Interactive Theorem Proving (ITP) Course
Parts | - IV

Thomas Tuerk (tuerk@kth.se)
KTH

Academic Year 2016/17, Period 4

version 42672d2 of Mon Apr 24 08:54:04 2017

Motivation

©

Complex systems almost certainly contain bugs.

©

Critical systems (e. g. avionics) need to meet very high standards.

©

It is infeasible in practice to achieve such high standards just by
testing.

©

Debugging via testing suffers from diminishing returns.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”
— Edsger W. Dijkstra

Part |

Introduction

Famous Bugs

o Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)

o Ariane V explosion (1996)
(integer overflow, $1 billion prototype destroyed)

o Mars Climate Orbiter (1999)
(destroyed in Mars orbit, mixup of units pound-force and newtons)

o Knight Capital Group Error in Ultra Short Time Trading (2012)
(faulty deployment, repurposing of critical flag, $440 lost in 45 min
on stock exchange)

o ...

Fun to read
http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

Proof

o proof can show absence of errors in design
o but proofs talk about a design, not a real system

@ => testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,

they do not refer to reality.”

— Albert Einstein

Detail Level of Formal Proof

In Principia Mathematica it takes 300 pages to prove 14+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

Mathematical Proof Formal Proof

o informal, convince other o formal, rigorously use a
mathematicians logical formalism

o checked by community of o checkable by stupid
domain experts machines

@ subtle errors are hard to find o very reliable

o often provide some new o often contain no new ideas
insight about our world and no amazing insights

o often short, but require o often long, very tedious, but
creativity and a brilliant idea) largely trivial)

Mathematical vs. Formal Proof

Fully Manual Proof

We are interested in formal proofs in this lecture.

Automated vs Manual (Formal) Proof

o very tedious one has to grind through many trivial but detailed proofs
o easy to make mistakes
o hard to keep track of all assumptions and preconditions

@ hard to maintain, if something changes (see Ariane V)

Automated Proof

© amazing success in certain areas
o but still often infeasible for interesting problems
o hard to get insights in case a proof attempt fails

o even if it works, it is often not that automated

run automated tool for a few days

abort, change command line arguments to use different heuristics

run again and iterate till you find a set of heuristics that prove it fully
automatically in a few seconds

Interactive Proofs

©

©

>

>

>

©

>
>
>

©

>

>

>

combine strengths of manual and automated proofs
many different options to combine automated and manual proofs

mainly check existing proofs (e. g. HOL Zero)

user mainly provides lemmata statements, computer searches proofs
using previous lemmata and very few hints (e.g. ACL 2)

most systems are somewhere in the middle

typically the human user

provides insights into the problem
structures the proof
provides main arguments

typically the computer

checks proof
keeps track of all use assumptions
provides automation to grind through lengthy, but trivial proofs

Different Interactive Provers

o there are many different interactive provers, e. g.

>
>

vVvyVvy

Isabelle/HOL

Coq

PVS

HOL family of provers
ACL2

o important differences

>

vVvYy vy VY VvVyYy

the formalism used

level of trustworthiness
level of automation

libraries

languages for writing proofs
user interface

11 /42

Typical Interactive Proof Activities

o provide precise definitions of concepts
o state properties of these concepts
o prove these properties
> human provides insight and structure
» computer does book-keeping and automates simple proofs
o build and use libraries of formal definitions and proofs
» formalisations of mathematical theories like
* lists, sets, bags, ...
* real numbers
* probability theory
» specifications of real-world artefacts like
* processors
* programming languages
* network protocols
> reasoning tools

There is a strong connection with programming.
Lessons learned in Software Engineering apply.

Which theorem prover is the best one? :-)

o there is no best theorem prover

o better question: Which is the best one for a certain purpose?
o important points to consider
» existing libraries
used logic
level of automation
user interface
importance development speed versus trustworthiness
How familiar are you with the different provers?
Which prover do people in your vicinity use?
your personal preferences

Y VY VY VY VY VvV VY

In this course we use the HOL theorem prover,
because it is used by the TCS group.

10

42

Aims of this Course

Aims
o introduction to interactive theorem proving (ITP)
Part |l o being able to evaluate whether a problem can benefit from ITP
o hands-on experience with HOL
o learn how to build a formal model
Organisationa| Matters o learn how to express and prove important properties of such a model
o learn about basic conformance testing

o use a theorem prover on a small project

Required Prerequisites
o some experience with functional programming

o knowing Standard ML syntax

o basic knowledge about logic (e. g. First Order Logic)

13 /42

o
—
o

Dates Exercises

o Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016,/2017

o always in room 4523 or 4532

after each lecture an exercise sheet is handed out

©

©

work on these exercises alone, except if stated otherwise explicitly
exercise sheet contains due date
» usually 10 days time to work on it

©

o each week

Mondays 10:15 - 11:45 Iecture _ » hand in during practical sessions
Wednesdays 10:00 - 12:00 practical session » lecture Monday — hand in at latest in next week’s Friday session
Fridays 13:00 - 15:00 practical session @ main purpose: understanding ITP and learn how to use HOL

o no lecture on Monday, 1st of May, instead on Wednesday, 3rd May » no detailed grading, just pass/fail

