
The project spans Chapters 9 and 10 of the book, which are about the high level Jack language and
about the first part of the compiler (syntax analyzer) from Jack language to VM language. Please
read these two chapters of the book thoroughly.

This project consists of two parts, one for each chapter.

Part 1

Assignment description
Objective The purpose of this assignment is to get acquainted with the Jack language for two
purposes: completing the Jack compiler in the next two assignments, and completing the Jack
operating system in the last assignment.

Contract Implement the insert and the search functions in a linked list.

Resources You will need three tools: the Jack compiler used to translate your program into a set
of .vm files, the VM emulator used to run and test your translated program, and the Jack Operating
System.

For details about the Jack OS and how to compile and run a Jack program read page 197 of the text
book.

Background
A linked list is a data structure consisting of an ordered set of data elements, each containing a link
to its successor (and its predecessor if the list is doubly linked). The list in the figure below is a
linked list whose nodes contain two fields: an integer value and a link to the next node. The last
node is linked to a terminator used to signify the end of the list. Note that the ordering in a linked
list is represented by the links, and it does not imply that the contents of the data elements are
ordered, as in the following example

Nonetheless, one can of course create and maintain a linked list, e.g., a linked list whose elements
store integer numbers, in a way that the contents of the list elements are ordered according to their
values (e.g., in the above example the ordering would be 12, 37, 99).

Details
Section 9.1.4 in the text book describes a Jack implementation of a linked list. You will start from
this implementation, which is supplied in the file List.jack, and you will have to implement the
following methods:

 insertInOrder(int element): it assumes the list to be ordered in ascending order. It inserts
element in the appropriate position in the list.

Example:

1. do list.print();
 -> 5 -> 7 -> 9

2. do list.insertInOrder(8);

3. do list.print();
 -> 5 -> 7 -> 8 -> 9

 find(int element): it makes no assumption on the ordering of the list (it can be unordered). It
searches element in the list. If element is in the list, it returns the list starting from element. If
not, it returns null.

You can run Main.jack to test your implementation. If you implemented the two methods correctly,
you should get the following output:

 -> 3 -> 5 -> 6

 -> 2 -> 3 -> 5 -> 6

 -> 2 -> 3 -> 4 -> 5 -> 6

 -> 5 -> 6

Not Found!

Part 2

Assignment description
The Jack to VM compiler is the subject of two assignments. In this assignment (project 8) we focus
on the syntax analyzer for the Jack programming language. In the next assignment (project 9) we
will extend this analyzer into a full scale Jack to VM compiler.

Objective The purpose of this part is to complete the implementation of the syntax analyzer that
parses Jack programs according to the Jack grammar.

Contract Implement the functions in charge of parsing the grammar rules defining the non-
terminals: subroutineBody, subroutineCall and ifStatement.

Resources The main tool in this assignment is the partially implemented syntax analyzer written
in Python. You will also need the supplied TextComparer utility, which allows to compare the
output files generated by your analyzer to the compare files supplied by us.

Background
The syntax analyzer supplied with this assignment is documented in sections 10.2 and 10.3 of the
text book. It is strongly recommended that you read and understand these sections before trying to
read the code supplied with the assignment.

Details
Section 10.3 of the text book describes an implementation of a syntax analyzer. You will start from
this implementation and complete the analyzer by implementing the following methods in the
CompliationEngine module:

1. _CompileSubroutineBody(): implements the grammar rule subroutineBody: ...

2. _CompileCall(): implements the grammar rule subroutineCall: ...

3. _CompileIf(): implements the grammar rule ifStatement:... .Observe that the parsing of
'if' '(' expression ')' '{' statements '}' is already implemented. You
just need to implement the parsing of the optional else part.

You should complete the implementations of these routines following the order indicated above. In
order to test your implementation of each one of the routines, use the .jack file in the corresponding
folder:

1. SubroutineBodyDecTest

2. SubroutineCallTest

3. ElseTest

Each one of these folders cointains a CorrectOutput folder with the .xml output file that is expected
from your syntax analyzer. You can use the TextComparer utility to check if your implementation
behaves as expected.

In order to get acquainted with your tools for this assignment, make sure to understand the code in
Figure 1 (at the end of this document).

Hints:
1. Read the README.txt file. What is the python module you need to run to parse a .jack

file?

2. Make sure you fulfill the contractual agreement while implementing each routine (page 215
of the textbook)

3. Before starting, make sure you understand the code of _CompileSubroutine() in Figure 1

4. By looking at the code in Figure 1 try to answer these questions:

 What are the two functions used to write the output Xml file? What is the difference
between them?

 What do the _Expect*() functions do? Why is it important to call them? (check their
implementation to answer this question). How do they work?

 How is the tokenizer used? How do we advance to the next token? How do we
retrieve the symbol or keyword in the present token?

5. When implementing _CompileCall(), make sure to check if the optional argument
subroutineName is set (read the comment below the function declaration).

Submission
You should submit two files: List.jack (part 1) and CompilationEngine.py (part 2), which should
include your implementation of the above named functions.

Include the two files and the declaration in one zip-archive.

Make sure that the subject field and the name of the zip file states EP1200-Seminar8-groupN-
Firstname-Lastname, where N is your group number.

Figure 1

