Interactive Theorem Proving (ITP) Course

Thomas Tuerk (tuerk@kth.se)
KTH

Academic Year 2016/17, Period 4

version 42672d2 of Mon Apr 24 08:54:04 2017

Motivation

©

Complex systems almost certainly contain bugs.

©

Critical systems (e. g. avionics) need to meet very high standards.

©

It is infeasible in practice to achieve such high standards just by
testing.

©

Debugging via testing suffers from diminishing returns.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”
— Edsger W. Dijkstra

Part |

Introduction

Famous Bugs

o Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)

o Ariane V explosion (1996)
(integer overflow, $1 billion prototype destroyed)

o Mars Climate Orbiter (1999)
(destroyed in Mars orbit, mixup of units pound-force and newtons)

o Knight Capital Group Error in Ultra Short Time Trading (2012)
(faulty deployment, repurposing of critical flag, $440 lost in 45 min
on stock exchange)

o ...

Fun to read

http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

Proof

o proof can show absence of errors in design
o but proofs talk about a design, not a real system

@ => testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,

they do not refer to reality.”

— Albert Einstein

Detail Level of Formal Proof

In Principia Mathematica it takes 300 pages to prove 14+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

Mathematical Proof Formal Proof

o informal, convince other o formal, rigorously use a
mathematicians logical formalism

o checked by community of o checkable by stupid
domain experts machines

@ subtle errors are hard to find o very reliable

o often provide some new o often contain no new ideas
insight about our world and no amazing insights

o often short, but require o often long, very tedious, but
creativity and a brilliant idea) largely trivial)

Mathematical vs. Formal Proof

Fully Manual Proof

We are interested in formal proofs in this lecture.

Automated vs Manual (Formal) Proof

o very tedious one has to grind through many trivial but detailed proofs
o easy to make mistakes
o hard to keep track of all assumptions and preconditions

@ hard to maintain, if something changes (see Ariane V)

Automated Proof

© amazing success in certain areas
o but still often infeasible for interesting problems
o hard to get insights in case a proof attempt fails

o even if it works, it is often not that automated

run automated tool for a few days

abort, change command line arguments to use different heuristics

run again and iterate till you find a set of heuristics that prove it fully
automatically in a few seconds

Interactive Proofs

©

©

>

>

>

©

>
>
>

©

>

>

>

combine strengths of manual and automated proofs
many different options to combine automated and manual proofs

mainly check existing proofs (e. g. HOL Zero)

user mainly provides lemmata statements, computer searches proofs
using previous lemmata and very few hints (e.g. ACL 2)

most systems are somewhere in the middle

typically the human user

provides insights into the problem
structures the proof
provides main arguments

typically the computer

checks proof
keeps track of all use assumptions
provides automation to grind through lengthy, but trivial proofs

9/67

Different Interactive Provers

o there are many different interactive provers, e. g.

>
>

vVvyVvy

Isabelle/HOL

Coq

PVS

HOL family of provers
ACL2

o important differences

>

vVvYy vy VY VvVyYy

the formalism used

level of trustworthiness
level of automation

libraries

languages for writing proofs
user interface

11/67

Typical Interactive Proof Activities

o provide precise definitions of concepts

o state properties of these concepts
o prove these properties

>

>

human provides insight and structure
computer does book-keeping and automates simple proofs

o build and use libraries of formal definitions and proofs

>

>

>

formalisations of mathematical theories like
* lists, sets, bags, ...
* real numbers
* probability theory
specifications of real-world artefacts like
* processors
* programming languages
* network protocols
reasoning tools

There is a strong connection with programming.
Lessons learned in Software Engineering apply.

10/67

Which theorem prover is the best one? :-)

o there is no best theorem prover

o better question: Which is the best one for a certain purpose?

o important points to consider

>

Y VY VY VY VY VvV VY

existing libraries

used logic

level of automation

user interface

importance development speed versus trustworthiness
How familiar are you with the different provers?
Which prover do people in your vicinity use?

your personal preferences

In this course we use the HOL theorem prover,
because it is used by the TCS group.

