PSPACE Problems

Space Complexity: If an algorithm A solves a problem \times by using $O(f(n))$ bits of memory where n is the size of the input we say that $X \in \operatorname{SPACE}(f(n))$.

The Class PSPACE

Def: $X \in$ PSPACE if and only if $X \in \operatorname{SPACE}\left(n^{k}\right)$ for some k.

PSPACE Problems are interesting since:

- They form the first interesting class potentially greater than NP.
- The problem of finding winning strategies is in PSPACE.

$\mathbf{P} \subseteq$ PSPACE

Assume $X \in \mathrm{P}$ and there is a Turing Machine that decides X in time $O\left(n^{k}\right)$. This algorithm can use at most $O\left(n^{k}\right)$ bits of memory. So we get $X \in \mathrm{P} \Rightarrow X \in \mathrm{PSPACE}$.

In the other direction

Assume $Y \in$ PSPACE and that a Turing Machine M uses $c n^{k}$ bits of memory. If we have 3 possible symbols ($0,1, \#$) on the input tape there are $3^{c n^{k}}$ possible contents on the tape and $c n^{k}$ possible positions for the head. No possible combination of content/position can be repeated. (Since the machine then would be looping.) This shows that the machine must stop after at most $O\left(n^{k} 3^{c n^{k}}\right)$ steps. So the time complexity cannot be worse than exponential, i.e. $Y \in E \times P T I M E$.

$N P \subseteq P S P A C E$

We know that 3-SAT is NP-Complete. So we just have to show that 3-SAT \in PSPACE.

Given ϕ with n variables we run true all 2^{n} possible value assignments one at a time. The amount of space needed is $\log 2^{n}=n$ to keep count of the number of the assignment and $+k$ extra bits of memory.. This gives us space complexity $O(n)$.

Different Complexity Classes

We now have the classes

$$
P \subseteq N P \subseteq P S P A C E \subseteq E X P T I M E
$$

where EXPTIME is the class of problems that can be decided in $\operatorname{TIME}\left(c^{n^{k}}\right)$ for some numbers c, k. It is possible to show that $P \neq E X P T I M E$. No other inequalities are known. This means that no inequalities like $P \neq N P$ eller NP \neq PSPACE are known to be true.

PSPACE Complete Problems

A problem is PSPACE-Complete if

1. $A \in$ PSPACE

2. Every problem $B \in$ PSPACE can be reduced to A, i.e. $B \leq_{P} A$.

The problem QSAT

A QSAT-formula is of the form

$$
\exists x_{1} \forall x_{2} \exists x_{3} \ldots \forall x_{n-1} \exists x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)
$$

where ϕ is in 3-SAT-form.
possible values for the variables are $\{0,1\}$.
$\exists x_{1} \forall x_{2} \phi\left(x_{1}, x_{2}\right)$ means that there is a value for x_{1} (0 or 1) such that $\phi\left(x_{1}, x_{2}\right)$ Is true for all values for x_{2} (0 och 1).

We want to decide if a formula of this kind are valid or not.

QSAT:

Input: A QSAT-formula

Goal: Decide if the formula is valid or not.

Obs: SAT Is equivalent to the problem of deciding if a formula

$$
\exists x_{1} \exists x_{2} \exists x_{3} \ldots \exists x_{n-1} \exists x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)
$$

is valid or not.

QSAT \in PSPACE

Let the formulas we use be written $Q_{i} x_{i} Q_{i+1} x_{i+1} \ldots Q_{n} x_{n} \phi_{i}\left(x_{i}, \ldots, x_{n}\right)$.
$\operatorname{QSAT}(\phi)=$
if The first quantifier is $\exists x_{i}$
if QSAT $\left(Q_{i+1} \ldots \phi\left(0, x_{i+1}, \ldots, x_{n}\right)\right)=1$ or
QSAT $\left(Q_{i+1} \ldots \phi\left(1, x_{i+1}, \ldots, x_{n}\right)\right)=1$
Erase all recursively active memory
Return 1
if The first quantifier is $\forall x_{i}$
if QSAT $\left(Q_{i+1} \ldots \phi\left(0, x_{i+1}, \ldots x_{n}\right)\right)=1$ and
QSAT $\left(Q_{i+1} \ldots \phi\left(1, x_{i+1}, \ldots x_{n}\right)\right)=1$
Erase all recursively active memory

Return 1

if ϕ does not contain any quantifier Compute the value of ϕ and return it

When we have a formula with k variables we use $p(k)$ (polynomial) bits of memory for each variable. This shows that $p(n)+p(n-$ 1) $+\ldots p(1) \leq n p(n)$ bits of memory are used and this shows that QSAT \in PSPACE.

