Lecture 8 - Visualizing, Training & Designing

ConvNets

DD2424

April 24, 2017

Overview of today's lecture

e Part 1: Visualizing what a deep ConvNet learns.

e Part 2: Practicalities of training & designing ConvNets
- Data augmentation.
- Transfer learning.

- Stacking convolutional filters.

Understanding ConvNets

e Visualize patches that maximally activate neurons.

Occlusion experiments.

Visualize the weights.

e Deconv approaches (single backward pass).

Optimization over image approaches (optimization).

Visualizing activations

[Understanding Neural Networks Through Deep Visualization by Yosinski et al, 2015]

I

e 13 x 13 activations from a
channel in a conv response
volume.

e 151st channel of the convb
layer of a deep ConvNet.

e The ConvNet trained on
ImageNet.

e Know this channel responds
to human and animal faces.

Visualize the features that maximally activate neurons

[Rich feature hierarchies for accurate object detection and semantic segmentation by Girshick, Donahue, Darrell

& Malik, 2013]

=

ﬂmﬁlﬁ!ﬂ“

Apply AlexNet to image regions (not used in training):

® Each row displays the 16 strongest activations for a particular pool5 unit

(response volume before the 1st fully connected Iayer).

® Receptive fields and activation values are drawn in white.

AlexNet seems to learn class-tuned features together with a distributed

representation of shape, texture, color, and material properties.

Occlusion experiments

(a) Input Image (b) Layer 5, strongest feature map

Experiment

'- ® Occlude a small square patch of
the image.

e Apply ConvNet to occluded
image.

]
. ® Sum the responses from one
channel in the layer 5 response
volume. (channe\ is chosen as the one that
' gave the largest response for the unoccluded

'\mage.)

- Slide the occlusion patch over the
whole image.

- - Record the response sum for each
position of the occlusion patch.

True Label: Afghan Hound
75 W

]

Visualize the filters/kernels (raw weights)

Only interpretable on the first layer.

Visualize the Weights: layer 1 weights

BENOEN=ERENEE RS

filters/kernels Weights:
. (RN NS R) (IS E DA RN R DR (MR G
(raW weig htS) o 5 5) T
D) B B (50) 30 0
P (S S s (RS R I R R A
R) 5 6 6 902 1 P I D) S

you can still do it T) (8 :ll‘!lillllul)(uzllllluia Iayer 2 weights
.) S O O L G) (B S T e B LD) (W

for higher layers, NEENNEE RS F SR) AR NS

it's just not that BRI

interesting Weights:

(E=mswm HRENPEASIEARI)(MAEEZREERNOGE SN AER
1 A R N) (AR P LT R AR A ARG
(5) G o 0 OO

(these are taken : :
EE)(PHICENSEADEAE RN)(FENTYSANSEARE T 0

from ConvNetJS SR E)(FINEILEREEA AR AREnNE) (o assenasunrne |2YEr 3 weights

CIFAR-10) N P R B 8) (T M B N R S
PALAE)EEREET RN CEN SRS NS (IR S AR R R e S

demo) 1) 2 . 5) O 0

0 0P Bl T 0) P B
EREEENEL) (AR EARARLERPNER A)L ERARERR R
RS R SR)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9- 9 3 Feb 2016

How can we visualize higher layers? DeConvNets

[Visualizing and Understanding Convolutional Networks by Zeiler & Fergus, 2013]

e Visualization technique that gives insight into the function of
intermediate feature layers.

e DeConvNet maps a feature activity back to the input pixel
space.

e Generates an input pattern that gives a certain individual
activation in the feature maps.

e A DeConvNet has the same components (filtering, pooling,
RelLu) as a ConvNet but applied in reverse order as it tries to
invert the ConvNet operations.

DeConvNet approach

Examine a particular ConvNet activation at layer [for an image:

e Apply ConvNet to image.

e Set all activations at layer [to zero except for the activation of
interest.

a) Forward pass
Input image f° — f! —E—f“-) f*

Feature map

Backward pass
Reconstructed : P L
image R’ “1E IZI ol R

e Pass this volume as input into a DeConvNet.

