
PSPACE Problems

Space Complexity: If an algorithm A solves
a problem X by using O(f(n)) bits of memory
where n is the size of the input we say that
X 2 SPACE(f(n)).

The Class PSPACE

Def: X 2 PSPACE if and only if X 2 SPACE(nk)

for some k.

PSPACE Problems are interesting since:

• They form the first interesting class po-
tentially greater than NP.

• The problem of finding winning strategies
is in PSPACE.

Page 1

P ✓ PSPACE

Assume X 2 P and there is a Turing Machine
that decides X in time O(nk). This algorithm
can use at most O(nk) bits of memory. So
we get X 2 P) X 2 PSPACE.

In the other direction

Assume Y 2 PSPACE and that a Turing Machi-
ne M uses cnk bits of memory. If we have 3
possible symbols (0,1,#) on the input tape
there are 3

cnk possible contents on the tape
and cnk possible positions for the head. No
possible combination of content/position can
be repeated. (Since the machine then would
be looping.) This shows that the machine
must stop after at most O(nk3cn

k
) steps. So

the time complexity cannot be worse than
exponential, i.e. Y 2 EXPTIME.

Page 2

NP ✓ PSPACE

We know that 3-SAT is NP-Complete. So we
just have to show that 3-SAT 2 PSPACE.

Given � with n variables we run true all 2

n

possible value assignments one at a time.
The amount of space needed is log 2

n
= n to

keep count of the number of the assignment
and +k extra bits of memory.. This gives us
space complexity O(n).

Different Complexity Classes

We now have the classes

P ✓ NP ✓ PSPACE ✓ EXPTIME

Page 3

where EXPTIME is the class of problems
that can be decided in TIME(cn

k
) for so-

me numbers c, k. It is possible to show that
P 6= EXPTIME. No other inequalities are
known. This means that no inequalities li-
ke P 6= NP eller NP 6= PSPACE are known
to be true.

PSPACE Complete Problems

A problem is PSPACE-Complete if

1. A 2 PSPACE

2. Every problem B 2 PSPACE can be re-
duced to A, i.e. B P A.

Page 4

The problem QSAT

A QSAT-formula is of the form

9x
1

8x
2

9x
3

. . . 8xn�1

9xn�(x
1

, . . . , xn)

where � is in 3-SAT-form.

possible values for the variables are {0,1}.

9x
1

8x
2

�(x
1

, x
2

) means that there is a value
for x

1

(0 or 1) such that �(x
1

, x
2

) Is true for
all values for x

2

(0 och 1).

We want to decide if a formula of this kind
are valid or not.

Page 5

QSAT:

Input: A QSAT-formula

Goal: Decide if the formula is valid or not.

Obs: SAT Is equivalent to the problem of
deciding if a formula

9x
1

9x
2

9x
3

. . . 9xn�1

9xn�(x
1

, . . . , xn)

is valid or not.

QSAT 2 PSPACE

Let the formulas we use be written
QixiQi+1

xi+1

. . . Qnxn�i(xi, . . . , xn).

Page 6

QSAT 2 PSPACE

Let the formulas we use be written

Q

i

x

i

Q

i+1xi+1 . . . Qn

x

n

�

i

(x
i

, . . . , x

n

).

QSAT(�)=

if The first quantifier is 9x
i

if QSAT (Q
i+1 . . .�(0, xi+1, . . . , xn)) = 1

or

QSAT (Q
i+1 . . .�(1, xi+1, . . . , xn)) = 1

Erase all recursively active memory

Return 1

if The first quantifier is 8x
i

if QSAT (Q
i+1 . . .�(0, xi+1, . . . xn)) = 1

and

QSAT (Q
i+1 . . .�(1, xi+1, . . . xn)) = 1

Erase all recursively active memory

Return 1

if � does not contain any quantifier Compute

the value of � and return it

When we have a formula with k variables

we use p(k) (polynomial) bits of memory for

each variable. This shows that p(n) + p(n �
1)+ . . . p(1) np(n) bits of memory are used

and this shows that QSAT 2 PSPACE.