The Planning Problem

We have a set of state variables $c_{1}, c_{2}, \ldots, c_{n}$ with values 0 or 1 . The values of $c_{1}, c_{2}, \ldots, c_{n}$ tells us what state we are in. We have operators $O_{1}, O_{2}, \ldots O_{k}$ which changes the state variables. The problem is:

Input: Lists $c_{1}, c_{2}, \ldots, c_{n}$ and $O_{1}, O_{2}, \ldots O_{k}$. A start state C_{0} and a goal state C^{*}.

Goal: Is there a sequence $O_{i_{1}}, O_{i 2}, \ldots O_{i_{j}}$ that transforms C_{0} to C^{*} ?

Savitch' Theorem

Given a graph G with n vertices and two vertices a, b there is an algorithm with space complexity $O\left((\log n)^{2}\right)$ which decides if there is a path between a and b or not.

We define
Path (x, y, L)
(1) if $L=1$ and $x=y$ or $(x, y) \in$ $E(G)$
(2) return 1
(3) if $L>1$
(4) Enumerate all vertices with a counter using $\log n$ bits of memory
(5) foreach $z \in V(G)$
(6) Compute $\operatorname{Path}\left(x, z,\left\lceil\frac{L}{2}\right\rceil\right)$.

Erase used memory and return value
(7) Compute $\operatorname{Path}\left(z, y,\left\lceil\frac{L}{2}\right\rceil\right)$. Erase used memory and return value
(8) save all returned values
(9) if both computations returns 1
(10) return 1
(11) return 0

Compute $\operatorname{Path}(a, b, n)$. If the answer is 1 we know that there is a path $a \rightarrow b$.

In each recursive step we store the information x, y, L. That takes $3 \log n$ bits of memory. The recursion depth is at most $\log n$. The space complexity is $O\left((\log n)^{2}\right)$.

Planning \in PSPACE

We use Savitch's Theorem. There can be at most 2^{n} different states in Planning. We want to know if there is a path $C_{0} \rightarrow C^{*}$. Such a path has length $\leq 2^{n}-1$. Use the algorithm in Savitch's Theorem. It uses $O\left(n^{2}\right)$ bits of memory.

NSPACE

A non-deterministic algorithm decides a language L if

- $A(x)=$ Yes with probability $>0 \Leftrightarrow x \in L$.
- $A(x)=$ No with probability $1 \Leftrightarrow x \notin L$.

TIME $(f(n))$ is the class of problems which can be decided in time $O(f(n))$ by a deterministic algorithm.

NTIME $(f(n))$ is the class of problems which can be decided in time $O(f(n))$ by a nondeterministic algorithm.

It is possible to show that $A \in \operatorname{NTIME}(f(n)) \Rightarrow$ $A \in \operatorname{TIME}\left(c^{f(n)}\right)$
$A \in \mathrm{P} \Leftrightarrow A \in \operatorname{TIME}\left(n^{k}\right)$ for some k.
$A \in \mathrm{NP} \Leftrightarrow A \in \operatorname{NTIME}\left(n^{k}\right)$ for some k

In the same way we can define NPSPACE by
$A \in \operatorname{NPSPACE} \Leftrightarrow A \in \operatorname{NSPACE}\left(n^{k}\right)$ for some k

PSPACE $=$ NPSPACE

Sketch proof:

Let X be a problem in NPSPACE. Let M be a non-deterministic Turing Machine which decides X and uses $O\left(n^{k}\right)$ bits of memory. The computation graph contains at most $O\left(c^{n^{k}}\right)$ vertices.

The algorithm in Savitch's Theorem finds an accepting computation in the computation graph (if there is one) and uses at most $O\left(\left(\log c^{n^{k}}\right)^{2}\right)=O\left(n^{2 k}\right)$.

So we get $X \in$ PSPACE.

The game (GENERALIZED) GEOGRAPHY

Let G be a directed graph with a start vertex v.

Let us assume that we have two players I and II.

I makes the first move. Then the players take turns and make moves.

The moves allowed are moves from a vertex x to an adjacent vertex y which has not been visited before.

The first player that cannot move loses the game.

Input: A graph G and a start vertex v.

Goal: Is there a winning strategy for player I?

GEOGRAFI \in PSPACE

We will look at a sketch of an algorithm which decides if there is a winning strategy for the first player in GEOGRAPH.

Given the start configuration $\langle G, v>$ we let G_{1} be G with v and all edges going from v removed.

Let $v_{1}, v_{2}, \ldots, v_{k}$ be the neighbors of v.

Test $<G_{1}, v_{1}>,<G_{1}, v_{2}>, \cdots<G_{1}, v_{k}>$ recursively. If any of these problems does not have a winning strategy we return Yes, otherwise we return No.

It is easy to see that this algorithm can be implemented so that it uses polynomial size memory.

GEOGRAPHY is PSPACE-Complete

We know that GEOGRAPHY \in PSPACE.

It is possible to make a reduction $\mathrm{QSAT} \leq_{P}$ GEOGRAPHY.