DeConvNets
What does a DeConvNet Do?
e Maps a feature volume pattern to a raw image (pixel values).
How?

e Assume have a trained ConvNet & applied it to an image.

e DeConvNet then approximately inverts each operation (in
sequence) of the original trained ConvNet
- max-pooling,

- Relu,

- convolution

to restore the original image from the activities layer of
interest.

DeConvNets: (Approx) Inverting the Max Pool operation

e b, =
N
Unpooling a “‘ - [3 Pooling

LW
-

Max Locati
III Switches” J E“ﬂ
‘ Unpooled Rectiﬁed‘E?.‘

“ Maps Feature Maps

e Switches record the location of the local max in each pooling
region during pooling in the convnet.

e The unpooling operation in the deconvnet uses these switches.

The black/white bars are negative/positive activations within the feature map.

DeConvNets: (Approx) Inverting the Convolution op

e Know that the convolution of image X by filter F/
S=XxF
can be written as a matrix multiplication
vec(S) = M*'vec(X)

e Let's assume Mt is square and orthonormal (imost of the columns wil

definitely be orthogonal as their non-zero entries will be in different rows) then

(M;i;!ter)T M;;!ter =7

— vec(X) = (M}'te')Tvec(S)
e This matrix multiplication by (M;ﬂte’)T can be re-written as

X — S * FrotlSO

The inverting convolution applied by the DeConvNet. (Note: similarity to

the convolution applied in the back-prop through a convolutional Iayer)

DeConvNets: Inverting(ish) the ReLu operation

e Want to obtain valid feature reconstructions at each layer
= all entries should be non-negative

e Thus DeConvNet passes the reconstructed signal through a
RelLu non-linearity.

eConvNets: (Approx) Inverting the Max Pool operation

Layer Above
Reconstruction

Switches

Max Unpooling O—‘w

\
SN

Pooled Maps

AN

Max Pooling

Unpooled Maps Rectified Feature Maps
Rectified Linear AN Rectified Linear
Function N4 Function
Rectified Unpooled Maps Feature Maps
Convolutional N Convolutional
Filtering {F'} < Filtering {F}
Reconstruction Layer Below Pooled Maps

Deconvnet reconstructs an approximate version of the convnet features from

the layer beneath.

Basically DeConv performs back-prop to the input image

DeConvNet procedure is similar to

e Backpropping a single strong activation to the input image.

e Or in mathematical terms computing

oh

0X
where h is the element of the feature map with strong
activation and X is the input image.

There are some technical differences between the two methods in how the

RelLu operation is dealt with.

1T e b e i s
o g . \

For a random subset of feature maps, show the top 9 activations from the
validation set

® projected back to pixel space using the DeConvNet method and

® the corresponding image patches.

For a random subset of feature maps, show the top 9 activations from the
validation set

® projected back to pixel space using the DeConvNet method and

® the corresponding image patches.

DeConvNet Visualization of arbitrary neurons

[Visualizing and Understanding Convolutional Networks by Zeiler & Fergus, 2013]

Guided Backprop: Alternate approach to inverting Relu

[Striving for Simplicity: The all convolutional net by Springenberg, Dosovitskiy, et al., 2015]

a) Forward pass I b) 1]als 1]|o]s

; 0 5 .
Input image f ' > f : Forward pass NIEIE 2 elle
Feature map | 3]2)4 0]2]4

R tructed Backward pass |
econstructe

- .
image &' <& H= R | 2|[0][= -2 Jg -1

Backward pass:
I backpropagation

____________________ | A EYE 2|13
c) ario 141 1 1 |
activation: fi7h = relu(f;) = max(f;,0) | ol3]o 203 |1
. 5 fout Backward pass:
backpropagation: Rl = (f! > 0)- RI*!, where R'*! = g’:ﬂ' “deconvnet” 6|o|1| «— |6|-3|1
St 2|03 2|13
backward Rl — R+ I
‘deconvnet": i K | oo 2|31
| Backward pass:
backgl::)dead ation: Ri=(fi>0)- R I Zggfio agation o T
propag : [propag ofo|s3 2|13

® Different methods of propagating back through a ReLU nonlinearity.

