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Overview of today’s lecture

• Part 1: Visualizing what a deep ConvNet learns.

• Part 2: Practicalities of training & designing ConvNets

- Data augmentation.

- Transfer learning.

- Stacking convolutional filters.

Understanding ConvNets

• Visualize patches that maximally activate neurons.

• Occlusion experiments.

• Visualize the weights.

• Deconv approaches (single backward pass).

• Optimization over image approaches (optimization).

Visualizing activations

[Understanding Neural Networks Through Deep Visualization by Yosinski et al, 2015]

Figure 2. A view of the 13⇥13 activations of the 151st channel on
the conv5 layer of a deep neural network trained on ImageNet, a
dataset that does not contain a face class, but does contain many
images with faces. The channel responds to human and animal
faces and is robust to changes in scale, pose, lighting, and context,
which can be discerned by a user by actively changing the scene
in front of a webcam or by loading static images (e.g. of the lions)
and seeing the corresponding response of the unit. Photo of lions
via Flickr user arnolouise, licensed under CC BY-NC-SA 2.0.

• Although the last three layers are sensitive to small
input changes, much of the lower layer computation
is more robust. For example, when visualizing the

conv5 layer, one can find many invariant detectors
for faces, shoulders, text, etc. by moving oneself
or objects in front of the camera. Even though the
1000 classes contain no explicitly labeled faces or
text, the network learns to identify these concepts sim-
ply because they represent useful partial information
for making a later classification decision. One face
detector, denoted conv5151 (channel number 151 on
conv5), is shown in Figure 2 activating for human
and lion faces and in Figure 1 activating for a cat
face. Zhou et al. (2014) recently observed a similar
effect where convnets trained only to recognize dif-
ferent scene types — playgrounds, restaurant patios,
living rooms, etc. — learn object detectors (e.g. for
chairs, books, and sofas) on intermediate layers.

The reader is encouraged to try this visualization tool out
for him or herself. The code, together with pre-trained
models and images synthesized by gradient ascent, can be
downloaded at http://yosinski.com/deepvis.

3. Visualizing via Regularized Optimization
The second contribution of this work is introducing several
regularization methods to bias images found via optimiza-
tion toward more visually interpretable examples. While
each of these regularization methods helps on its own, in
combination they are even more effective. We found use-
ful combinations via a random hyperparameter search, as
discussed below.

Formally, consider an image x 2 RC⇥H⇥W , where C = 3
color channels and the height (H) and width (W ) are both
227 pixels. When this image is presented to a neural net-
work, it causes an activation ai(x) for some unit i, where
for simplicity i is an index that runs over all units on all lay-
ers. We also define a parameterized regularization function
R✓(x) that penalizes images in various ways.

Our network was trained on ImageNet by first subtract-
ing the per-pixel mean of examples in ImageNet before in-
putting training examples to the network. Thus, the direct
input to the network, x, can be thought of as a zero-centered
input. We may pose the optimization problem as finding an
image x⇤ where

x⇤ = argmax
x

(ai(x)� R✓(x)) (1)

In practice, we use a slightly different formulation. Be-
cause we search for x⇤ by starting at some x0 and taking
gradient steps, we instead define the regularization via an
operator r✓(·) that maps x to a slightly more regularized
version of itself. This latter definition is strictly more ex-
pressive, allowing regularization operators r✓ that are not
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• 13× 13 activations from a
channel in a conv response
volume.

• 151st channel of the conv5
layer of a deep ConvNet.

• The ConvNet trained on
ImageNet.

• Know this channel responds
to human and animal faces.



Visualize the features that maximally activate neurons

[Rich feature hierarchies for accurate object detection and semantic segmentation by Girshick, Donahue, Darrell

& Malik, 2013]
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Apply AlexNet to image regions (not used in training):
• Each row displays the 16 strongest activations for a particular pool5 unit

(response volume before the 1st fully connected layer).

• Receptive fields and activation values are drawn in white.