12 /67

Aims of this Course

Aims
o introduction to interactive theorem proving (ITP)
Part |l o being able to evaluate whether a problem can benefit from ITP
o hands-on experience with HOL
o learn how to build a formal model
Organisationa| Matters o learn how to express and prove important properties of such a model
o learn about basic conformance testing

o use a theorem prover on a small project

Required Prerequisites
o some experience with functional programming

o knowing Standard ML syntax

o basic knowledge about logic (e. g. First Order Logic)

13/67 14 /67

Dates Exercises

o Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016,/2017

o always in room 4523 or 4532

after each lecture an exercise sheet is handed out

©

©

work on these exercises alone, except if stated otherwise explicitly
exercise sheet contains due date
» usually 10 days time to work on it

©

o each week

Mondays 10:15 - 11:45 Iecture _ » hand in during practical sessions
Wednesdays 10:00 - 12:00 practical session » lecture Monday — hand in at latest in next week’s Friday session
Fridays 13:00 - 15:00 practical session @ main purpose: understanding ITP and learn how to use HOL

o no lecture on Monday, 1st of May, instead on Wednesday, 3rd May » no detailed grading, just pass/fail

> retries possible till pass
» if stuck, ask me or one another
» practical sessions intend to provide this opportunity

o last lecture: 12th of June
o last practical session: 21st of June

o 9 lectures, 17 practical sessions

15 /67 16 /67

Practical Sessions Handing-in Exercises

o exercises are intended to be handed-in during practical sessions

@ very informal . .
Y o attend at least one practical session each week

Q@ i : i . . .
main purpose: work on exercises o leave reasonable time to discuss exercises

> | have a look and provide feedback » don't try to hand your solution in Friday 14:55

> you can ask questions
» | might sometimes explain things not covered in the lectures o retries possible, but reasonable attempt before deadline required
» | might provide some concrete tips and tricks o handing-in outside practical sessions
» you can also discuss with each other » only if you have a good reason
o attendance not required, but highly recommended » decided on a case-by-case basis
» exception: session on 21st April o electronic hand-ins
o only requirement: turn up long enough to hand in exercises > only to get detailed feedback

» does not replace personal hand-in
> exceptions on a case-by-case basis if there is a good reason
> | recommend using a KTH GitHub repo

o you need to bring your own computer

17 /67 18/67

Passing the ITP Course Communication

o we have the advantage of being a small group

o therefore we are flexible

o there is only a pass/fail mark o so please ask questions, even during lectures
o to pass you need to o there are many shy people, therefore
> attend at least 7 of the 9 lectures » anonymous checklist after each lecture
> pass 8 of the 9 exercises » anonymous background questionnaire in first practical session

o further information is posted on Interactive Theorem Proving
Course group on Group Web

o contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se

19/67 20/ 67

Part 11

HOL 4 History and Architecture

21/67

LCF - Logic of Computable Functions Il

©

Milner worked on improving LCF in Edinburgh

o research assistants

Lockwood Morris
Malcolm Newey
Chris Wadsworth
Mike Gordon

Edinburgh LCF 1979
introduction of Meta Language (ML)

v

v vy

ML was invented to write proof procedures
ML become an influential functional programming language

using ML allowed implementing the LCF approach

23 /67

o intended for computer science applications

LCF - Logic of Computable Functions

Standford LCF 1971-72 by Milner et al.
formalism devised by Dana Scott in 1969

intended to reason about recursively defined
functions

strengths

» powerful simplification mechanism
» support for backward proof

limitations

Robin Milner
(1934 - 2010)

» proofs need a lot of memory
» fixed, hard-coded set of proof commands

LCF Approach

implement an abstract datatype thm to represent theorems
semantics of ML ensure that values of type thm can only be created
using its interface

interface is very small

» predefined theorems are axioms
» function with result type theorem are inferences

—> However you create a theorem, it is valid.

together with similar abstract datatypes for types and terms, this
forms the kernel

24 /67

LCF Approach Il LCF Style Systems

Modus Ponens Example There are now many interactive theorem provers out there that use an
Inference Rule SML function approach similar to that of Edinburgh LCF.
NFa=b AFa val MP : thm -> thm -> thm o HOL family
_ » HOL theorem prover
FTUAEFb MP(TFa= b)(AFa)=(TUAF b) > HOL Light
» HOL Zero
o very trustworthy — only the small kernel needs to be trusted » Proof Power
o efficient — no need to store proofs o
o lIsabelle
Easy to extend and automate
i . o o Nuprl
However complicated and potentially buggy your code is, if a value of type
. . o Coq
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds. e
25 /67 26 /67
History of HOL Family of HOL
@ 1979 Edinburgh LCF by Milner, Gordon, et al. Edinburgh LCF
o 1981 Mike Gordon becomes lecturer in Cambridge ° ProofPoyver .
1985 Cambridee LCF commercial version of HOL88 by Roger
¢ ambridge Jones, Rob Arthan et al. Cambridge LCF
» Larry Paulson and Gerard Huet .
» implementation of ML compiler o HOL Light
» powerful simplifier lean CAML / OCaml port by John Harrison HOLSS
» various improvements and extensions o HOL Zero /
o 1988 HOL trustworthy proof checker by Mark Adams Lo fsabelle/HOL
» Mike Gordon and Keith Hanna o lIsabelle ProofPower
> .adapti.on of Cambridge .L'CF.to classical higher order logic » 1090 by Larry Paulson .
» intention: hardware verification HOL Light