® Prevents backward flow of negative gradients, corresponding to the
neurons which decrease the activation of the higher layer unit we aim to
visualize.

Guided Backprop visualization of arbitrary neurons

[Striving for Simplicity: The all convolutional net by Springenberg, Dosovitskiy, et al., 2015]

corresponding i image crops

guided backpropagation

® Visualization, using guided backpropagation, of patterns learned by layers conv6
and conv9 features.

® Each row corresponds to one pattern/neuron/activity.
® Based on the top 10 (ImageNet) image patches activating this pattern.

Optimization to Image

]
27
) 13 1 13
AN X \ \
I — !] | r
» (I B | 13
Input N\t 3 :
24 image o il | m
(RGB) -
Max - Max
iing "
Stride poc pocling
24\ || ofa 5

Can we find an image that maximizes some

dense dense

Max
pooling 4096 4096

class score?

dense

J

1000

Optimization to Image

dense dense
1 (] 1 dense

AN X \ —_—
2 ! |\ —1> B\ | 3\ - PN
L_*_ [s glEE] 13
27 N
Input S\t 3 3
|)

1000
(RGB)

Max
Max { i pooling 4096 4096

Stride ™ pocling pocling

Can we find an image that maximizes some class score?

e Let sx represent the unnormalized scores assigned by our
network to image X.
e Let y be the class of interest.

e Then problem is to solve

argm)z(xx (sx,y —)\||X||%)

Procedure to find local optimum image

1. Initialize X to be all zeros.
2. Apply COnVNet to X (forward pass)

3. Set the gradient of cost w.r.t. s equal to one-hot
representation of y.

4. Backprop to the gradient to the image (X) node.
5. Do a small “image update”.

6. Go back to step 2.

Example results

[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps by Simonyan,

Vedaldi & Zisserman, 2014]

dumbbell dalmatian

bell pepper

Example results

[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps by Simonyan,

Vedaldi & Zisserman, 2014]

washing machine computer keyboard

goose ostrich limousine

Can do this for any ConvNet response

R z I dense donse
13 it 1 sense
11\ : \ —) \
! A — I | 3 - i\
1 by Tls 3 (] s
Input S\t 3 N
28 mage s 384 | 38 256 1000
(RGB) Max
Max = ek pooling 4096 4096
Stride o | P pooling
24\ || ofs

Repeat:
® Forward image estimate

® Set activations in layer of interest to all zero, except for a 1.0 for neuron
of interest.

® Backprop to image.

® Update image estimate.

Visualize the data gradient

[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps by Simonyan,

Vedaldi & Zisserman, 2014]

{§

Optimal Image

[Understanding Neural Networks Through Deep Visualization by Yosinski et al, 2015]

e Problem: Find an image that maximizes a class score +
regularization term

arg max (sxy — AR(X))

e Solution:
Repeat

1. Update the image X with gradient from some unit of interest.
2. Blur X a bit.

3. Take any pixel with small norm to zero (to encourage sparsity).

Example Results

[Understanding Neural Networks Through Deep Visualization by Yosinski et al, 2015]

Pelican Hartebeest Billiard Table

Ground Beetle Indian Cobra Station Wagon Black Swan

Flamingo

Reconstruct an image from its ConvNet encoding

Have ConvNet code: Possible to reconstruct the original image?

dense| dense
13 1 sonse
) | 3
”L‘_’ 1= X 13 w
27 3
Input S\t 3 3
24 e - 38 1000
(RGB) 5%
Max Max
i
Stride pocie pooling
24 »

Reconstruct an image from its ConvNet encoding

Find an image s.t.:
e Its code is similar to a given code and

o It looks like a real image.