AlexNet seems to learn class-tuned features together with a distributed

representation of shape, texture, color, and material properties.
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True Label: Pomeranian

(a) Input Image (b) Layer 5, strongest feature map
(c) Layer 5, strongest
feature map projections

(d) Classifier, probability 
of correct class 

(e) Classifier, most 
probable class 

True Label: Car Wheel

True Label: Afghan Hound

Fig. 6. Three test examples where we systematically cover up different portions of the
scene with a gray square (1st column) and see how the top (layer 5) feature maps
((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each position of the
gray scale, we record the total activation in one layer 5 feature map (the one with the
strongest response in the unoccluded image). (c): a visualization of this feature map
projected down into the input image (black square), along with visualizations of this
map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area
in (b)). (d): a map of correct class probability, as a function of the position of the gray
square. E.g. when the dog’s face is obscured, the probability for “pomeranian” drops
significantly. (e): the most probable label as a function of occluder position. E.g. in
the 1st row, for most locations it is “pomeranian”, but if the dog’s face is obscured
but not the ball, then it predicts “tennis ball”. In the 2nd example, text on the car is
the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the
faces, but the classifier is sensitive to the dog (blue region in (d)), since it uses multiple
feature maps.

the following, we refer to top-5 validation error). This is surprising, given that
they contain the majority of model parameters. Removing two of the middle
convolutional layers also makes a relatively small difference to the error rate.
However, removing both the middle convolution layers and the fully connected
layers yields a model with only 4 layers whose performance is dramatically worse.
This would suggest that the overall depth of the model is important for obtaining
good performance. We then modify our model, shown in Fig. 3. Changing the
size of the fully connected layers makes little difference to performance (same
for model of Krizhevsky et al. [18]). However, increasing the size of the middle
convolution layers goes give a useful gain in performance. But increasing these,
while also enlarging the fully connected layers results in over-fitting.

Experiment

• Occlude a small square patch of
the image.

• Apply ConvNet to occluded
image.

• Sum the responses from one
channel in the layer 5 response
volume. (channel is chosen as the one that

gave the largest response for the unoccluded

image.)

- Slide the occlusion patch over the
whole image.

- Record the response sum for each

position of the occlusion patch.

Visualize the filters/kernels (raw weights)
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Only interpretable on the first layer.
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Visualize the 
filters/kernels 
(raw weights)

you can still do it 
for higher layers, 
it’s just not that 
interesting

(these are taken 
from ConvNetJS 
CIFAR-10 
demo)

layer 1 weights

layer 2 weights

layer 3 weights



How can we visualize higher layers? DeConvNets

[Visualizing and Understanding Convolutional Networks by Zeiler & Fergus, 2013]

• Visualization technique that gives insight into the function of
intermediate feature layers.

• DeConvNet maps a feature activity back to the input pixel
space.

• Generates an input pattern that gives a certain individual
activation in the feature maps.

• A DeConvNet has the same components (filtering, pooling,
ReLu) as a ConvNet but applied in reverse order as it tries to
invert the ConvNet operations.

DeConvNet approach

Examine a particular ConvNet activation at layer l for an image:

• Apply ConvNet to image.

• Set all activations at layer l to zero except for the activation of
interest.

Accepted as a workshop contribution at ICLR 2015

are in general not invertible, the method of Zeiler and Fergus requires first to perform a forward
pass of the network to compute ’switches’ – positions of maxima within each pooling region. These
switches are then used in the ’deconvnet’ to obtain a discriminative reconstruction. By using the
switches from a forward pass the ’deconvnet’ (and thereby its reconstruction) is hence conditioned
on an image and does not directly visualize learned features. Our architecture does not include max-
pooling, meaning that in theory we can ’deconvolve’ without switches, i.e. not conditioning on an
input image. This way we get insight into what lower layers of the network learn. Visualizations of

a) b)

c) activation:

backpropagation:

 backward 
'deconvnet':

       guided 
backpropagation:

Figure 1: Schematic of visualizing the activations of high layer neurons. a) Given an input image, we
perform the forward pass to the layer we are interested in, then set to zero all activations except one
and propagate back to the image to get a reconstruction. b) Different methods of propagating back
through a ReLU nonlinearity. c) Formal definition of different methods for propagating a output
activation out back through a ReLU unit in layer l; note that the ’deconvnet’ approach and guided
backpropagation do not compute a true gradient but rather an imputed version.

features from the first three layers are shown in Figure 2 . Interestingly, the very first layer of the
network does not learn the usual Gabor filters, but higher layers do.

