Interactive Theorem Proving (ITP) Course
Parts V, VI

Thomas Tuerk (tuerk@kth.se)
KTH

Academic Year 2016/17, Period 4

version 42672d2 of Mon Apr 24 08:54:04 2017

42 /67

Part V

Basic HOL Usage

43 /67

HOL Technical Usage Issues

(]

practical issues are discussed in practical sessions
» how to install HOL

which key-combinations to use in emacs-mode

detailed signature of libraries and theories

all parameters and options of certain tools

vV vy VvYy

@ exercise sheets sometimes

> ask to read some documentation
> provide examples
> list references where to get additional information

if you have problems, ask me outside lecture (tuerk@kth.se)

covered only very briefly in lectures

44 /67

mailto:tuerk@kth.se

Installing HOL

webpage: https://hol-theorem-prover.org

HOL supports two SML implementations

» Moscow ML (http://mosml.org)
» PolyML (http://www.polyml.org)

| recommend using PolyML

please use emacs with
> hol-mode
> sml-mode
» hol-unicode, if you want to type Unicode

please install recent revision from git repo or Kananaskis 11 release

documentation found on HOL webpage and with sources

45 /67

https://hol-theorem-prover.org
http://mosml.org
http://www.polyml.org

General Architecture

@ HOL is a collection of SML modules
o starting HOL starts a SML Read-Eval-Print-Loop (REPL) with

» some HOL modules loaded

» some default modules opened

> an input wrapper to help parsing terms called unquote
@ unquote provides special quotes for terms and types

» implemented as input filter

> ‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]

» ‘‘“:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]
@ main interfaces

» emacs (used in the course)

> vim

> bare shell

46 /67

Filenames

@ *Script.sml — HOL proof script file

>

| 3
>
>

script files contain definitions and proof scripts

executing them results in HOL searching and checking proofs
this might take very long

resulting theorems are stored in *Theory.{sml|sig} files

o *Theory.{sml|sig} — HOL theory

>

>

>

auto-generated by corresponding script file
load quickly, because they don't search/check proofs
do not edit theory files

e *Syntax.{sml|sig} — syntax libraries

>

>

contain syntax related functions
i.e. functions to construct and destruct terms and types

@ *Lib.{sml|sig} — general libraries

e *Simps.{sml|sig} — simplifications

@ selftest.sml — selftest for current directory

47 /67

Directory Structure

@ bin — HOL binaries
@ src — HOL sources
o examples — HOL examples
> interesting projects by various people
» examples owned by their developer
» coding style and level of maintenance differ a lot
@ help — sources for reference manual

» after compilation home of reference HTML page
@ Manual — HOL manuals

» Tutorial

» Description

> Reference (PDF version)
> Interaction

» Quick (cheat pages)

» Style-guide

> L.

48 / 67

Unicode

HOL supports both Unicode and pure ASCII input and output
advantages of Unicode compared to ASCII

» easier to read (good fonts provided)
> no need to learn special ASCII syntax

disadvanges of Unicode compared to ASCII

» harder to type (even with hol-unicode.el)
> less portable between systems

whether you like Unicode is highly a matter of personal taste
HOL's policy

» no Unicode in HOL's source directory src

» Unicode in examples directory examples is fine

@ | recommend turning Unicode output off initially

» this simplifies learning the ASCII syntax
» no need for special fonts
> it is easier to copy and paste terms from HOL's output

49 /67

Where to find help?

reference manual
» available as HTML pages, single PDF file and in-system help

description manual

Style-guide (still under development)

HOL webpage (https://hol-theorem-prover.org)
mailing-list hol-info

DB.match and DB.find

*Theory.sig and selftest.sml files

ask someone, e. g. me :-) (tuerk@kth.se)

50 /67

https://hol-theorem-prover.org
mailto:tuerk@kth.se

Part VI

Forward Proofs

51/67

Kernel too detailed

@ we already discussed the HOL Logic

o the kernel itself does not even contain basic logic operators
@ usually one uses a much higher level of abstraction