Mathematical statement:

X* = argmax ([|[®(X)— ®o* + AR(X))

XERWXHX?’

Reconstruct an image from its ConvNet encoding

[Understanding Deep Image Representations by Inverting Them by Mahendran and Vedaldi, 2014]

original image

Reconstructions from the 1000 class score layer.

Reconstruct an image from its ConvNet encoding

[Understanding Deep Image Representations by Inverting Them by Mahendran and Vedaldi, 2014]

Reconstructions from the representation after last pooling layer
(immediately before the first Fully Connected layer).

Reconstruct an image from its ConvNet encoding

[Understanding Deep Image Representations by Inverting Them by Mahendran and Vedaldi, 2014]

Reconstructions from intermediate layers.

Reconstruct an image from its ConvNet encoding

[Understanding Deep Image Representations by Inverting Them by Mahendran and Vedaldi, 2014]

original image

Multiple reconstructions.
Images in quadrants produce the same ConvNet encoding.

Google's DeepDream

e Start with random noise image X and give it label y.

o lterate
- Apply ConvNet to X to get probabilities p for each class label.

- Update X so p, increases in tandem with a prior that neighbouring
pixel values should be correlated.

optimize
with prior

Google's DeepDream

e Start with random noise image X and give it label y.

e |terate
- Apply jitter translation to X to get Xjitter

- Apply ConvNet to Xjister (forward pass)
al

W|X-

- Compute gradient)
Jjitter

(backward pass)
- Apply update step:

Opy

intter = Xjitter + 1 X

Xiitter

- Undo jitter translation Xjitter — X

optimize
with prior

Google's DeepDream

More examples from a random initialization:

Anemone Fish Banana Parachute

Google's DeepDream

Dumb bells

Google's DeepDream

e Feed the network an image.
e Pick a layer and try to increase positive responses.

e Apply a gradient ascent approach.

&l =

Lower layer chosen.

Google's DeepDream

e Feed the network an image.

e Pick a layer and try to increase positive responses.

e Apply a gradient ascent approach.

Higher layer chosen.

Google's DeepDream

Higher layer chosen.

"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"
Close-up on some structures created

Google's DeepDream

Some more examples
- "

Horizon

¢ J‘x-.‘

Towers & Pagodas Buildings Birds & Insécts

Apply Google's DeepDream iteratively

All images generated from a random noise image.

Fooling a Neural Network

We can design an optimization problem w.r.t. the input image to
maximize any class score.

Question: Can we use this to “fool” ConvNets?

Fooling a Neural Network

[Intriguing properties of neural networks by Szegedy et al., 2013]

® Train a ConvNet.

® x a test image correctly classified by
the ConvNet to have label y.

® |et x + r be the closest image to x
s.t.

x 4+ r is classified by the ConvNet to
have label 3" # y.

b4 r X+r
y' =ostrich

Fooling a Neural Network

[Intriguing properties of neural networks by Szegedy et al., 2013]

® Train a ConvNet.

® x a test image correctly classified by
the ConvNet to have label y.

® Let x 4+ r be the closest image to x
s.t.
x 4+ r is classified by the ConvNet to
have label 3/ # y.

X r X+r
y' =ostrich

Fooling a Neural Network

[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images by Nguyen,

Yosinski, Clune, 2014]

robin cheetah armadillo lesser panda

| ' c:ide ; H acock I lacmrit || T

Train a high-performance ConvNet for image classification.

Randomly initialize an image x.

Iteratively update x to get high-confidence ConvNet score (> 99.5%) for label y.
This paper uses a genetic algorithm to produce updates for x.

Fooling a Neural Network

[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images by Nguyen,

Yosinski, Clune, 2014]

Brittany spaniel Arctic fox gorilla

Tibetan terrier golden retriever

chimpanzee backpack cliff dwelling

photocopier screen soccer ball stopwatch Windsor tie

® |nitialize image x with ImageNet mean + noise.
® |[teratively update x to get high-confidence ConvNet score (> 99.99%) for label y.
® This example used gradient of the loss w.r.t. x to produce updates.

