_AX
$$(\lambda x. \ t \ x) = t$$

SELECT_AX $P \ x \Longrightarrow P((@)P))$
INFINITY_AX predefined type ind is infinite

- definition principle for constants
 - ► constants can be introduced as abbreviations
 - ► constraint: no free vars and no new type vars
- definition principle for types
 - ▶ new types can be defined as non-empty subtypes of existing types
- both principles
 - ► lead to conservative extensions
 - preserve consistency

HOL Light Inferences II

$$\frac{\Gamma \vdash p \Leftrightarrow q \qquad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ EQ-MP}$$

$$\frac{\Gamma \vdash p \qquad \Delta \vdash q}{(\Gamma - \{q\}) \cup (\Delta - \{p\}) \vdash p \Leftrightarrow q} \text{ DEDUCT-ANTISYM_RULE}$$

$$\frac{\Gamma[x_1, \dots, x_n] \vdash p[x_1, \dots, x_n]}{\Gamma[t_1, \dots, t_n] \vdash p[t_1, \dots, t_n]} \text{ INST}$$

$$\frac{\Gamma[\alpha_1, \dots, \alpha_n] \vdash p[\alpha_1, \dots, \alpha_n]}{\Gamma[\gamma_1, \dots, \gamma_n] \vdash p[\gamma_1, \dots, \gamma_n]} \text{ INST-TYPE}$$

38 / 67

HOL Light derived concepts

Everything else is derived from this small kernel.

$$T =_{def} (\lambda p. p) = (\lambda p. p)$$

$$\wedge =_{def} \lambda p q. (\lambda f. f p q) = (\lambda f. f T T)$$

$$\Longrightarrow =_{def} \lambda p q. (p \wedge q \Leftrightarrow p)$$

$$\forall =_{def} \lambda P. (P = \lambda x. T)$$

$$\exists =_{def} \lambda P. (\forall q. (\forall x. P(x) \Longrightarrow q) \Longrightarrow q)$$

39 / 67 40 / 67

Multiple Kernels

• Kernel defines abstract datatypes for types, terms and theorems

Part V

Basic HOL Usage

- one does not need to look at the internal implementation
- therefore, easy to exchange
- there are at least 3 different kernels for HOL
 - ► standard kernel (de Bruijn indices)
 - ► experimental kernel (name / type pairs)
 - ► OpenTheory kernel (for proof recording)

41 / 67

HOL Technical Usage Issues

- ▶ how to install HOL
- ▶ which key-combinations to use in emacs-mode
- detailed signature of libraries and theories
- ▶ all parameters and options of certain tools

practical issues are discussed in practical sessions

- ▶ ...
- exercise sheets sometimes
 - ► ask to read some documentation
 - ► provide examples
 - ▶ list references where to get additional information
- if you have problems, ask me outside lecture (tuerk@kth.se)
- covered only very briefly in lectures

43 / 67

HOL Logic Summary

- HOL theorem prover uses classical higher order logic
- HOL logic is very similar to SML
 - ► syntax
 - ▶ type system
 - ▶ type inference
- HOL theorem prover very trustworthy because of LCF approach
 - ▶ there is a small kernel
 - proofs are not stored explicitly
- you don't need to know the details of the kernel
- usually one works at a much higher level of abstraction

42 / 67

Installing HOL

- webpage: https://hol-theorem-prover.org
- HOL supports two SML implementations
 - ► Moscow ML (http://mosml.org)
 - ► PolyML (http://www.polyml.org)
- I recommend using PolyML
- please use emacs with
 - ► hol-mode
 - ► sml-mode
 - ► hol-unicode, if you want to type Unicode
- please install recent revision from git repo or Kananaskis 11 release
- documentation found on HOL webpage and with sources

45 / 67

Filenames

- *Script.sml HOL proof script file
 - script files contain definitions and proof scripts
 - ▶ executing them results in HOL searching and checking proofs
 - ► this might take very long
 - ► resulting theorems are stored in *Theory.{sml|sig} files
- *Theory.{sml|sig} HOL theory
 - ► auto-generated by corresponding script file
 - ▶ load quickly, because they don't search/check proofs
 - ► do not edit theory files
- *Syntax.{sml|sig} syntax libraries
 - contain syntax related functions
 - ▶ i.e. functions to construct and destruct terms and types
- *Lib.{sml|sig} general libraries
- *Simps.{sml|sig} simplifications
- selftest.sml selftest for current directory

