Interactive Theorem Proving (ITP) Course Parts V, VI

Thomas Tuerk (tuerk@kth.se)

KTH

Academic Year 2016/17, Period 4

version 42672d2 of Mon Apr 24 08:54:04 2017

42 / 67

Part V

Basic HOL Usage

43 / 67

HOL Technical Usage Issues

- practical issues are discussed in practical sessions
 - ▶ how to install HOL
 - ▶ which key-combinations to use in emacs-mode
 - detailed signature of libraries and theories
 - ▶ all parameters and options of certain tools
 - ▶
- exercise sheets sometimes
 - ► ask to read some documentation
 - ▶ provide examples
 - ▶ list references where to get additional information
- if you have problems, ask me outside lecture (tuerk@kth.se)
- covered only very briefly in lectures

Installing HOL

- webpage: https://hol-theorem-prover.org
- HOL supports two SML implementations
 - ► Moscow ML (http://mosml.org)
 - ► PolyML (http://www.polyml.org)
- I recommend using PolyML
- please use emacs with
 - ► hol-mode
 - ► sml-mode
 - ► hol-unicode, if you want to type Unicode
- please install recent revision from git repo or Kananaskis 11 release
- documentation found on HOL webpage and with sources

44 / 67 45 / 67

General Architecture

- HOL is a collection of SML modules
- starting HOL starts a SML Read-Eval-Print-Loop (REPL) with
 - ▶ some HOL modules loaded
 - ▶ some default modules opened
 - ▶ an input wrapper to help parsing terms called unquote
- unquote provides special quotes for terms and types
 - ► implemented as input filter
 - ''my-term'' becomes Parse.Term [QUOTE "my-term"]
 - '':my-type'' becomes Parse.Type [QUOTE ":my-type"]
- main interfaces
 - ► emacs (used in the course)
 - ▶ vim
 - ► bare shell

46 / 67

48 / 67

Directory Structure

- bin HOL binaries
- src HOL sources
- examples HOL examples
 - ► interesting projects by various people
 - examples owned by their developer
 - ▶ coding style and level of maintenance differ a lot
- help sources for reference manual
 - ▶ after compilation home of reference HTML page
- Manual HOL manuals
 - ► Tutorial
 - Description
 - ► Reference (PDF version)
 - ► Interaction
 - Quick (cheat pages)
 - ► Style-guide
 - ▶ ...

Filenames

- *Script.sml HOL proof script file
 - script files contain definitions and proof scripts
 - executing them results in HOL searching and checking proofs
 - ► this might take very long
 - ► resulting theorems are stored in *Theory.{sml|sig} files
- *Theory.{sml|sig} HOL theory
 - ► auto-generated by corresponding script file
 - ▶ load quickly, because they don't search/check proofs
 - ► do not edit theory files
- *Syntax.{sml|sig} syntax libraries
 - ► contain syntax related functions
 - ▶ i. e. functions to construct and destruct terms and types
- *Lib.{sml|sig} general libraries
- *Simps.{sml|sig} simplifications
- selftest.sml selftest for current directory

47 / 67

Unicode

- HOL supports both Unicode and pure ASCII input and output
- advantages of Unicode compared to ASCII
 - ► easier to read (good fonts provided)
 - ▶ no need to learn special ASCII syntax
- disadvanges of Unicode compared to ASCII
 - ► harder to type (even with hol-unicode.el)
 - ► less portable between systems
- whether you like Unicode is highly a matter of personal taste
- HOL's policy
 - ▶ no Unicode in HOL's source directory src
 - ► Unicode in examples directory examples is fine
- I recommend turning Unicode output off initially
 - ► this simplifies learning the ASCII syntax
 - ► no need for special fonts
 - ▶ it is easier to copy and paste terms from HOL's output

Where to find help?

- reference manual
 - ▶ available as HTML pages, single PDF file and in-system help
- description manual
- Style-guide (still under development)
- HOL webpage (https://hol-theorem-prover.org)
- mailing-list hol-info
- DB.match and DB.find
- *Theory.sig and selftest.sml files
- ask someone, e.g. me :-) (tuerk@kth.se)

Part VI

Forward Proofs

50/67

Kernel too detailed

- we already discussed the HOL Logic
- the kernel itself does not even contain basic logic operators
- usually one uses a much higher level of abstraction
 - ► many operations and datatypes are defined
 - ▶ high-level derived inference rules are used
- let's now look at this more common abstraction level

Common Terms and Types

	Unicode	ASCII
type vars	α , β ,	'a, 'b,
type annotated term	term:type	term:type
true	T	T
false	F	F
negation	$\neg b$	~b
conjunction	b1 ∧ b2	b1 /\ b2
disjunction	b1 ∨ b2	b1 \/ b2
implication	$b1 \implies b2$	b1 ==> b2
equivalence	$b1 \iff b2$	b1 <=> b2
disequation	$v1 \neq v2$	v1 <> v2
all-quantification	$\forall x. P x$!x. P x
existential quantification	$\exists x. P x$?x. P x
Hilbert's choice operator	0x. P x	0x. P x