> retries possible till pass
» if stuck, ask me or one another
» practical sessions intend to provide this opportunity

o last lecture: 12th of June
o last practical session: 21st of June

o 9 lectures, 17 practical sessions

15 /42 16 /42

Practical Sessions Handing-in Exercises

o exercises are intended to be handed-in during practical sessions

@ very informal . .
Y o attend at least one practical session each week

Q@ i : i . . .
main purpose: work on exercises o leave reasonable time to discuss exercises

> | have a look and provide feedback » don't try to hand your solution in Friday 14:55

> you can ask questions
» | might sometimes explain things not covered in the lectures o retries possible, but reasonable attempt before deadline required
» | might provide some concrete tips and tricks o handing-in outside practical sessions
» you can also discuss with each other » only if you have a good reason
o attendance not required, but highly recommended » decided on a case-by-case basis
» exception: session on 21st April o electronic hand-ins
o only requirement: turn up long enough to hand in exercises > only to get detailed feedback

» does not replace personal hand-in
> exceptions on a case-by-case basis if there is a good reason
> | recommend using a KTH GitHub repo

o you need to bring your own computer

17 / 42

o
—
o

Passing the ITP Course Communication

o we have the advantage of being a small group

o therefore we are flexible

o there is only a pass/fail mark o so please ask questions, even during lectures
o to pass you need to o there are many shy people, therefore
> attend at least 7 of the 9 lectures » anonymous checklist after each lecture
> pass 8 of the 9 exercises » anonymous background questionnaire in first practical session

o further information is posted on Interactive Theorem Proving
Course group on Group Web

o contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se

19 /42 20 /42

LCF - Logic of Computable Functions

o Standford LCF 1971-72 by Milner et al.
Part 11 o formalism devised by Dana Scott in 1969

o intended to reason about recursively defined
functions

HOL 4 History and Architecture

o intended for computer science applications
o strengths

» powerful simplification mechanism
» support for backward proof

o limitations

" ¢ Robin Milner
> proofs need a lot of memory (1934 - 2010)
» fixed, hard-coded set of proof commands
21/42 22 /42
LCF - Logic of Computable Functions Il LCF Approach
o Milner worked on improving LCF in Edinburgh
o research assistants o implement an abstract datatype thm to represent theorems
» Lockwood Morris o semantics of ML ensure that values of type thm can only be created
> Mal_colm Newey using its interface
> Chrls Wadsworth o interface is very small
» Mike Gordon) .
. » predefined theorems are axioms
o Edinburgh LCF 1979 » function with result type theorem are inferences
@ introduction of Meta Language (ML) o = However you create a theorem, it is valid.
o ML was invented to write proof procedures o together with similar abstract datatypes for types and terms, this
@ ML become an influential functional programming language forms the kernel

o using ML allowed implementing the LCF approach

23 /42 24 /42

LCF Approach Il

Modus Ponens Example

Inference Rule SML function
NFa=b Ata val MP : thm -> thm -> thm
FTUAFD MP(TFa= b)(AFa)=(TUAF b)

o very trustworthy — only the small kernel needs to be trusted

o efficient — no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds.

History of HOL

@ 1979 Edinburgh LCF by Milner, Gordon, et al.
o 1981 Mike Gordon becomes lecturer in Cambridge

o 1985 Cambridge LCF

» Larry Paulson and Gerard Huet

» implementation of ML compiler

» powerful simplifier

» various improvements and extensions

o 1988 HOL

» Mike Gordon and Keith Hanna
» adaption of Cambridge LCF to classical higher order logic
» intention: hardware verification

o 1990 HOL90
reimplementation in SML by Konrad Slind at University of Calgary

o 1998 HOL98
implementation in Moscow ML and new library and theory mechanism

o since then HOL Kananaskis releases, called informally HOL 4

27 /42

LCF Style Systems

There are now many interactive theorem provers out there that use an
approach similar to that of Edinburgh LCF.
o HOL family
» HOL theorem prover
HOL Light
» HOL Zero

» Proof Power
-

v

Isabelle

©

©

Nuprl
o Coq

Family of HOL

Edinburgh LCF

o ProofPower
commercial version of HOL88 by Roger
Jones, Rob Arthan et al. Cambridge LCF
o HOL Light
lean CAML / OCaml port by John Harrison HOLSS
o HOL Zero /
trustworthy proof checker by Mark Adams Lo fsabelle/HOL
o Isabelle Prooffower
» 1990 by Larry Paulson HO Light
» meta-theorem prover that supports
multiple logics
» however, mainly HOL used, ZF a little holos HOL Zero
» nowadays probably the most widely used
HOL system
» originally designed for software verification HOL4

28 /42

Part IV

HOL's Logic

Types

o SML datatype for types

» Type Variables (’a, «, ’b, 3, ...)
Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

» Atomic Types (c)
Atomic types denote fixed types. Examples: num, bool, unit

» Compound Types ((o1,...,0,)0p)
op is a type operator of arity n and oy,...,0, argument types.
Type operators denote operations for constructing types.
Examples: num list or ’a # ’b.