Why can we generate these adversarial examples?

[EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES by Goodfellow, Shlens & Szegedy, 2014]

+.007 x

. T+
v (Va2) in(9,.0(0,2.)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

® Adversarial examples a property of high-dimensional dot products.
® They are a result of models being too linear, rather than too nonlinear.
® Direction of perturbation matters most.

® Perturbation direction results in adversarial example when highly aligned
with the weight vectors of the network.

® Space is not full of pockets of adversarial examples.

Not a problem specific to Deep Learning or ConvNets.
Same issue exists for shallow Neural Nets.

Data Augmentation

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 11 17 Feb 2016

Data Augmentation
cat’
Load image \
and label
‘ Compute

X7
Al loss

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 12 17 Feb 2016

Data Augmentation

Load image
and label

Compute

loss
v

Transform image

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 13 17 Feb 2016

Data Augmentation

- Change the pixels without
changing the label

- Train on transformed data

- VERY widely used

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 14 17 Feb 2016

Data Augmentation

1. Horizontal flips

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 15 17 Feb 2016

Data Augmentation
2. Random crops/scales

Training: sample random crops / scales

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 16 17 Feb 2016

Data Augmentation
2. Random crops/scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side =L

3. Sample random 224 x 224 patch

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 17 17 Feb 2016

Data Augmentation
2. Random crops/scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side =L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 18 17 Feb 2016

Data Augmentation
2. Random crops/scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side =L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 19 17 Feb 2016

Data Augmentation
3. Color jitter

Simple:
Randomly jitter contrast

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 20 17 Feb 2016

Data Augmentation

~ Complex:
3. Color jitter
1. Apply PCAto all [R, G, B]
Simple: pixels in training set

Randomly jitter contrast 2. Sample a “color offset”

along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 21 17 Feb 2016

Data Augmentation
4. Get creative!

Random mix/combinations of :

- translation

rotation

stretching

shearing,

lens distortions, ... (go crazy)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 22 17 Feb 2016

A general theme:

1. Training: Add random noise
2. Testing: Marginalize over the noise

) Dropout DropConnect
Data Augmentation

Batch normalization, Model ensembles

Lecture 11 - 23 17 Feb 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Data Augmentation: Takeaway

e Simple to implement, use it
e Especially useful for small datasets
e Fits into framework of noise / marginalization

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 24 17 Feb 2016

Transfer Learning

“You need a lot of a data if you want to
train/fluse CNNs”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 25 17 Feb 2016

Transfer Learning

“You need a lot of@f you want to
tra NNs”

&

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 26 17 Feb 2016

Transfer Learning with CNNs

[loage | 1. Train on

Imagenet

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 27 17 Feb 2016

Transfer Learning with CNNs

2. Small dataset:

image n image
- 1. Train on ~m®e feature extractor
conv-64 Im n t conv-64
conv-64 age € conv-64
maxpool maxpool
conv-128 conv-128
conv-128 conv-128
maxpool maxpool
conv-256 conv-256
conv-256 conv-256
maxpool maxpool > Freeze these
conv-512 conv-512
conv-512 conv-512
maxpool maxpool
conv-512 conv-512
conv-512 conv-512
maxpool maxpool
FC-4096 FC-4096 j
FC-4096 FC-4096

FC-1000 FC-1000 . .
softmax softmax Train this

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 28

Transfer Learning with CNNs

image
conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512

conv-512
maxpool
FC-4096
FC-4096

FC-1000

softmax

1. Train on
Imagenet

image
conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

2. Small dataset:
feature extractor

> Freeze these

FC-4096 j
FC-4096

FC-1000
softmax

Train this

Fei-Fei Li & Andrej Karpathy & Justin Johnson

image |
conv-64
conv-64

maxpool

conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool

3. Medium dataset:
finetuning

more data = retrain more of
the network (or all of it)