» meta-theorem prover that supports

@ 1990 HOL90 multiple logics

reimplementation in SML by Konrad Slind at University of Calgary > however, mainly HOL used, ZF a little hol9s HOL Zero
o 1998 HOLO98 » nowadays probably the most widely used

. . . . HOL system

implementation in Moscow ML and new library and theory mechanism » originally designed for software verification HOLA

o since then HOL Kananaskis releases, called informally HOL 4

27 /67 28 /67

Part IV

HOL's Logic

29 /67

Types

o SML datatype for types

» Type Variables (’a, «, ’b, 3, ...)
Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

» Atomic Types (c)
Atomic types denote fixed types. Examples: num, bool, unit

» Compound Types ((o1,...,0,)0p)
op is a type operator of arity n and oy,...,0, argument types.
Type operators denote operations for constructing types.
Examples: num list or ’a # ’b.

» Function Types (o1 — 03)
01 — 07 is the type of total functions from oy to o3.

o types are never empty in HOL, i.e.
for each type at least one value exists

o all HOL functions are total

31/67

HOL Logic

©

the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

©

this sounds complicated, but is intuitive for SML programmers
(S)ML and HOL logic designed to fit each other
if you understand SML, you understand HOL logic

©

©

HOL = functional programming + logic

Ambiguity Warning
The acronym HOL refers to both the HOL interactive theorem prover and

the HOL logic used by it. It's also a common abbreviation for higher order
logic in general.

30/67

Terms

o SML datatype for terms

Variables (x,y,...)

Constants (c,...)

Function Application (f a)

Lambda Abstraction (\x. £ x or Ax. fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

vYyVvYly

o terms have to be well-typed
o same typing rules and same type-inference as in SML take place
o terms very similar to SML expressions

o notice: predicates are functions with return type bool, i.e. no
distinction between functions and predicates, terms and formulae

32/67

Terms Il
HOL term SML expression type HOL / SML
0 0 num / int
x:’a X:’a variable of type ’a
x:bool x:bool variable of type bool
x +5 X +5 applying function + to x and 5
\x. x + 5 fn x => x + 5 anonymous (a.k. a. inline) function

(5, T) (5, true)
[5;3;2]1++[6] [5,3,2]@[6]

of type num -> num
num # bool / int * bool
num list / int list

33/67

Theorems

©

©

©

©

theorems are of the form ' - p where

» [is a set of hypothesis
» p is the conclusion of the theorem
> all elements of I and p are formulae, i.e. terms of type bool

I+ p records that using I the statement p has been proved

notice difference to logic: there it means can be proved

the proof itself is not recorded

theorems can only be created through a small interface in the kernel

35/67

Free and Bound Variables / Alpha Equivalence

in SML, the names of function arguments does not matter (much)

similarly in HOL, the names of variables used by lambda-abstractions
does not matter (much)

the lambda-expression Ax. t is said to bind the variables x in term t
variables that are guarded by a lambda expression are called bound
all other variables are free

Example: x is free and y is bound in (x =5) A (Ay. (y <x)) 3

the names of bound variables are unimportant semantically

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

Example: Ax. x and \y. y are alpha-equivalent

Example: x and y are not alpha-equivalent

HOL Light Kernel

the HOL kernel is hard to explain

» for historic reasons some concepts are represented rather complicated
» for speed reasons some derivable concepts have been added

instead consider the HOL Light kernel, which is a cleaned-up version

o there are two predefined constants

> = ’a -> ’a => bool
» @ : (’a -> bool) —> ’a
there are two predefined types
» bool
» ind
the meaning of these types and constants is given by inference rules
and axioms