» Function Types (o1 — 03)
01 — 07 is the type of total functions from oy to o3.

o types are never empty in HOL, i.e.
for each type at least one value exists

o all HOL functions are total

31/42

HOL Logic

©

the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

©

this sounds complicated, but is intuitive for SML programmers
(S)ML and HOL logic designed to fit each other
if you understand SML, you understand HOL logic

©

©

HOL = functional programming + logic

Ambiguity Warning
The acronym HOL refers to both the HOL interactive theorem prover and

the HOL logic used by it. It's also a common abbreviation for higher order
logic in general.

30/42

Terms

o SML datatype for terms

Variables (x,y,...)

Constants (c,...)

Function Application (f a)

Lambda Abstraction (\x. £ x or Ax. fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

vYyVvYly

o terms have to be well-typed
o same typing rules and same type-inference as in SML take place
o terms very similar to SML expressions

o notice: predicates are functions with return type bool, i.e. no
distinction between functions and predicates, terms and formulae

Terms Il
HOL term SML expression type HOL / SML
0 0 num / int
x:’a X:’a variable of type ’a
x:bool x:bool variable of type bool
x +5 X +5 applying function + to x and 5
\x. x + 5 fn x => x + 5 anonymous (a.k. a. inline) function

(5, T) (5, true)
[5;3;2]1++[6] [5,3,2]@[6]

of type num -> num
num # bool / int * bool
num list / int list

Theorems

©

©

©

©

theorems are of the form ' - p where

» [is a set of hypothesis
» p is the conclusion of the theorem
> all elements of I and p are formulae, i.e. terms of type bool

I+ p records that using I the statement p has been proved

notice difference to logic: there it means can be proved

the proof itself is not recorded

theorems can only be created through a small interface in the kernel

35/42

Free and Bound Variables / Alpha Equivalence

in SML, the names of function arguments does not matter (much)

similarly in HOL, the names of variables used by lambda-abstractions
does not matter (much)

the lambda-expression Ax. t is said to bind the variables x in term t
variables that are guarded by a lambda expression are called bound
all other variables are free

Example: x is free and y is bound in (x =5) A (Ay. (y <x)) 3

the names of bound variables are unimportant semantically

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

Example: Ax. x and \y. y are alpha-equivalent

Example: x and y are not alpha-equivalent

HOL Light Kernel

the HOL kernel is hard to explain

» for historic reasons some concepts are represented rather complicated
» for speed reasons some derivable concepts have been added

instead consider the HOL Light kernel, which is a cleaned-up version

o there are two predefined constants

> = ’a -> ’a => bool
» @ : (’a -> bool) —> ’a
there are two predefined types
» bool
» ind
the meaning of these types and constants is given by inference rules
and axioms

36 /42

HOL Light Inferences |

REFL

Ft=t

[Fs=t

AFt=u
— TRANS
FTUAFs=u

[Fs=1t

Aru=v

types fit

P ! COMB

FrUAF s(u) =t(v)

lFs=t
x not free in T

ABS
NEAx.s=Mx. t

—— BETA
F(x. t)x=t

ASSUME

{ptrp

HOL Light Axioms and Definition Principles

o 3 axioms needed

ETA_AX (. tx)=t

SELECT AX P x= P((Q)P))
INFINITY_AX predefined type ind is infinite

o definition principle for constants

» constants can be introduced as abbreviations
» constraint: no free vars and no new type vars

o definition principle for types

» new types can be defined as non-empty subtypes of existing types

o both principles

» lead to conservative extensions

> preserve consistency

39/42

HOL Light Inferences Il

l=p

lN-pegq

AFg

Mr—{ahu@Aa-{pHFpeq

F[xl, ..
I'[t17..

F[al,..

Xl Foplxa, ..

|_
P BQMp

DEDUCT_ANTISYM_RULE

5 X,
] INST

Sap] b oplag, ...

ey tal

) an]

INST_TYPE

I'[yl, e

HOL Light derived concepts

<3 n]

Everything else is derived from this small kernel.

T
A
—
v
|

=def
=def
=def
=def
=def

(Ap. p) = (Ap. p)

Apg. (M. fpqg)=(\f.fTT)
Apq. (PAq < p)

AP. (P =Ax. T)

AP. (Vq. (Vx. P(x) = q) = q)

40 /42

Multiple Kernels HOL Logic Summary

o HOL theorem prover uses classical higher order logic
o Kernel defines abstract datatypes for types, terms and theorems o HOL logic is very similar to SML
@ one does not need to look at the internal implementation > syntax
> type system

o therefore, easy to exchange » type inference
o there are at least 3 different kernels for HOL o HOL theorem prover very trustworthy because of LCF approach

» standard kernel (de Bruijn indices) » there is a small kernel

» experimental kernel (name / type pairs) » proofs are not stored explicitly

» OpenTheory kernel (for proof recording)

©

you don't need to know the details of the kernel

©

usually one works at a much higher level of abstraction

(8]
o