» many operations and datatypes are defined
> high-level derived inference rules are used

@ let's now look at this more common abstraction level

52 /67

Common Terms and Types

type vars

type annotated term
true

false

negation

conjunction

disjunction

implication

equivalence

disequation
all-quantification
existential quantification
Hilbert's choice operator

Unicode
a, B, ...
term:type
T
F
—b
bl A b2
bl V b2
bl = b2
bl < b2
vl # v2
Vx. P x
dx. P x
@x. P x

ASCII
’a, ’b, ...
term:type

T

F

~b
bl /\ b2
bl \/ b2
bl ==> b2
bl <=> b2
vl <> v2

Ix. P x

?x. P x

0x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don't start variable names with an underscore

53 /67

Syntax conventions

@ common function syntax
» prefix notation, e.g. SUC x
> infix notation, e.g. x + y
» quantifier notation, e.g. Vx. P x means (V) (\x. P x)
@ infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are the sameasx + y
@ quantifiers of the same type don't need to be repeated
Example: Vx y. P x yisshort for Vx. Vy. P x y
@ there is special syntax for some functions
Example: if ¢ then vl else v2 is nice syntax for COND ¢ v1 v2
@ associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

54 /67

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.

55 /67

Creating Terms |l

Parser Syntax Funs

““:bool"" mk_type ("bool", []) or bool type of Booleans

ceTes mk_const ("T", bool) or T term true

R A mk_neg (negation of
mk_var ("b", bool)) Boolean var b

el /N LY mkeconj (L., L) conjunction

oo N/ Lo mkdisj Gol., L) disjunction

Coooe==> .0 mkiimp (..., ...) implication

el = Lo mkeq (..., ...) equation

oLl <= L0 Y mkeq (L., olll) equivalence

L. <> L0 mkneg (mkeq (..., ...)) negated equation

56 /67

Inference Rules for Equality

REFL

Ft=t

lEs=t
x not free in T

M= Ax. s = Ax.t

lFs=t
ArFu=v
types fit

FUAF s(u) =t(v)

MK_COMB

lFs=t
— GSYM
l—t=s
lEs=t
AFt=u
———— TRANS
FTUAFs=u
NlN-p&e AF
peq P B MP
FTUAFgq
BETA

F(Ax. t)x=t

57 /67

Inference Rules for free Variables

M[x1, ..oy xa] Foplx, ..y X
Mt1, ..., ta] F plt1, ..., tn]

INST

Maa, ..., an] Fplat, ..., an)

INST_TYPE
r[717 .. 77"] F P[’Yh CIEaE 77n]

58 /67

Inference Rules for Implication

-p=g¢g
AFp
—— © MP, MATCH.MP e
FTUAF g p DISCH
r—{g}Fg=p
rFrp=gq EQ_IMP_RULE
TEp— o QMP- Mq—
rFp=gq 9= P ynpiscu
N-g—op ru{qttop
N-p=gq N-p=—F
AFg— p i NOT_INTRO
— T 7" IMP_ANTISYM_RULE ~P
FTUAFp=gq
re-p NOT_ELIM
-p=gq M-p— }
AF-qg=r
IMP_TRANS

TUAF p=—r

59 /67

Inference Rules for Conjunction / Disjunction

"P isn

[A+ R
p qCONJ N-p V q

FTUAFpPp A g

"9 Dbige
F-p A I
P~ 9 conguNcTI F=pVva
MN=p

lpVvag

FEp A AL U{ptEr
#CONJUNCT2 A;U%Z{H
Fq DISJ_CASES

FTUATUA T

60 /67

Inference Rules for Quantifiers

- p[u/x] EXISTS
M= t free in - o -
P X NOt Tree In GEN I+ Jx. p

N=-vx.p
N-3x. p
[F Vx. AU u/x|t = r
rl—[u/)l:] SPEC u not free{[iJrE F/,]A},p and r
P CHOOSE

