Interactive Theorem Proving (ITP) Course

Parts V, VI Part V
Thomas Tuerk (tuerk@kth.se) Basic HOL Usage
KTH

Academic Year 2016/17, Period 4

version 42672d2 of Mon Apr 24 08:54:04 2017

42 /67 43 /67

HOL Technical Usage Issues Installing HOL

©

practical issues are discussed in practical sessions
» how to install HOL

which key-combinations to use in emacs-mode

detailed signature of libraries and theories

all parameters and options of certain tools

©

webpage: https://hol-theorem-prover.org
HOL supports two SML implementations

» Moscow ML (http://mosml.org)
» PolyML (http://www.polyml.org)

©

vvyVvYy
©

| recommend using PolyML

o exercise sheets sometimes o please use emacs with
» ask to read some documentation > hol-mode
» provide examples » sml-mode
» list references where to get additional information » hol-unicode, if you want to type Unicode

©

please install recent revision from git repo or Kananaskis 11 release

©

if you have problems, ask me outside lecture (tuerk@kth.se)

©

documentation found on HOL webpage and with sources

©

covered only very briefly in lectures

44 /67 45 /67

General Architecture

©

©

©

HOL is a collection of SML modules
starting HOL starts a SML Read-Eval-Print-Loop (REPL) with

>

>

>

some HOL modules loaded
some default modules opened
an input wrapper to help parsing terms called unquote

unquote provides special quotes for terms and types

>

>

>

implemented as input filter
‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]
¢“:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]

main interfaces

>
>
>

emacs (used in the course)
vim
bare shell

46 /67

Directory Structure

©

©

©

bin — HOL binaries

src — HOL sources

examples — HOL examples

>

>

>

interesting projects by various people
examples owned by their developer
coding style and level of maintenance differ a lot

help — sources for reference manual

>

after compilation home of reference HTML page

Manual — HOL manuals

v

vV vy vY VY VvYYyYy

Tutorial

Description

Reference (PDF version)
Interaction

Quick (cheat pages)
Style-guide

48 /67

Filenames

o xScript.sml — HOL proof script file

» script files contain definitions and proof scripts

» executing them results in HOL searching and checking proofs
» this might take very long

> resulting theorems are stored in *Theory.{sml|sig} files

o *Theory.{sml|sig} — HOL theory

» auto-generated by corresponding script file
» load quickly, because they don't search/check proofs
» do not edit theory files

o *Syntax.{sml|sig} — syntax libraries

» contain syntax related functions
» i.e. functions to construct and destruct terms and types

o *Lib.{sml|sig} — general libraries
o *Simps.{sml|sig} — simplifications

o selftest.sml — selftest for current directory

Unicode

o HOL supports both Unicode and pure ASCII input and output
o advantages of Unicode compared to ASCII

» easier to read (good fonts provided)
» no need to learn special ASCII syntax

©

disadvanges of Unicode compared to ASCII

» harder to type (even with hol-unicode.el)
> less portable between systems

©

whether you like Unicode is highly a matter of personal taste
HOL's policy

» no Unicode in HOL's source directory src

» Unicode in examples directory examples is fine
o | recommend turning Unicode output off initially

» this simplifies learning the ASCII syntax
» no need for special fonts
> it is easier to copy and paste terms from HOL's output

©

47 /67

49 /67

Where to find help?

o reference manual

» available as HTML pages, single PDF file and in-system help

o description manual

o Style-guide (still under development)
o HOL webpage (https://hol-theorem-prover.org)

@ mailing-list hol-info
o DB.match and DB.find

o *Theory.sig and selftest.sml files

o ask someone, e.g. me :-) (tuerk@kth.se)

Kernel too detailed

©

©

©

» many operations and datatypes are defined
> high-level derived inference rules are used

©

we already discussed the HOL Logic

the kernel itself does not even contain basic logic operators
usually one uses a much higher level of abstraction

let's now look at this more common abstraction level

52 /67

Common Terms and

type vars

type annotated term
true

false

negation

conjunction

disjunction

implication

equivalence

disequation
all-quantification
existential quantification
Hilbert's choice operator

Part VI

Forward Proofs

Types
Unicode
a, B, ...

term:type

T

F

—b
bl A b2
bl V b2
bl — b2
bl < b2
vl # v2
Vx. P x
dx. P x
0x. P x

ASCII
’a, ’b, ...
term:type

T

F

~b
bl /\ b2
bl \/ b2
bl ==> b2
bl <=> b2
vl <> v2
'x. P x
?x. P x
0x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don't start variable names with an underscore

53 /67

Syntax conventions

@ common function syntax
» prefix notation, e.g. SUC x

» infix notation,

eg.x+y

» quantifier notation, e.g. Vx. P x means (V) (Ax. P x)

o infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are thesame asx + y

o quantifiers of the same type don't need to be repeated

Example: Vx y. P x yisshort for Vx. Vy. P x y

o there is special syntax for some functions
Example: if ¢ then vl else v2 is nice syntax for COND ¢ v1 v2

o associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as bl /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

Creating Terms Il

Parser

“¢“:bool""

((T((

cepece

[3X4 /\ [4N4
¢ \/ (N4
¢ ==> ¢
[= (%3

[<=> (%3
¢ <> [9N4

Syntax Funs

mk_type ("bool", [1) or bool

mk_const ("T", bool) or T

mk_neg (

mk_var ("b", bool))
mk_conj (..., ...)
mk disj (..., ...)

mk_imp (..., ...)
mkeq (..., ...)
mkeq (..., ...)
mk neg (mkeq (..., ...))

type of Booleans
term true
negation of
Boolean var b

conjunction
disjunction
implication
equation
equivalence
negated equation

56 /67

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions

(usually defined in *Syntax.sml files) to create them.