Freeze these

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
softmax

[«— Train this

Lecture 11 - 29 17 Feb

Transfer Learning with CNNs

image
conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512

conv-512
maxpool
FC-4096
FC-4096

FC-1000

softmax

1. Train on
Imagenet

image
conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

2. Small dataset:
feature extractor

> Freeze these

FC-4096 j
FC-4096

FC-1000
softmax

Train this

Fei-Fei Li & Andrej Karpathy & Justin Johnson

image |
conv-64
conv-64

maxpool

conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool

3. Medium dataset:
finetuning

more data = retrain more of
the network (or all of it)

Freeze these

tip: use only ~1/10th of
the original learning rate
in finetuning top layer,

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
softmax

and ~1/100th on
intermediate layers

[«— Train this

Lecture 11 - 30 17 Feb

CNN Features off-the-shelf: an Astounding Baseline for Recognition

[Razavian et al, 2014]
Representation

DeCAF: A Deep
Convolutional Activation
Feature for Generic Visual

Recognition
[Donahue*, Jia*, et al.,
2013]
DeCAF; DeCAF;
LogReg 40.94+0.3 40.84+0.3
SVM 39.36 £0.3 40.66 £ 0.3
Xiao et al. (2010) 38.0
Oy, & By &y & Oy &
"Jeq e q Suf"% ’11;,% S, Wiy oy, d;%%"@ne Jecy
Yag. s, Boq, e, ey Aeg, iy, By Yes g, Lag,
S5, O, € syl Q) 7 {2
i, e, teé’o, L‘O@Iz' ,I‘Jb K l']@s < 2, By, S B e,
o ;
27 .
1012

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
softmax

™~

more generic

more specific

very similar very different
dataset dataset

very little data | ? ?

quite a lot of ? ?

data

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 11 - 32

17 Feb 2016

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
softmax

™~

more generic

more specific

very similar very different
dataset dataset
very little data | Use Linear ?
Classifier on top
layer
quite a lot of Finetune afew |?
data layers

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 11 - 33

17 Feb 2016

image
conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
softmax

™~

more generic

more specific

very similar very different
dataset dataset

very little data | Use Linear You're in
Classifier on top | trouble... Try

layer

linear classifier
from different
stages

quite a lot of
data

Finetune a few
layers

Finetune a
larger number of
layers

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 11 - 34

17 Feb 2016

Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Image Captioning: CNN + RNN

“straw” “hat” END

proposals i ;

Region Proposal Network

feature ma P ”

Object Detection
(Faster R-CNN) - 7

e e START “straw” “hat”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 35 17 Feb 2016

Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Image Captioning: CNN + RNN

“straw” “hat” END

.w CNN pretrained
D on ImageNet

Region Proposal Network

Object Detection
(Faster R-CNN)

START “straw” “hat”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 36 17 Feb 2016

Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Image Captioning: CNN + RNN

“straw” “hat” END

.w CNN pretrained
D on ImageNet

Region Proposal Network

Object Detection
(Faster R-CNN)

START “straw” “hat”

Word vectors pretrained _/
from word2vec

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 37 17 Feb 2016

Takeaway for your projects/beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has similar data, train a
big ConvNet there.
2. Transfer learn to your dataset

Caffe ConvNet library has a “Model Zoo” of pretrained models:
https://github.com/BVL C/caffe/wiki/Model-Zoo

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 38 17 Feb 2016

Computer Vision Tasks

Classification
+ Localization

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8- 9 1 Feb 2016

Classification + Localization: Task

Classification: C classes
Input: Image
Output: Class label
Evaluation metric: Accuracy

— CAT

Localization:
Input: Image
Output: Box in the image (x, y, w, h)
Evaluation metric: Intersection over Union

Classification + Localization: Do both

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 10 1 Feb 2016

Computer Vision Tasks

Classification
+ Localization

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8- 9 1 Feb 2016

Classification + Localization: Task

Classification: C classes
Input: Image
Output: Class label
Evaluation metric: Accuracy