For higher layers of our network the method of Zeiler and Fergus fails to produce sharp, recogniz-
able, image structure. This is in agreement with the fact that lower layers learn general features
with limited amount of invariance, which allows to reconstruct a single pattern that activates them.
However, higher layers learn more invariant representations, and there is no single image maximally
activating those neurons. Hence to get reasonable reconstructions it is necessary to condition on an
input image.

An alternative way of visualizing the part of an image that most activates a given neuron is to use a
simple backward pass of the activation of a single neuron after a forward pass through the network;
thus computing the gradient of the activation w.r.t. the image. The backward pass is, by design,
partially conditioned on an image through both the activation functions of the network and the max-
pooling switches (if present). The connections between the deconvolution and the backpropagation

conv1 conv2 conv3

Figure 2: Visualizations of patterns learned by the lower layers (conv1-conv3) of the network trained
on ImageNet. Each single patch corresponds to one filter. Interestingly, Gabor filters only appear in
the third layer.
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• Pass this volume as input into a DeConvNet.

DeConvNets

What does a DeConvNet Do?
• Maps a feature volume pattern to a raw image (pixel values).

How?
• Assume have a trained ConvNet & applied it to an image.
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• DeConvNet then approximately inverts each operation (in
sequence) of the original trained ConvNet

- max-pooling,

- ReLu,

- convolution

to restore the original image from the activities layer of
interest.

DeConvNets: (Approx) Inverting the Max Pool operation

822 M.D. Zeiler and R. Fergus
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Fig. 1. Top: A deconvnet layer (left) attached to a convnet layer (right). The deconvnet
will reconstruct an approximate version of the convnet features from the layer beneath.
Bottom: An illustration of the unpooling operation in the deconvnet, using switches
which record the location of the local max in each pooling region (colored zones) during
pooling in the convnet. The black/white bars are negative/positive activations within
the feature map.

anneal the learning rate throughout training manually when the validation error
plateaus. Dropout [14] is used in the fully connected layers (6 and 7) with a rate
of 0.5. All weights are initialized to 10−2 and biases are set to 0.

Visualization of the first layer filters during training reveals that a few of
them dominate. To combat this, we renormalize each filter in the convolutional
layers whose RMS value exceeds a fixed radius of 10−1 to this fixed radius. This
is crucial, especially in the first layer of the model, where the input images are
roughly in the [-128,128] range. As in Krizhevsky et al. [18], we produce multiple
different crops and flips of each training example to boost training set size. We
stopped training after 70 epochs, which took around 12 days on a single GTX580
GPU, using an implementation based on [18].

4 Convnet Visualization

Using the model described in Section 3, we now use the deconvnet to visualize
the feature activations on the ImageNet validation set.

Feature Visualization: Fig. 2 shows feature visualizations from our model
once training is complete. For a given feature map, we show the top 9 acti-
vations, each projected separately down to pixel space, revealing the different

• Switches record the location of the local max in each pooling
region during pooling in the convnet.

• The unpooling operation in the deconvnet uses these switches.

The black/white bars are negative/positive activations within the feature map.



DeConvNets: (Approx) Inverting the Convolution op

• Know that the convolution of image X by filter F

S = X ∗ F
can be written as a matrix multiplication

vec(S) = M filter
F vec(X)

• Let’s assume M filter
F is square and orthonormal (most of the columns will

definitely be orthogonal as their non-zero entries will be in different rows) then
(
M filter

F

)T
M filter

F = I

=⇒ vec(X) =
(
M filter

F

)T
vec(S)

• This matrix multiplication by (M filter
F )

T
can be re-written as

X = S ∗ F rot180

The inverting convolution applied by the DeConvNet. (Note: similarity to

the convolution applied in the back-prop through a convolutional layer)

DeConvNets: Inverting(ish) the ReLu operation

• Want to obtain valid feature reconstructions at each layer
=⇒ all entries should be non-negative

• Thus DeConvNet passes the reconstructed signal through a
ReLu non-linearity.