There are similar restrictions to constant and variable names as in SML. HOL specific: don't start variable names with an underscore

52/67

Syntax conventions

- common function syntax
 - ▶ prefix notation, e.g. SUC x
 - ► infix notation, e.g. x + y
 - ▶ quantifier notation, e.g. $\forall x$. P x means (\forall) $(\lambda x$. P x)
- infix and quantifier notation functions can turned into prefix notation
 Example: (+) x y and \$+ x y are the same as x + y
- quantifiers of the same type don't need to be repeated Example: ∀x y. P x y is short for ∀x. ∀y. P x y
- there is special syntax for some functions

 Example: if c then v1 else v2 is nice syntax for COND c v1 v2
- associative infix operators are usually right-associative
 Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore use plenty of parenthesis.

54 / 67

Creating Terms II

Parser	Syntax Funs	
'':bool''	<pre>mk_type ("bool", []) or bool</pre>	type of Booleans
''T''	${\tt mk_const}$ ("T", bool) or T	term true
''~b''	mk_neg (negation of
	<pre>mk_var ("b", bool))</pre>	Boolean var b
''… /\ …''	mk_conj (,)	conjunction
····· \/··	mk_disj (,)	disjunction
··· ==>··	mk_imp (,)	implication
'' =''	mk_eq (,)	equation
··· <=>··	mk_eq (,)	equivalence
··· <>··	mk_neg (mk_eq (,))	negated equation

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions (usually defined in *Syntax.sml files) to create them.

55 / 67

Inference Rules for Equality

$$\frac{\Gamma \vdash s = t}{\Gamma \vdash t = s} \text{ GSYM}$$

$$\frac{\Gamma \vdash s = t}{\Gamma \vdash t = s} \text{ GSYM}$$

$$\frac{r \vdash s = t}{\Gamma \vdash \lambda x. \ s = \lambda x.t} \text{ ABS}$$

$$\frac{\Gamma \vdash s = t}{\Gamma \vdash \lambda x. \ s = \lambda x.t} \text{ ABS}$$

$$\frac{\Gamma \vdash s = t}{\Gamma \cup \Delta \vdash s = u} \text{ TRANS}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q \quad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ EQ_MP}$$

$$\frac{types \ fit}{\Gamma \cup \Delta \vdash s(u) = t(v)} \text{ MK_COMB}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q \quad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ EQ_MP}$$

Inference Rules for free Variables

$$\frac{\Gamma[x_1, \dots, x_n] \vdash \rho[x_1, \dots, x_n]}{\Gamma[t_1, \dots, t_n] \vdash \rho[t_1, \dots, t_n]} \text{ INST}$$

$$\frac{\Gamma[\alpha_1, \dots, \alpha_n] \vdash \rho[\alpha_1, \dots, \alpha_n]}{\Gamma[\gamma_1, \dots, \gamma_n] \vdash \rho[\gamma_1, \dots, \gamma_n]} \text{ INST_TYPE}$$

58 / 67

Inference Rules for Conjunction / Disjunction

$$\frac{\Gamma \vdash p \qquad \Delta \vdash q}{\Gamma \cup \Delta \vdash p \wedge q} \text{ CONJ}$$

$$\frac{\Gamma \vdash p \qquad \Delta \vdash q}{\Gamma \vdash p \qquad q} \text{ CONJUNCT1}$$

$$\frac{\Gamma \vdash p \qquad q}{\Gamma \vdash p \qquad q} \text{ CONJUNCT2}$$

$$\frac{\Gamma \vdash p \wedge q}{\Gamma \vdash q} \text{ CONJUNCT2}$$

$$\frac{\Gamma \vdash p \vee q}{\Gamma \vdash q} \text{ CONJUNCT2}$$

$$\frac{\Delta_1 \cup \{p\} \vdash r}{\Gamma \vdash \Delta_2 \cup \{q\} \vdash r} \text{ DISJ_CASES}$$

Inference Rules for Implication

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow q \\
\hline
\Delta \vdash p \\
\hline
\Gamma \cup \Delta \vdash q \\
\hline
\hline
\Gamma \vdash p \Longrightarrow q \\
\hline
\Gamma \vdash p \Longrightarrow q \\
\hline
\Gamma \vdash p \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow p \\
\hline
\Gamma \vdash p \Longrightarrow p \\
\hline
\Gamma \cup \{q\} \vdash p \\
\hline
\Gamma \cup \Delta \vdash p \Longrightarrow q
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow p \\
\hline
\Gamma \cup \{q\} \vdash p \\
\hline
\Gamma \cup \{q\} \vdash p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow p \\
\hline
\Gamma \cup \{q\} \vdash p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow p \\
\hline
\Gamma \cup A \vdash p \Longrightarrow q
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash p \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \\
\hline
\Gamma \vdash P \Longrightarrow p$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \Longrightarrow p$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \Longrightarrow p$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \Longrightarrow p$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \Longrightarrow p$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \Longrightarrow p
\end{array}$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \Longrightarrow p$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \Longrightarrow p$$

$$\begin{array}{ll}
\Gamma \vdash P \Longrightarrow p \Longrightarrow p
\end{array}$$