— CAT

Localization:
Input: Image
Output: Box in the image (x, y, w, h)
Evaluation metric: Intersection over Union

Classification + Localization: Do both

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 10 1 Feb 2016

Idea #1: Localization as Regression

Input: image

Neural Net Output:

—— Box coordinates
(4 numbers) \
Loss:
Correct output: L2 distance
box coordinates /

Only one object, (4 numbers)
simpler than detection

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 12 1 Feb 2016

Simple Recipe for Classification + Localization
Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)

Convolution
and Pooling Fully-connected
layers
@—’H H H—> —» Softmax loss

Final conv

feature map Class scores

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 13 1 Feb 2016

Simple Recipe for Classification + Localization

Step 2: Attach new fully-connected “regression head” to the network

Fully-connected
layers

“Classification head”
H+

Convolution Class scores
and Pooling

Fully-connected
layers

“Regression head”
-1
Final conv

feature map Box coordinates

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 14 1 Feb 2016

Simple Recipe for Classification + Localization

Step 3: Train the regression head only with SGD and L2 loss

Fully-connected
layers

|l

Convolution Class scores
and Pooling

Fully-connected

S T

Final conv
feature map Box coordinates

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 15

1 Feb 2016

Simple Recipe for Classification + Localization
Step 4: At test time use both heads

Fully-connected
layers

|l

Convolution Class scores
and Pooling

Fully-connected
layers

Final conv H H H+D

feature map Box coordinates

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 16 1 Feb 2016

Per-class vs class agnostic regression

Assume classification
Fully-connected

over C classes: layers Classification head:

H_» C numbers
(one per class)

Convolution Class scores
and Pooling ;
Class agnostic:
Fully-connected 4 numbers
layers (one box)
H H H—»D Class specific:
o Final conv C x 4 numbers
Image feature map Box coordinates (one box per class)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 17 1 Feb 2016

Where to attach the regression head?

After conv layers: After last FC layer:
Overfeat, VGG DeepPose, R-CNN
Convolution
and Pooling Fully-connected
layers
—> —» Softmax loss
Final conv

feature map Class scores

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 18 1 Feb 2016

How to stack convolutional layers efficiently?

The power of small filters

Suppose we stack two 3x3 conv layers (stride 1)
Each neuron sees 3x3 region of previous activation map

Input First Conv Second Conv

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 41 17 Feb 2016

The power of small filters

Question: How big of a region in the input does a neuron on the
second conv layer see?

Input First Conv Second Conv

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 42 17 Feb 2016

The power of small filters

Question: How big of a region in the input does a neuron on the
second conv layer see?
Answer: 5 x5

Input First Conv Second Conv

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 43 17 Feb 2016

The power of small filters

Question: If we stack three 3x3 conv layers, how big of an input
region does a neuron in the third layer see?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 44 17 Feb 2016

The power of small filters

Question: If we stack three 3x3 conv layers, how big of an input
region does a neuron in the third layer see?

Answer: 7 x7

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 45 17 Feb 2016

The power of small filters

Question: If we stack three 3x3 conv layers, how big of an input
region does a neuron in the third layer see?

Three 3 x 3 conv
X gives similar
representational
power as a single
7 x 7 convolution

Answer: 7 x7

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 11 - 46 17 Feb 2016

The power of small filters

Suppose inputis H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 47 17 Feb 2016

The power of small filters

Suppose inputis H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters

Number of weights: Number of weights:

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 48 17 Feb 2016

The power of small filters

Suppose inputis H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters
Number of weights: Number of weights:
=Cx(7x7xC) =49 C? =3xCx(3x3xC)=27C?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 49

17 Feb 2016

The power of small filters

Suppose inputis H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters
Number of weights: Number of weights:
=Cx(7x7xC) =49 C? =3xCx(3x3xC)=27C?