DeConvNets: (Approx) Inverting the Max Pool operation
822 M.D. Zeiler and R. Fergus
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Fig. 1. Top: A deconvnet layer (left) attached to a convnet layer (right). The deconvnet
will reconstruct an approximate version of the convnet features from the layer beneath.
Bottom: An illustration of the unpooling operation in the deconvnet, using switches
which record the location of the local max in each pooling region (colored zones) during
pooling in the convnet. The black/white bars are negative/positive activations within
the feature map.

anneal the learning rate throughout training manually when the validation error
plateaus. Dropout [14] is used in the fully connected layers (6 and 7) with a rate
of 0.5. All weights are initialized to 10−2 and biases are set to 0.

Visualization of the first layer filters during training reveals that a few of
them dominate. To combat this, we renormalize each filter in the convolutional
layers whose RMS value exceeds a fixed radius of 10−1 to this fixed radius. This
is crucial, especially in the first layer of the model, where the input images are
roughly in the [-128,128] range. As in Krizhevsky et al. [18], we produce multiple
different crops and flips of each training example to boost training set size. We
stopped training after 70 epochs, which took around 12 days on a single GTX580
GPU, using an implementation based on [18].

4 Convnet Visualization

Using the model described in Section 3, we now use the deconvnet to visualize
the feature activations on the ImageNet validation set.

Feature Visualization: Fig. 2 shows feature visualizations from our model
once training is complete. For a given feature map, we show the top 9 acti-
vations, each projected separately down to pixel space, revealing the different

Deconvnet reconstructs an approximate version of the convnet features from

the layer beneath.

Basically DeConv performs back-prop to the input image

DeConvNet procedure is similar to

• Backpropping a single strong activation to the input image.

• Or in mathematical terms computing

∂h

∂X

where h is the element of the feature map with strong
activation and X is the input image.

There are some technical differences between the two methods in how the

ReLu operation is dealt with.



DeConvNet Visualization of arbitrary neurons

[Visualizing and Understanding Convolutional Networks by Zeiler & Fergus, 2013]

/HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\�	�-XVWLQ�-RKQVRQ)HL�)HL�/L�	�$QGUHM�.DUSDWK\�	�-XVWLQ�-RKQVRQ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

For a random subset of feature maps, show the top 9 activations from the
validation set

• projected back to pixel space using the DeConvNet method and

• the corresponding image patches.

DeConvNet Visualization of arbitrary neurons

[Visualizing and Understanding Convolutional Networks by Zeiler & Fergus, 2013]
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For a random subset of feature maps, show the top 9 activations from the
validation set

• projected back to pixel space using the DeConvNet method and

• the corresponding image patches.

DeConvNet Visualization of arbitrary neurons

[Visualizing and Understanding Convolutional Networks by Zeiler & Fergus, 2013]
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Guided Backprop: Alternate approach to inverting ReLu

[Striving for Simplicity: The all convolutional net by Springenberg, Dosovitskiy, et al., 2015]

Accepted as a workshop contribution at ICLR 2015

are in general not invertible, the method of Zeiler and Fergus requires first to perform a forward
pass of the network to compute ’switches’ – positions of maxima within each pooling region. These
switches are then used in the ’deconvnet’ to obtain a discriminative reconstruction. By using the
switches from a forward pass the ’deconvnet’ (and thereby its reconstruction) is hence conditioned
on an image and does not directly visualize learned features. Our architecture does not include max-
pooling, meaning that in theory we can ’deconvolve’ without switches, i.e. not conditioning on an
input image. This way we get insight into what lower layers of the network learn. Visualizations of

a) b)

c) activation:

backpropagation:

 backward 
'deconvnet':

       guided 
backpropagation:

Figure 1: Schematic of visualizing the activations of high layer neurons. a) Given an input image, we
perform the forward pass to the layer we are interested in, then set to zero all activations except one
and propagate back to the image to get a reconstruction. b) Different methods of propagating back
through a ReLU nonlinearity. c) Formal definition of different methods for propagating a output
activation out back through a ReLU unit in layer l; note that the ’deconvnet’ approach and guided
backpropagation do not compute a true gradient but rather an imputed version.

features from the first three layers are shown in Figure 2 . Interestingly, the very first layer of the
network does not learn the usual Gabor filters, but higher layers do.