59 / 67

Inference Rules for Quantifiers

$$\frac{\Gamma \vdash p \quad x \text{ not free in } \Gamma}{\Gamma \vdash \forall x. \ p} \text{ GEN} \qquad \frac{\frac{\Gamma \vdash p[u/x]}{\Gamma \vdash \exists x. \ p}}{\frac{\Gamma \vdash \forall x. \ p}{\Gamma \vdash p[u/x]}} \text{ SPEC} \qquad \frac{\Gamma \vdash \exists x. \ p}{\Delta \cup \{p[u/x]\} \vdash r} \\ \frac{u \text{ not free in } \Gamma, \Delta, p \text{ and } r}{\Gamma \cup \Delta \vdash r} \text{ CHOOSE}$$

60 / 67

Forward Proofs

- axioms and inference rules are used to derive theorems
- this method is called forward proof
 - ▶ one starts with basic building blocks
 - ▶ one moves step by step forward
 - ▶ finally the theorem one is interested in is derived
- one can also implement own proof tools

62 / 67

Forward Proofs — Example II

Let's prove $\forall P \ v. \ (\exists x. \ (x = v) \land P \ x) \Longleftrightarrow P \ v.$

```
val tm_v = ''v:'a'';
val tm_P = ''P:'a -> bool'';
val tm_lhs = "x. (x = v) / P x"
val tm_rhs = mk_comb (t_P, t_v);
val thm1 = let
                                         > val thm1a = [P v] |- P v: thm
 val thm1a = ASSUME tm_rhs;
 val thm1b =
                                         > val thm1b =
                                             [P v] |- (v = v) / P v: thm
   CONJ (REFL tm_v) thm1a;
  val thm1c =
                                         > val thm1c =
   EXISTS (tm_lhs, tm_v) thm1b
                                            [P \ v] \mid -?x. (x = v) / P x
                                        > val thm1 = [] |-
 DISCH tm_rhs thm1c
                                            P v \Longrightarrow ?x. (x = v) / P x: thm
end
```

Forward Proofs — Example I

Let's prove $\forall p. \ p \Longrightarrow p.$

63 / 67

Forward Proofs — Example II cont.

```
val thm2 = let
                                       > val thm2a = [(u = v) / P u] | -
 val thm2a =
   ASSUME ''(u:'a = v) / P u''
                                          (u = v) / P u: thm
 val thm2b = AP_TERM t_P
                                       > val thm2b = [(u = v) /\ P u] |-
   (CONJUNCT1 thm2a);
                                          P u <=> P v
                                       > val thm2c = [(u = v) /\ P u] |-
 val thm2c = EQ MP thm2b
   (CONJUNCT2 thm2a);
                                          Pν
                                       > val thm2d = [?x. (x = v) / Px] | -
 val thm2d =
   CHOOSE (''u:'a'',
                                          Ρv
     ASSUME tm_lhs) thm2c
 DISCH tm lhs thm2d
                                      > val thm2 = [] |-
                                           ?x. (x = v) / P x ==> P v
end
val thm3 = IMP_ANTISYM_RULE thm2 thm1 > val thm3 = [] |-
                                           ?x. (x = v) / P x \iff P v
val thm4 = GENL [t_P, t_v] thm3
                                       > val thm4 = [] |- !P v.
                                           ?x. (x = v) / P x \iff P v
```

64 / 67 65 / 67

Derived Tools

- HOL lives from implementing reasoning tools in SML
- rules use theorems to produce new theorems
 - ► SML-type thm -> thm
 - ► functions with similar type often called rule as well
- conversions convert a term into an equal one
 - ► SML-type term -> thm
 - ▶ given term t produces theorem of form [] |- t = t'
 - ► may raise exceptions HOL_ERR or UNCHANGED

o ...

Conversions

- HOL has very good tool support for equality reasoning
- conversions are important for HOL's automation
- there is a lot of infrastructure for conversions
 - ► RAND_CONV, RATOR_CONV, ABS_CONV
 - ► DEPTH_CONV
 - ► THENC, TRY_CONV, FIRST_CONV
 - ► REPEAT_CONV
 - ► CHANGED_CONV, QCHANGED_CONV
 - ► NO_CONV, ALL_CONV
 - ▶ ...
- important conversions
 - ► REWR_CONV
 - ► REWRITE_CONV
 - ▶ ...

66 / 67