HOL Light Inferences | HOL Light Inferences Il

lN-pegq AFp
REFL EQ-MP
F+—¢ lNs=t FTUAFg
x not free in T ABS
_ M- A+
Fhs=t FEAx s=Axt P a DEDUCT_ANTISYM_RULE
Att=u (T—{ahu(a-{phFpegq
FUAFs—a AN
- —————— BETA
"()\X t)X:t r[X17"'aXl"]Fp[Xlw-an] INST
Ml-s=t Mte, ...y ta]l Fplta, ...t
Aru=v ASSUME
: Moa,. .. a0 F plod, . ..,
types fit COMB (pyFp loa, s anl Eplas, sanl oo opp
TUAF s(u) = t(v) M-l Bopls -]
37/67 38/67
HOL Light Axioms and Definition Principles HOL Light derived concepts
o 3 axioms needed
ETA_AX (M. tx)=t Everything else is derived from this small kernel.
SELECT AX P x= P((Q)P))
INFINITY_AX predefined type ind is infinite T =g (Ap.p)=(Ap. p)
o definition principle for constants N =der Apq- (M. fpq)=(f.fTT)
» constants can be introduced as abbreviations = =def A\PG.- (PAG&p)
» constraint: no free vars and no new type vars V' =der AP. (P = Ax. T)

o definition principle for types 3 =der AP.(Yq. (Vx. P(x) = q) = q)
» new types can be defined as non-empty subtypes of existing types T
o both principles

» lead to conservative extensions
> preserve consistency

39/67 40 /67

Multiple Kernels HOL Logic Summary

o HOL theorem prover uses classical higher order logic
o Kernel defines abstract datatypes for types, terms and theorems o HOL logic is very similar to SML
@ one does not need to look at the internal implementation > syntax
> type system

o therefore, easy to exchange » type inference
o there are at least 3 different kernels for HOL o HOL theorem prover very trustworthy because of LCF approach

» standard kernel (de Bruijn indices) » there is a small kernel

» experimental kernel (name / type pairs) » proofs are not stored explicitly

» OpenTheory kernel (for proof recording)

©

you don't need to know the details of the kernel

©

usually one works at a much higher level of abstraction

41/67 42 /67

HOL Technical Usage Issues

©

practical issues are discussed in practical sessions
Part V > hov.v to install HQL . .

which key-combinations to use in emacs-mode
detailed signature of libraries and theories
all parameters and options of certain tools

v vy vy

Basic HOL Usage

exercise sheets sometimes
» ask to read some documentation
» provide examples
» list references where to get additional information

©

©

if you have problems, ask me outside lecture (tuerk@kth.se)

©

covered only very briefly in lectures

43 /67 44 /67

Installing HOL

©

webpage: https://hol-theorem-prover.org
HOL supports two SML implementations

» Moscow ML (http://mosml.org)
» PolyML (http://www.polyml.org)

©

©

| recommend using PolyML

©

please use emacs with

» hol-mode
» sml-mode
> hol-unicode, if you want to type Unicode

o please install recent revision from git repo or Kananaskis 11 release

o documentation found on HOL webpage and with sources

45 /67

Filenames

o *Script.sml — HOL proof script file

» script files contain definitions and proof scripts

» executing them results in HOL searching and checking proofs
> this might take very long

» resulting theorems are stored in *Theory.{sml|sig} files

o *Theory.{sml|sig} — HOL theory

> auto-generated by corresponding script file
» load quickly, because they don't search/check proofs
» do not edit theory files

o *Syntax.{sml|sig} — syntax libraries

» contain syntax related functions
» i.e. functions to construct and destruct terms and types

o *Lib.{sml|sig} — general libraries
o *Simps.{sml|sig} — simplifications
o selftest.sml — selftest for current directory

47 /67

General Architecture

©

©

©

HOL is a collection of SML modules
starting HOL starts a SML Read-Eval-Print-Loop (REPL) with

>

>

>

some HOL modules loaded
some default modules opened
an input wrapper to help parsing terms called unquote

unquote provides special quotes for terms and types

>

>

>

implemented as input filter
‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]
¢“:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]

main interfaces

>
>
>

emacs (used in the course)
vim
bare shell

Directory Structure

o bin — HOL binaries

Qo

Qo

src — HOL sources

examples — HOL examples

>

>

>

interesting projects by various people
examples owned by their developer
coding style and level of maintenance differ a lot

help — sources for reference manual

>

after compilation home of reference HTML page

Manual — HOL manuals

>

vV vy vY VY VvYYyYy

Tutorial

Description

Reference (PDF version)
Interaction

Quick (cheat pages)
Style-guide

46 /67

48 /67

Unicode Where to find help?