For higher layers of our network the method of Zeiler and Fergus fails to produce sharp, recogniz-
able, image structure. This is in agreement with the fact that lower layers learn general features
with limited amount of invariance, which allows to reconstruct a single pattern that activates them.
However, higher layers learn more invariant representations, and there is no single image maximally
activating those neurons. Hence to get reasonable reconstructions it is necessary to condition on an
input image.

An alternative way of visualizing the part of an image that most activates a given neuron is to use a
simple backward pass of the activation of a single neuron after a forward pass through the network;
thus computing the gradient of the activation w.r.t. the image. The backward pass is, by design,
partially conditioned on an image through both the activation functions of the network and the max-
pooling switches (if present). The connections between the deconvolution and the backpropagation

conv1 conv2 conv3

Figure 2: Visualizations of patterns learned by the lower layers (conv1-conv3) of the network trained
on ImageNet. Each single patch corresponds to one filter. Interestingly, Gabor filters only appear in
the third layer.
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• Different methods of propagating back through a ReLU nonlinearity.

• Prevents backward flow of negative gradients, corresponding to the
neurons which decrease the activation of the higher layer unit we aim to
visualize.



Guided Backprop visualization of arbitrary neurons

[Striving for Simplicity: The all convolutional net by Springenberg, Dosovitskiy, et al., 2015]

Accepted as a workshop contribution at ICLR 2015

deconv guided backpropagation corresponding image crops

deconv guided backpropagation corresponding image crops

Figure 3: Visualization of patterns learned by the layer conv6 (top) and layer conv9 (bottom) of the
network trained on ImageNet. Each row corresponds to one filter. The visualization using “guided
backpropagation” is based on the top 10 image patches activating this filter taken from the ImageNet
dataset. Note that image sizes are not preserved (in order to save space).

ACKNOWLEDGMENTS

We acknowledge funding by the ERC Starting Grant VideoLearn (279401); the work was also partly
supported by the BrainLinks-BrainTools Cluster of Excellence funded by the German Research
Foundation (DFG, grant number EXC 1086).

REFERENCES

Behnke, Sven. Hierarchical neural networks for image interpretation. PhD thesis, 2003.

Ciresan, Dan C., Meier, Ueli, Masci, Jonathan, Gambardella, Luca M., and Schmidhuber, Jürgen.
High-performance neural networks for visual object classification. In arxiv:cs/arXiv:1102.0183.
URL http://arxiv.org/abs/1102.0183.

Deng, Jia, Dong, Wei, Socher, Richard, jia Li, Li, Li, Kai, and Fei-fei, Li. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Estrach, Joan B., Szlam, Arthur, and Lecun, Yann. Signal recovery from pooling representations. In
ICML, 2014.

Goodfellow, Ian J., Warde-Farley, David, Mirza, Mehdi, Courville, Aaron, and Bengio, Yoshua.
Maxout networks. In ICML, 2013.

Graham, Benjamin. Fractional max-pooling. In arxiv:cs/arXiv:1412.6071, 2015.
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• Visualization, using guided backpropagation, of patterns learned by layers conv6
and conv9 features.

• Each row corresponds to one pattern/neuron/activity.
• Based on the top 10 (ImageNet) image patches activating this pattern.

Optimization to Image
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Can we find an image that maximizes some class score?

Optimization to Image
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Can we find an image that maximizes some class score?

• Let sX represent the unnormalized scores assigned by our
network to image X.

• Let y be the class of interest.

• Then problem is to solve

arg max
X

(
sX,y − λ‖X‖22

)

Procedure to find local optimum image

1. Initialize X to be all zeros.

2. Apply ConvNet to X (forward pass)

3. Set the gradient of cost w.r.t. s equal to one-hot
representation of y.

4. Backprop to the gradient to the image (X) node.

5. Do a small “image update”.

6. Go back to step 2.



Example results

[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps by Simonyan,

Vedaldi & Zisserman, 2014]
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Example results

[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps by Simonyan,

Vedaldi & Zisserman, 2014]
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Can do this for any ConvNet response
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Repeat:

• Forward image estimate

• Set activations in layer of interest to all zero, except for a 1.0 for neuron
of interest.