General Architecture

- HOL is a collection of SML modules
- starting HOL starts a SML Read-Eval-Print-Loop (REPL) with
 - ► some HOL modules loaded
 - ▶ some default modules opened
 - ▶ an input wrapper to help parsing terms called unquote
- unquote provides special quotes for terms and types
 - ► implemented as input filter
 - ▶ ''my-term'' becomes Parse.Term [QUOTE "my-term"]
 - '':my-type'' becomes Parse.Type [QUOTE ":my-type"]
- main interfaces
 - ► emacs (used in the course)
 - ▶ vim
 - ► bare shell

46 / 67

Directory Structure

- bin HOL binaries
- src HOL sources
- examples HOL examples
 - ► interesting projects by various people
 - examples owned by their developer
 - ► coding style and level of maintenance differ a lot
- help sources for reference manual
 - ▶ after compilation home of reference HTML page
- Manual HOL manuals
 - ▶ Tutorial
 - ► Description
 - ► Reference (PDF version)
 - ► Interaction
 - Quick (cheat pages)
 - ► Style-guide
 - ▶ ...

Unicode

- HOL supports both Unicode and pure ASCII input and output
- advantages of Unicode compared to ASCII
 - ► easier to read (good fonts provided)
 - ▶ no need to learn special ASCII syntax
- disadvanges of Unicode compared to ASCII
 - ► harder to type (even with hol-unicode.el)
 - ► less portable between systems
- whether you like Unicode is highly a matter of personal taste
- HOL's policy
 - ▶ no Unicode in HOL's source directory src
 - ▶ Unicode in examples directory examples is fine
- I recommend turning Unicode output off initially
 - ► this simplifies learning the ASCII syntax
 - ▶ no need for special fonts
 - ▶ it is easier to copy and paste terms from HOL's output

Where to find help?

- reference manual
 - ▶ available as HTML pages, single PDF file and in-system help

50 / 67

- description manual
- Style-guide (still under development)
- HOL webpage (https://hol-theorem-prover.org)
- mailing-list hol-info
- DB.match and DB.find
- *Theory.sig and selftest.sml files
- ask someone, e.g. me :-) (tuerk@kth.se)

49 / 67

Part VI

Forward Proofs

Kernel too detailed

- we already discussed the HOL Logic
- the kernel itself does not even contain basic logic operators
- usually one uses a much higher level of abstraction
 - many operations and datatypes are defined
 - ▶ high-level derived inference rules are used
- let's now look at this more common abstraction level

Common Terms and Types

	Unicode	ASCII
type vars	α , β ,	'a, 'b,
type annotated term	term:type	term:type
true	T	T
false	F	F
negation	$\neg b$	~b
conjunction	b1 ∧ b2	b1 /\ b2
disjunction	b1 ∨ b2	b1 \/ b2
implication	$b1 \implies b2$	b1 ==> b2
equivalence	b1 ⇔ b2	b1 <=> b2
disequation	$v1 \neq v2$	v1 <> v2
all-quantification	$\forall x. P x$!x. P x
existential quantification	$\exists x. P x$?x. P x
Hilbert's choice operator	0x. P x	0x. P x

There are similar restrictions to constant and variable names as in SML. HOL specific: don't start variable names with an underscore

53 / 67

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions (usually defined in *Syntax.sml files) to create them.

Syntax conventions

- common function syntax
 - ▶ prefix notation, e.g. SUC x
 - ► infix notation, e.g. x + y
 - quantifier notation, e.g. $\forall x$. P x means (\forall) $(\lambda x$. P x)
- infix and quantifier notation functions can turned into prefix notation
 Example: (+) x y and \$+ x y are the same as x + y
- quantifiers of the same type don't need to be repeated Example: ∀x y. P x y is short for ∀x. ∀y. P x y
- there is special syntax for some functions Example: if c then v1 else v2 is nice syntax for COND c v1 v2
- associative infix operators are usually right-associative
 Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore use plenty of parenthesis.