N/

Fewer parameters, more nonlinearity = GOOD

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 50

17 Feb 2016

The power of small filters

Suppose inputis H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters
Number of weights: Number of weights:
=Cx(7x7xC) =49 C? =3xCx(3x3xC)=27C?
Number of multiply-adds: Number of multiply-adds:

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 51 17 Feb 2016

The power of small filters

Suppose inputis H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters
Number of weights: Number of weights:
=Cx(7x7xC) =49 C? =3xCx(3x3xC)=27C?
Number of multiply-adds: Number of multiply-adds:
=(HxWxC)x(7x7xC) =3x(HxWxC)x(3x3xC)
= 49 HWC? =27 HWC?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 52 17 Feb 2016

The power of small filters

Suppose inputis H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters
Number of weights: Number of weights:
=Cx(7x7xC) =49 C? =3xCx(3x3xC)=27C?
Number of multiply-adds: Number of multiply-adds:

= 49 HWC?

=27 HWC? \

\ Less compute, more nonlinearity = GOOD

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 53 17 Feb 2016

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 54 17 Feb 2016

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

HxWxC 1. bottleneck. 1 X 1.conv
to reduce dimension
Conv 1x1, C/2 filters l

HxWx(C/2)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 55 17 Feb 2016

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

Hx W xC 1. bottleneck. 1 X 1.conv
to reduce dimension
C 1x1, C/2 filt
onvix ers l 2. 3x3conv at reduced
HxWx(C/2) dimension
Conv 3x3, C/2 filters ¢
HxWx (C/2)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 56 17 Feb 2016

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

HxWxC 1. “bottleneck” 1 x 1 conv

to reduce dimension
Conv 1x1, C/2 filters l
2. 3x3conv at reduced

HxWx(C/2) dimension
Conv 3x3, C/2 filters ¢ 3. Restore dimension
HxWx(C/2) with another 1 x 1 conv
Conv 1x1, C filters ¢ [Seen in Lin et al, “Network in Network”,

GooglLeNet, ResNet]

HxWxC
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 57 17 Feb 2016

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

HxWxC 1
. Bottleneck
Conv 1x1, C/2 filters
v I l sandwich HxWxC

HxWx(C/2)
Conv 3x3, C/2 filters ¢ Conv 3x3, C filters
HxWx(C/2) Single
3x 3 conv HxWxC
Conv 1x1, C filters ¢
HxWxC -

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 58 17 Feb 2016

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1? More nonlinearity,

fewer params,

less compute!
HxWxC 1 pu
. 3.25C2
Conv 1x1, C/2 filters l
v I arameters HxWxC

p
HxWx(C/2)
Conv 3x3, C/2 filters ¢ Conv 3x3, C filters
HxWx(C/2) 9c?
parameters HxWxC
Conv 1x1, C filters ¢
HxWxC

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 59 17 Feb 2016

The power of small filters

Still using 3 x 3 filters ... can we break it up?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 60 17 Feb 2016

The power of small filters

Still using 3 x 3 filters ... can we break it up?

HxWxC
Conv 1x3, C filters l

HxWxC
Conv 3x1, C filters ¢

HxWxC

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 61 17 Feb 2016

The power of small filters

Still using 3 x 3 filters ... can we break it up? More nonlinearity,
fewer params,
less compute!

HxWxC
2
Conv 1x3, C filters l 6C HxWxC
parameters
HxWxC Conv 3x3, C filters
Conv 3x1, C filters ¢ 9 C2
HxWxC parameters HxWxC

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 62 17 Feb 2016

The power of small filters

Latest version of GooglLeNet incorporates all these ideas

Filter Concat

Filter Concat Filter Concat

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 63 17 Feb 2016

How to stack convolutions: Recap

e Replace large convolutions (5 x 5, 7 x 7) with stacks of
3 x 3 convolutions

e 1 x 1 “bottleneck” convolutions are very efficient

Can factor N x N convolutions into 1 x N and N x 1

e All of the above give fewer parameters, less compute,
more nonlinearity

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 11 - 64 17 Feb 2016