• Backprop to image.

• Update image estimate.

Visualize the data gradient

[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps by Simonyan,

Vedaldi & Zisserman, 2014]
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Optimal Image

[Understanding Neural Networks Through Deep Visualization by Yosinski et al, 2015]

• Problem: Find an image that maximizes a class score +
regularization term

arg max
X

(sX,y − λR(X))

• Solution:
Repeat

1. Update the image X with gradient from some unit of interest.

2. Blur X a bit.

3. Take any pixel with small norm to zero (to encourage sparsity).

Example Results

[Understanding Neural Networks Through Deep Visualization by Yosinski et al, 2015]
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Reconstruct an image from its ConvNet encoding

Have ConvNet code: Possible to reconstruct the original image?

/HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\�	�-XVWLQ�-RKQVRQ)HL�)HL�/L�	�$QGUHM�.DUSDWK\�	�-XVWLQ�-RKQVRQ /HFWXUH���� ��)HE�������
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SRVVLEOH�WR�UHFRQVWUXFW�WKH�RULJLQDO�
LPDJH"

Reconstruct an image from its ConvNet encoding

Find an image s.t.:

• Its code is similar to a given code and

• It looks like a real image.

Mathematical statement:

X∗ = arg max
X∈RW×H×3

(
‖Φ(X)− Φ0‖2 + λR(X)

)



Reconstruct an image from its ConvNet encoding

[Understanding Deep Image Representations by Inverting Them by Mahendran and Vedaldi, 2014]

original image
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Reconstructions from the 1000 class score layer.

Reconstruct an image from its ConvNet encoding

[Understanding Deep Image Representations by Inverting Them by Mahendran and Vedaldi, 2014]
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Reconstructions from the representation after last pooling layer
(immediately before the first Fully Connected layer).

Reconstruct an image from its ConvNet encoding

[Understanding Deep Image Representations by Inverting Them by Mahendran and Vedaldi, 2014]
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original image
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Reconstructions from intermediate layers.

Reconstruct an image from its ConvNet encoding

[Understanding Deep Image Representations by Inverting Them by Mahendran and Vedaldi, 2014]
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original image
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Multiple reconstructions.
Images in quadrants produce the same ConvNet encoding.



Google’s DeepDream

• Start with random noise image X and give it label y.

• Iterate
- Apply ConvNet to X to get probabilities p for each class label.

- Update X so py increases in tandem with a prior that neighbouring
pixel values should be correlated.

Google’s DeepDream

• Start with random noise image X and give it label y.

• Iterate

- Apply jitter translation to X to get Xjitter

- Apply ConvNet to Xjitter (forward pass)

- Compute gradient ∂l
∂X

∣∣
Xjitter

(backward pass)

- Apply update step:

Xjitter = Xjitter + η
∂py

∂X

∣∣∣∣
Xjitter

- Undo jitter translation Xjitter → X

Google’s DeepDream

More examples from a random initialization:

Google’s DeepDream

Dumb bells



Google’s DeepDream

• Feed the network an image.

• Pick a layer and try to increase positive responses.

• Apply a gradient ascent approach.

Lower layer chosen.

Google’s DeepDream

• Feed the network an image.

• Pick a layer and try to increase positive responses.

• Apply a gradient ascent approach.

Higher layer chosen.

Google’s DeepDream

Higher layer chosen.

Close-up on some structures created

Google’s DeepDream

Some more examples



Apply Google’s DeepDream iteratively

All images generated from a random noise image.

Fooling a Neural Network

We can design an optimization problem w.r.t. the input image to
maximize any class score.

Question: Can we use this to “fool” ConvNets?

Fooling a Neural Network

[Intriguing properties of neural networks by Szegedy et al., 2013]
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• Train a ConvNet.

• x a test image correctly classified by
the ConvNet to have label y.

• Let x+ r be the closest image to x
s.t.

x+ r is classified by the ConvNet to

have label y′ 6= y.

Fooling a Neural Network

[Intriguing properties of neural networks by Szegedy et al., 2013]
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• Train a ConvNet.

• x a test image correctly classified by
the ConvNet to have label y.