54 / 67

Creating Terms II

Parser	Syntax Funs	
":bool"	<pre>mk_type ("bool", []) or bool</pre>	type of Booleans
"T"	mk_const ("T", bool) or T	term true
''~b''	mk_neg (negation of
	<pre>mk_var ("b", bool))</pre>	Boolean var b
···/\·	mk_conj (,)	conjunction
····· \/·	mk_disj (,)	disjunction
'' ==>''	mk_imp (,)	implication
'' =''	mk_eq (,)	equation
··· <=>··	mk_eq (,)	equivalence
··· <>·	mk_neg (mk_eq (,))	negated equation

Inference Rules for Equality

$$\frac{\Gamma \vdash s = t}{\Gamma \vdash t = t} \text{ REFL} \qquad \frac{\Gamma \vdash s = t}{\Gamma \vdash t = s} \text{ GSYM}$$

$$\frac{\Gamma \vdash s = t}{x \text{ not free in } \Gamma} \text{ ABS} \qquad \frac{\Delta \vdash t = u}{\Gamma \cup \Delta \vdash s = u} \text{ TRANS}$$

$$\frac{\Gamma \vdash s = t}{\Delta \vdash u = v} \text{ TRANS}$$

$$\frac{\Gamma \vdash s = t}{\Delta \vdash u = v} \text{ TRANS}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q \quad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ EQ_MP}$$

$$\frac{types \text{ fit}}{\Gamma \cup \Delta \vdash s(u) = t(v)} \text{ MK_COMB}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q \quad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ EQ_MP}$$

Inference Rules for free Variables

$$\frac{\Gamma[x_1,\ldots,x_n] \vdash p[x_1,\ldots,x_n]}{\Gamma[t_1,\ldots,t_n] \vdash p[t_1,\ldots,t_n]} \text{ INST}$$

$$\frac{\Gamma[\alpha_1,\ldots,\alpha_n] \vdash p[\alpha_1,\ldots,\alpha_n]}{\Gamma[\gamma_1,\ldots,\gamma_n] \vdash p[\gamma_1,\ldots,\gamma_n]} \text{ INST_TYPE}$$

57 / 67

Inference Rules for Implication

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow q \\
\hline
\Delta \vdash p \\
\hline
\Gamma \cup \Delta \vdash q \\
\hline
\Gamma \vdash p \Longrightarrow q \\
\hline
\Gamma \vdash p \Longrightarrow q \\
\hline
\Gamma \vdash p \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Rightarrow p \\
\hline
\Gamma \vdash p \Longrightarrow p \\
\hline
\Gamma \vdash q \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Rightarrow p \\
\hline
\Gamma \cup \{q\} \vdash p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow p \\
\hline
\Gamma \cup \{q\} \vdash p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow F \\
\hline
\Gamma \vdash p \Longrightarrow F$$

Inference Rules for Conjunction / Disjunction

$$\frac{\Gamma \vdash p \qquad \Delta \vdash q}{\Gamma \cup \Delta \vdash p \wedge q} \text{ CONJ} \qquad \frac{\Gamma \vdash p}{\Gamma \vdash p \vee q} \text{ DISJ1}$$

$$\frac{\Gamma \vdash p \wedge q}{\Gamma \vdash p} \text{ CONJUNCT1} \qquad \frac{\Gamma \vdash p}{\Gamma \vdash p \vee q} \text{ DISJ2}$$

$$\frac{\Gamma \vdash p \wedge q}{\Gamma \vdash p} \text{ CONJUNCT2} \qquad \frac{\Delta_1 \cup \{p\} \vdash r}{\Delta_2 \cup \{q\} \vdash r} \text{ DISJ-CASES}$$