o HOL supports both Unicode and pure ASCII input and output
o advantages of Unicode compared to ASCII

» easier to read (good fonts provided)
> no need to learn special ASCII syntax

o reference manual
» available as HTML pages, single PDF file and in-system help

o disadvanges of Unicode compared to ASCII o description manual

» harder to type (even with hol-unicode.el) o Style-guide (still under development)

> less portable between systems o HOL webpage (https://hol-theorem-prover.org)
o whether you like Unicode is highly a matter of personal taste

@ mailing-list hol-info

o HOL's policy]
. . , . o DB.match and DB.find
» no Unicode in HOL's source directory src)]
» Unicode in examples directory examples is fine o *Theory.sig and selftest.sml files
o | recommend turning Unicode output off initially o ask someone, e.g. me :-) (tuerk@kth.se)

» this simplifies learning the ASCII syntax
» no need for special fonts
> it is easier to copy and paste terms from HOL's output

49 /67 50/67

Kernel too detailed

Part VI

o we already discussed the HOL Logic

©

the kernel itself does not even contain basic logic operators
usually one uses a much higher level of abstraction

» many operations and datatypes are defined
> high-level derived inference rules are used

Forward Proofs

©

o let's now look at this more common abstraction level

51/67 52 /67

Common Terms and Types
Unicode ASCII

type vars a, B, ... ’a, ’b, ...
type annotated term term:type term:type
true T T

false F F

negation —b ~b

conjunction bl A b2 bl /\ b2
disjunction bl V b2 bl \/ b2
implication bl = b2 bl ==> b2
equivalence bl <= b2 bl <=> b2
disequation vl # v2 vl <> v2
all-quantification Vx. P x Ix. P x
existential quantification Jx. P x ?x. P x
Hilbert's choice operator @x. P x @x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don't start variable names with an underscore

Creating Terms

Term Parser
Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.

55 /67

Syntax conventions

@ common function syntax

» prefix notation, e.g. SUC x
» infix notation, e.g. x + y
» quantifier notation, e.g. Vx. P x means (V) (Ax. P x)

o infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are thesameasx + y

o quantifiers of the same type don't need to be repeated
Example: Vx y. P x yis short for Vx. Vy. P x y

o there is special syntax for some functions
Example: if ¢ then vl else v2 is nice syntax for COND ¢ v1 v2

o associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as bl /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

Creating Terms Il

Parser Syntax Funs

€¢:bool‘F mk_type ("bool", []) or bool type of Booleans

ceTec mk_const ("T", bool) or T term true

MR A mk_neg (negation of
mk_var ("b", bool)) Boolean var b

oo /N oY mkeceonj (.., L) conjunction

oo N/ Lo mkdisjy G, L) disjunction

Choos==> .0 mkimp (..., L)) implication

Chol. = Lo mkeq (..., ...) equation

flLl.<=> ... mkeq (.., ll) equivalence

L. <> L. mkneg (mkeq (..., ...)) negated equation

56 /67

Inference Rules for Equality

REFL

Ft=t

lEs=t
X not free in I

- ABS
ME Ax. s = Ax.t

[Fs=t

— GSYM
[Ft=s

lFs=t
AFt=u

—— TRANS
TUAFs=u

Tkpeqg Abp

TEs=t EQ_MP
AFu=v FTUAFgq
types fit
ruAgp(T gy ME-cOMB BETA
S\ =Ry F(x t)x=t
57 /67
Inference Rules for Implication
lFp=gq
Ep
—— ~ MP, MATCH.MP e
FTUAFg p DISCH
Fr—{q}Fg=0p
rFp=q EQ_IMP_RULE
N-p=gq B o mUNDISCH
rMN-g—p ry{qttp
Fp=gq T P=F NOT.INTRO
AFqg— - -
2977 P NP ANTISYM.RULE | 7P
FTUAFp=g
PP NoT.ELIM
-p=gq r-p=F)
AFg=r

—— IMP_TRANS
FTUAFp=r

59 /67

Inference Rules for free Variables

Mxi,...,xa]l Fp[x, ..., x

[1 n] p[l n] INST
Mt1, ..., tal Fplt1, ...t

MNoa,...,an) Fplag, ...«

[ol F plea ol INST.TYPE

r[’Ylw-w’Yn] F p[’ylv"'ern]