• Let x+ r be the closest image to x
s.t.

x+ r is classified by the ConvNet to

have label y′ 6= y.



Fooling a Neural Network

[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images by Nguyen,

Yosinski, Clune, 2014]
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• Train a high-performance ConvNet for image classification.
• Randomly initialize an image x.
• Iteratively update x to get high-confidence ConvNet score (> 99.5%) for label y.
• This paper uses a genetic algorithm to produce updates for x.

Fooling a Neural Network

[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images by Nguyen,

Yosinski, Clune, 2014]

that fooled DNN1. That 7-fold increase over the 1300 im-
ages per ImageNet class is to emphasize the fooling images
in training. Without this imbalance, training with negative
examples did not prevent fooling; MNIST retraining did not
benefit from over representing the fooling image class.

Contrary to the result in the previous section, for Ima-
geNet models, evolution was less able to evolve high confi-
dence images for DNN2 than DNN1. The median confi-
dence score significantly decreased from 88.1% for DNN1

to 11.7% for DNN2 (Fig. 12, p < 0.0001 via Mann-
Whitney U test). We suspect that ImageNet DNNs were
better inoculated against being fooled than MNIST DNNs
when trained with negative examples because it is easier to
learn to tell CPPN images apart from natural images than it
is to tell CPPN images from MNIST digits.

Figure 12. Training a new ImageNet DNN (DNN2) with images
that fooled a previous DNN (DNN1) makes it significantly more
difficult for evolution to produce high confidence images.

To see whether this DNN2 had learned features specific
to the CPPN images that fooled DNN1, or whether DNN2

learned features general to all CPPN images, even recog-
nizable ones, we input recognizable CPPN images from
Picbreeder.org to DNN2. DNN2 correctly labeled 45 of
70 (64%, top-1 prediction) PicBreeder images as CPPN im-
ages, despite having never seen CPPN images like them be-
fore. The retrained model thus learned features generic to
CPPN images, helping to explain why producing new im-
ages that fool DNN2 is more difficult.

3.9. Producing fooling images via gradient ascent

A different way to produce high confidence, yet mostly
unrecognizable images is by using gradient ascent in pixel
space [11, 26, 30]. We calculate the gradient of the posterior
probability for a specific class — here, a softmax output unit
of the DNN — with respect to the input image using back-
prop, and then we follow the gradient to increase a chosen
unit’s activation. This technique follows [26], but whereas
we aim to find images that produce high confidence classi-
fications, they sought visually recognizable “class appear-
ance models.” By employing L2-regularization, they pro-
duced images with some recognizable features of classes
(e.g. dog faces, fox ears, and cup handles). However, their
confidence values are not reported, so to determine the de-
gree to which DNNs are fooled by these backpropagated

images, we replicated their work (with some minor changes,
see supplementary material) and found that images can be
made that are also classified by DNNs with 99.99% confi-
dence, despite them being mostly unrecognizable (Fig. 13).
These optimized images reveal a third method of fooling
DNNs that produces qualitatively different examples than
the two evolutionary methods in this paper.

Figure 13. Images found by maximizing the softmax output for
classes via gradient ascent [11, 26]. Optimization begins at the Im-
ageNet mean (plus small Gaussian noise to break symmetry) and
continues until the DNN confidence for the target class reaches
99.99%. Images are shown with the mean subtracted. Adding reg-
ularization makes images more recognizable but results in slightly
lower confidence scores (see supplementary material).

4. Discussion
Our experiments could have led to very different results.

One might have expected evolution to produce very similar,
high confidence images for all classes, given that [30] re-
cently showed that imperceptible changes to an image can
cause a DNN to switch from classifying it as class A to class
B (Fig. 14). Instead, evolution produced a tremendous di-
versity of images (Figs. 1, 8, 10, 15). Alternately, one might
have predicted that evolution would produce recognizable
images for each class given that, at least with the CPPN
encoding, recognizable images have been evolved (Fig. 3).
We note that we did not set out to produce unrecognizable
images that fool DNNs. Instead, we had hoped the resul-
tant images would be recognizable. A different prediction
could have been that evolution would fail to produce high
confidence scores at all because of local optima. It could
also have been the case that unrecognizable images would
have been given mostly low confidences across all classes
instead of a very high confidence for one class.