The Planning Problem

We have a set of state variables c
1

, c
2

, . . . , cn

with values 0 or 1. The values of c
1

, c
2

, . . . , cn

tells us what state we are in. We have ope-

rators O
1

, O
2

, . . . Ok which changes the state
variables. The problem is:

Input : Lists c
1

, c
2

, . . . , cn and O
1

, O
2

, . . . Ok. A
start state C

0

and a goal state C⇤.

Goal: Is there a sequence Oi
1

, Oi2, . . . Oij that
transforms C

0

to C⇤?

Savitch’ Theorem

Given a graph G with n vertices and two verti-
ces a, b there is an algorithm with space com-
plexity O((logn)2) which decides if there is a
path between a and b or not.

Page 8

We define

Path(x, y, L)
(1) if L = 1 and x = y or (x, y) 2

E(G)

(2) return 1
(3) if L > 1

(4) Enumerate all vertices with a
counter using logn bits of me-
mory

(5) foreach z 2 V (G)

(6) Compute Path(x, z, dL
2

e).
Erase used memory and
return value

(7) Compute Path(z, y, dL
2

e).
Erase used memory and
return value

(8) save all returned values
(9) if both computations re-

turns 1
(10) return 1
(11) return 0

Page 9

Compute Path(a, b, n). If the answer is 1 we

know that there is a path a ! b.

In each recursive step we store the informa-

tion x, y, L. That takes 3 logn bits of mem-

ory. The recursion depth is at most logn.

The space complexity is O((logn)2).

Planning 2 PSPACE

We use Savitch’s Theorem. There can be

at most 2

n
di↵erent states in Planning. We

want to know if there is a path C
0

! C⇤
.

Such a path has length 2

n�1. Use the al-

gorithm in Savitch’s Theorem. It uses O(n2)

bits of memory.

NSPACE

A non-deterministic algorithm decides a lan-
guage L if

• A(x) = Yes with probability > 0 , x 2 L.

• A(x) = No with probability 1 , x /2 L.

TIME(f(n)) is the class of problems which
can be decided in time O(f(n)) by a deter-
ministic algorithm.

NTIME(f(n)) is the class of problems which
can be decided in time O(f(n)) by a non-
deterministic algorithm.

It is possible to show that A 2 NTIME(f(n)))
A 2 TIME(cf(n))

Page 11

A 2 P , A 2 TIME(nk) for some k.

A 2 NP , A 2 NTIME(nk) for some k

In the same way we can define NPSPACE by

A 2 NPSPACE , A 2 NSPACE(nk) for some
k

PSPACE = NPSPACE

Sketch proof:

Let X be a problem in NPSPACE. Let M be a
non-deterministic Turing Machine which de-
cides X and uses O(nk) bits of memory. The
computation graph contains at most O(cn

k
)

vertices.

Page 12

The algorithm in Savitch’s Theorem finds
an accepting computation in the computa-
tion graph (if there is one) and uses at most
O((log cn

k
)

2

) = O(n2k).

So we get X 2 PSPACE.

The game (GENERALIZED)
GEOGRAPHY

Let G be a directed graph with a start vertex
v.

Let us assume that we have two players I and
II.

I makes the first move. Then the players take
turns and make moves.

Page 13

The moves allowed are moves from a vertex
x to an adjacent vertex y which has not been

visited before.

The first player that cannot move loses the
game.

Input: A graph G and a start vertex v.

Goal: Is there a winning strategy for player I?

GEOGRAFI 2 PSPACE

We will look at a sketch of an algorithm
which decides if there is a winning strategy
for the first player in GEOGRAPH.

Given the start configuration < G, v > we let
G
1

be G with v and all edges going from v

removed.

Page 14

Let v
1

, v
2

, . . . , vk be the neighbors of v.

Test < G
1

, v
1

>,< G
1

, v
2

>, · · · < G
1

, vk >

recursively. If any of these problems does not
have a winning strategy we return Yes, ot-
herwise we return No.

It is easy to see that this algorithm can be
implemented so that it uses polynomial size
memory.

GEOGRAPHY is PSPACE-Complete

We know that GEOGRAPHY 2 PSPACE.

It is possible to make a reduction QSAT P

GEOGRAPHY.

Page 15