Inference Rules for Equality

REFL

Ft=t

[Fs=t
X not free in T
NF Ax. s = Ax.t

lFs=t
Atu=v
types fit

FTUAF s(u) = t(v)

ABS

MK_COMB

lEs=t

— GSYM
[Ft=s
lFs=t
AFt=u
——— TRANS
TUAFs=u

NN-pegq AF

P Bqmp
FTUAF g

————— BETA
F(\x. t)x=t

57 /67

Inference Rules for free Variables Inference Rules for Implication

Fp=—=g¢q

Fp
—————— MP, MATCH_MP re
TUALgq P

DISCH
Fr—{q}Fqg=p

r[X17...,X,,]|_p[X1,...,X,,] [Fp=
INST P=4 .
Mtr,- .. ta Fple, ..ot TEp— g PQIMP-RULE Meq—
[t1 o] F plta] TFp—gq TFa=p .\ pson
Frqg=p ru{gttp
Mo, ... an] b ploa, ..., an)
M-l B el oyl INSTIYPE rFp=gq rFp=F
B e Abg— p ————— NOT.INTRO
2977 P I\P_ANTISYM.RULE ' ~P
FTUAFp=g
PP NorpLM
MFp=gq rFp=F
AFgq=r
— IMP_TRANS
TUAFp=—r
58 /67 59 /67
Inference Rules for Conjunction / Disjunction Inference Rules for Quantifiers
7P pisn
F=p Atgq lEp Vv ’ I+ plu/x
—— " CONJ pYa : PEpl/A prsrs
FTUAFpPp A g Ml=p xnotfreelnrGEN Me3x. p
L A, [Fvx. p
r-pAg Tp Vv ‘ Mk 3x
————" CONJUNCT1 pva P
le=p N-vx. p AU{plu/x]} Fr
M-pvg T o e u not free in I, A, p and r
pu/x CHOOSE
TEP A9 onguners ArUtp)Fr FUAF
kg Ay U{q}Fr

——————— DISJ_CASES
FTUATUAEr

60 /67 61/67

Forward Proofs

o axioms and inference rules are used to derive theorems

o this method is called forward proof

» one starts with basic building blocks

» one moves step by step forward

» finally the theorem one is interested in is derived

o one can also implement own proof tools

Forward Proofs — Example Il

62 /67

Let's prove VP v. (3x. (x =Vv) AP x) <= P v.

val tm_v = “‘v:’a‘‘;
val tm_P = ‘‘P:’a -> bool‘‘;
val tm_lhs “lrx. (x=v) /\P x“¢

val tm_rhs mk_comb (t_P, t_v);
val thml = let
val thmla = ASSUME tm_rhs;
val thmib =
CONJ (REFL tm_v) thmila;
val thmic =
EXISTS (tm_lhs, tm_v) thmilb
in
DISCH tm_rhs thmic
end

vV Vv

A\

v

val thmila
val thmib
[Pv] |- (v=v)/\Pv: thm
val thmlc =
[Pv] |I-7x. (x=v) /\Px

[P vl |-P v: thm

val thml = [] |-
Pv==>7%x. (x=v) /\Px: thm

64 /67

Forward Proofs — Example |

Let's prove Vp. p = p.

val IMP_REFL_THM = let
val tml = ‘‘p:bool‘‘;
val thml = ASSUME tmil;
val thm2
in
GEN tml thm2

end

fun IMP_REFL t =
SPEC t IMP_REFL_THM;

DISCH tml thmil;

>

val tml = “‘p‘‘: term
val thml = [p] |- p: thm
val thm2 = |- p ==> p: thm

val IMP_REFL_THM =
|- !'p. p ==>p: thm

val IMP_REFL =
fn: term -> thm

63 /67

Forward Proofs — Example Il cont.

val thm2 = let
val thm2a =
ASSUME ‘‘“(u:’a = v) /\ P u‘‘
val thm2b = AP_TERM t_P
(CONJUNCT1 thm2a);
val thm2c = EQ_MP thm2b
(CONJUNCT2 thm2a) ;
val thm2d =
CHOOSE (‘‘u:’a‘‘,
ASSUME tm_lhs) thm2c
in
DISCH tm_lhs thm2d
end

val thm3 = IMP_ANTISYM_RULE thm2 thml

val thm4 = GENL [t_P, t_v] thm3

v

\4

\

A\

v

val thm2a = [(u = v) /\ P ul |-
(u=v) /\ P u: thm

val thm2b = [(u = v) /\ P ul |-
Pu<=>Pv

val thm2c = [(u = v) /\ P ul |-
Pv

val thm2d = [?x. (x = v) /\ P x] |-
Pv

val thm2 = [] |-
?x. (x=v) /\Px==>Pyv

val thm3 = [] |-

?x. (x=v) /\Px<=>Pyv
val thm4 = [] |- 'P v.

?7x. (x=v) /\Px<=>Pv

Derived Tools Conversions

o HOL has very good tool support for equality reasoning

HOL lives from implementing reasoning tools in SML o conversions are important for HOL's automation
o there is a lot of infrastructure for conversions

» RAND_CONV, RATOR_CONV, ABS_CONV
DEPTH_CONV

THENC, TRY_CONV, FIRST_CONV
REPEAT_CONV

CHANGED_CONV, QCHANGED_CONV
NO_CONV, ALL_CONV

©

o rules — use theorems to produce new theorems

» SML-type thm -> thm

» functions with similar type often called rule as well
o conversions — convert a term into an equal one

» SML-type term -> thm
» given term t produces theorem of form []1 |- t = t°
> may raise exceptions HOL_ERR or UNCHANGED

vV vy VY VY VvYYy

@ important conversions
» REWR_CONV
» REWRITE_CONV

> ..

66 /67 67 /67