Inference Rules for Quantifiers

$$\frac{\Gamma \vdash p \quad x \text{ not free in } \Gamma}{\Gamma \vdash \forall x. \ p} \text{ GEN} \qquad \frac{\frac{\Gamma \vdash p[u/x]}{\Gamma \vdash \exists x. \ p}}{\frac{\Gamma \vdash \forall x. \ p}{\Gamma \vdash p[u/x]}} \text{ EXISTS}$$

$$\frac{\Gamma \vdash \exists x. \ p}{\Delta \cup \{p[u/x]\} \vdash r}$$

$$\frac{u \text{ not free in } \Gamma, \Delta, p \text{ and } r}{\Gamma \cup \Delta \vdash r} \text{ CHOOSE}$$

Forward Proofs

- axioms and inference rules are used to derive theorems
- this method is called forward proof
 - ► one starts with basic building blocks
 - ▶ one moves step by step forward
 - ▶ finally the theorem one is interested in is derived
- one can also implement own proof tools

61 / 67

62 / 67

Forward Proofs — Example I

Let's prove $\forall p. \ p \Longrightarrow p$.

Forward Proofs — Example II

Let's prove $\forall P \ v. \ (\exists x. \ (x = v) \land P \ x) \Longleftrightarrow P \ v.$

```
val tm_v = ''v:'a'';
val tm_P = ''P:'a -> bool'';
val tm_lhs = ''?x. (x = v) / P x''
val tm_rhs = mk_comb (t_P, t_v);
val thm1 = let
  val thm1a = ASSUME tm_rhs;
                                         > val thm1a = [P v] |- P v: thm
                                         > val thm1b =
  val thm1b =
    CONJ (REFL tm_v) thm1a;
                                              [P v] | - (v = v) / V v: thm
                                         > val thm1c =
  val thm1c =
    EXISTS (tm_lhs, tm_v) thm1b
                                             [P \ v] \mid -?x. (x = v) / \ P x
                                         > val thm1 = [] |-
 DISCH tm_rhs thm1c
                                             P v \Longrightarrow ?x. (x = v) / P x: thm
```

Forward Proofs — Example II cont.

```
val thm2 = let
                                      > val thm2a = [(u = v) /\ P u] |-
 val thm2a =
   ASSUME ''(u:'a = v) /\ P u''
                                          (u = v) / P u: thm
 val thm2b = AP_TERM t_P
                                      > val thm2b = [(u = v) / P u] | -
   (CONJUNCT1 thm2a):
                                          P u <=> P v
                                      > val thm2c = [(u = v) / P u] | -
 val thm2c = EQ MP thm2b
   (CONJUNCT2 thm2a);
 val thm2d =
                                      > val thm2d = [?x. (x = v) / Px] | -
   CHOOSE (''u:'a''.
                                          Ρv
     ASSUME tm_lhs) thm2c
 DISCH tm_lhs thm2d
                                      > val thm2 = [] |-
                                          ?x. (x = v) / P x \Longrightarrow P v
val thm3 = IMP_ANTISYM_RULE thm2 thm1 > val thm3 = [] |-
                                           ?x. (x = v) / P x \iff P v
                                       > val thm4 = [] |- !P v.
val thm4 = GENL [t_P, t_v] thm3
                                           ?x. (x = v) / P x \iff P v
```

65 / 67

Conversions

- HOL has very good tool support for equality reasoning
- conversions are important for HOL's automation
- there is a lot of infrastructure for conversions
 - ► RAND_CONV, RATOR_CONV, ABS_CONV
 - ► DEPTH_CONV
 - ► THENC, TRY_CONV, FIRST_CONV
 - ► REPEAT_CONV
 - ► CHANGED_CONV, QCHANGED_CONV
 - ► NO_CONV, ALL_CONV
 - ▶ ...
- important conversions
 - ► REWR_CONV
 - ► REWRITE_CONV
 - ▶ ...

67 / 67

Derived Tools

- HOL lives from implementing reasoning tools in SML
- rules use theorems to produce new theorems
 - ► SML-type thm -> thm
 - ► functions with similar type often called rule as well
- conversions convert a term into an equal one
 - ► SML-type term -> thm
 - ▶ given term t produces theorem of form [] |- t = t'
 - ► may raise exceptions HOL_ERR or UNCHANGED

. . . .