FTUAETr

61 /67

Forward Proofs

@ axioms and inference rules are used to derive theorems
@ this method is called forward proof

> one starts with basic building blocks
» one moves step by step forward
» finally the theorem one is interested in is derived

@ one can also implement own proof tools

62 /67

Forward Proofs — Example |
Let's prove Vp. p = p.

val IMP_REFL_THM = let

val tml = ‘‘p:bool‘‘; > val tml = “‘p‘‘: term

val thml = ASSUME tml; > val thml = [p] |- p: thm

val thm2 = DISCH tml thml; > val thm2 = |- p ==> p: thm
in

GEN tml thm2 > val IMP_REFL_THM =

|- 'p. p ==> p: thm

end
fun IMP_REFL t = > val IMP_REFL =

SPEC t IMP_REFL_THM; fn: term -> thm

63 /67

Forward Proofs — Example Il

Let's prove VP v. (3x. (x = V) AP x) <= P v.

val tm_v = ‘‘v:’a‘‘;
val tm_P = ‘‘P:’a -> bool‘‘;
val tm_lhs = “‘?x. (x = v) /\ P x°¢

val tm_rhs = mk_comb (t_P, t_v);

val thml = let
val thmla = ASSUME tm_rhs;
val thmlb =
CONJ (REFL tm_v) thmla;
val thmlc =
EXISTS (tm_lhs, tm_v) thmlb
in
DISCH tm_rhs thmlc
end

val thmia = [P v] |- P v: thm
val thmlb =

[Pv] |- (v=v)/\Pv: thm
val thmlc =

[Pv] |I-7x. (x=v) /\Px

val thml = [] |-
Pv==>7x. (x=v) /\Px: thm

64

67

Forward Proofs — Example Il cont.

val thm2 = let
val thm2a =
ASSUME ‘“(u:’a =v) /\ P u‘*
val thm2b = AP_TERM t_P
(CONJUNCT1 thm2a);
val thm2c = EQ_MP thm2b
(CONJUNCT2 thm2a) ;
val thm2d =
CHOOSE (‘‘u:’a‘‘,
ASSUME tm_lhs) thm2c

in
DISCH tm_lhs thm2d
end
val thm3 = IMP_ANTISYM_RULE thm2 thmil
val thm4 = GENL [t_P, t_v] thm3

val thm2a
(u=v)

val thm2b
P u <=>

val thm2c
Pv

val thm2d
Pv

val thm2
7x. (x

val thm3

/

oo

7x. (x =

val thm4
7x. (x

[(w=v) /\Pul |-
\ P u: thm

[(w=v) /\NPul |-

v

[(w=v) /\NPul |-
[7x. (x =v) /\ P x] |-
11-

v) /\Px==>Pyv

1 1-

v) /\Px<=>Pv
[11-1'Pv.

v) /\Px<=>Pv

65

67

Derived Tools

HOL lives from implementing reasoning tools in SML

rules — use theorems to produce new theorems

» SML-type thm -> thm
» functions with similar type often called rule as well

@ conversions — convert a term into an equal one

» SML-type term -> thm
» given term t produces theorem of form [] |- t = t’
> may raise exceptions HOL_ERR or UNCHANGED

66 /67

Conversions

@ HOL has very good tool support for equality reasoning

@ conversions are important for HOL's automation

@ there is a lot of infrastructure for conversions

>

vV VY vy VY VY

RAND_CONV, RATOR_CONV, ABS_CONV
DEPTH_CONV

THENC, TRY_CONV, FIRST_CONV
REPEAT_CONV

CHANGED_CONV, QCHANGED_CONV
NO_CONV, ALL_CONV

@ important conversions

>

>

REWR_CONV
REWRITE_CONV

> ..

67 /67

	Basic HOL Usage
	Forward Proofs
	Term Syntax
	Inference Rules
	Forward Proofs
	Rules and Conversions