Inference Rules for Conjunction / Disjunction

7r}—p DISJ1
[A+)
MCONJ N=pvVvagq
FTUAEFpPp A g
7ﬂ—q DISJ2
Fr=p A ’
“TP R 9 conguNeTt Fep Vg
l=p
l=pvag
FEp A A1 U Fr
“TP R 9 conguNeT2 AIU?’{H
Mraq _S2 NG DISJ_CASES
FTUATUAEr

58 /67

60 /67

Inference Rules for Quantifiers Forward Proofs

e I plu/x] EXISTS o axioms and inference rules are used to derive theorems
ree x not free in T GEN IMN=3x.p o this method is called forward proof
-Vx. p » one starts with basic building blocks
M-3x.p » one moves step by step forward
M=Vvx. p SPEC AU {plu/x]}Fr » finally the theorem one is interested in is derived
I+ plu/x] unot freein I, A, p and r CHOOSE o one can also implement own proof tools
FTUAFTr
61 /67 62 /67
Forward Proofs — Example | Forward Proofs — Example Il
Let's prove Vp. p = p.)
prove vp- p P Let's prove VP v. (3x. (x =Vv) AP x) <= P v.
val IMP_REFL_THM = let val tmv = Clviates
val tml = ‘‘p:bool‘‘; > val tml = ‘‘p‘‘: term val tm_P = ‘‘P:’a -> bool‘‘;
val thml = ASSUME tm1; > val thml = [p] |- p: thm z:i tz_i: - mk?:(;méx(: ;) :\VI;.X
val thm2 = DISCH tml thml; > val thm2 = |- p ==> p: thm)) S
in val thml = let
val thmla = ASSUME tm_rhs; > val thmia = [P v] |- P v: thm
GEN tml thm?2 > val IMP_REFL_THM = val thmlb = > val thmib =
|- !'p. p ==> p: thm CONJ (REFL tm_v) thmla; [Pv] |- (=v)/\Pv: thm
val thmic = > val thmic =
end EXISTS (tm_lhs, tm_v) thmib [Pvl |-7x. (x=v) /\Px
in
fun IMP_REFL t = > val IMP_REFL = DISCH tm_rhs thmic > val thml = [] |-

end Pv==>7%x. (x=v) /\Px: thm

SPEC t IMP_REFL_THM; fn: term -> thm

63 /67 64 /67

Forward Proofs — Example Il cont. Derived Tools

val thm2 = let 1
val thm2a = > val thm2a = [(u = v) /\ P ul |-
ASSUME “(a:’a = v) /\ P u¢ (w=v) /\ P u: thn o HOL lives from implementing reasoning tools in SML
val thm2b = AP_TERM t_P > val thm2b = [(u = v) /\ P ul |-
_ - ° —
(CONJUNCT1 thm2a); Pu<=>Pv rules — use theorems to produce new theorems
val thm2c = EQ_MP thm2b > val thm2c = [(u = v) /\ P u] |- > SML-type thm -> thm
(CONJUNCT2 thn2a) ; P » functions with similar type often called rule as well
val thm2d = > val thm2d = [?x. (x = v) /\ P x] |- yp
CHOOSE (¢‘u:’a‘‘ Pv . .
, ° —
ASSUME tm_1hs) thm2c conversions convert a term into an equal one
in » SML-type term -> thm
DISCH tm_lhs thm2d > val thm2 = [] |-

» given term t produces theorem of form []1 |- t = t°
> may raise exceptions HOL_ERR or UNCHANGED

end ?x. (x =v) /\Px==>Pyv

val thm3 = IMP_ANTISYM_RULE thm2 thmil > val thm3 = [] |- o ...
?7%. (x =v) /\Px<=>Pyvw

val thm4 = GENL [t_P, t_v] thm3 > val thm4 = [] |- !P v.
?x. (x=v) /\Px<=>Puv

65 /67 66 /67

Conversions

o HOL has very good tool support for equality reasoning

o conversions are important for HOL's automation
o there is a lot of infrastructure for conversions

» RAND_CONV, RATOR_CONV, ABS_CONV
DEPTH_CONV

THENC, TRY_CONV, FIRST_CONV
REPEAT_CONV

CHANGED_CONV, QCHANGED_CONV
NO_CONV, ALL_CONV

Yy VY VvYVvYVvVYy

o important conversions

» REWR_CONV
» REWRITE_CONV

L

67 /67