In fact, none of these outcomes resulted. Instead, evolu-
tion produced high-confidence, yet unrecognizable images.
Why? Our leading hypothesis centers around the difference
between discriminative models and generative models. Dis-

• Initialize image x with ImageNet mean + noise.
• Iteratively update x to get high-confidence ConvNet score (> 99.99%) for label y.
• This example used gradient of the loss w.r.t. x to produce updates.

Why can we generate these adversarial examples?

[EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES by Goodfellow, Shlens & Szegedy, 2014]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓, x, y))
x +

✏sign(rxJ(✓, x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓, x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓, x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x + b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x + b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

• Adversarial examples a property of high-dimensional dot products.

• They are a result of models being too linear, rather than too nonlinear.

• Direction of perturbation matters most.

• Perturbation direction results in adversarial example when highly aligned
with the weight vectors of the network.

• Space is not full of pockets of adversarial examples.

Not a problem specific to Deep Learning or ConvNets.
Same issue exists for shallow Neural Nets.
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Data Augmentation
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Data Augmentation

12

Load image 
and label

“cat”

CNN

Compute
loss
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Data Augmentation

13

Load image 
and label

“cat”

CNN

Compute
loss

Transform image
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Data Augmentation

- Change the pixels without 
changing the label

- Train on transformed data

- VERY widely used

What the computer sees
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Data Augmentation
1. Horizontal flips
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Training: sample random crops / scales

16

Data Augmentation
2. Random crops/scales
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Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

17

Data Augmentation
2. Random crops/scales
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Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

18

Data Augmentation
2. Random crops/scales

Lecture 11 - Fei-Fei Li & Andrej Karpathy & Justin Johnson 17 Feb 2016

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

19

Data Augmentation
2. Random crops/scales
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Data Augmentation
3. Color jitter

Simple: 
Randomly jitter contrast
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Data Augmentation
3. Color jitter

Simple: 
Randomly jitter contrast

Complex:

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color offset” 
along principal component 
directions

3. Add offset to all pixels of a 
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)
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Data Augmentation
4. Get creative!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing, 
- lens distortions, …  (go crazy)
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A general theme: 
1. Training: Add random noise
2. Testing: Marginalize over the noise

DropConnectDropout
Data Augmentation

Batch normalization, Model ensembles
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Data Augmentation: Takeaway

● Simple to implement, use it
● Especially useful for small datasets
● Fits into framework of noise / marginalization
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Transfer Learning

“You need a lot of a data if you want to 
train/use CNNs”
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Transfer Learning

“You need a lot of a data if you want to 
train/use CNNs”

BU
STE
D
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Transfer Learning with CNNs

1. Train on 
Imagenet
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Transfer Learning with CNNs

1. Train on 
Imagenet

2. Small dataset:
feature extractor

Freeze these

Train this
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Transfer Learning with CNNs

1. Train on 
Imagenet

3. Medium dataset:
finetuning

more data = retrain more of 
the network (or all of it)

2. Small dataset:
feature extractor

Freeze these

Train this

Freeze these

Train this
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Transfer Learning with CNNs

1. Train on 
Imagenet

3. Medium dataset:
finetuning

more data = retrain more of 
the network (or all of it)

2. Small dataset:
feature extractor

Freeze these

Train this

Freeze these

Train this

tip: use only ~1/10th of 
the original learning rate 
in finetuning top layer, 
and ~1/100th on 
intermediate layers
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CNN Features off-the-shelf: an Astounding Baseline for Recognition
[Razavian et al, 2014]

DeCAF: A Deep 
Convolutional Activation 
Feature for Generic Visual 
Recognition
[Donahue*, Jia*, et al., 
2013]
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more generic

more specific

very similar 
dataset

very different 
dataset

very little data ? ?

quite a lot of 
data

? ?
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more generic

more specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on top 
layer

?

quite a lot of 
data

Finetune a few 
layers

?
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more generic

more specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on top 
layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a few 
layers

Finetune a 
larger number of 
layers
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Object Detection 
(Faster R-CNN)

Image Captioning: CNN + RNN
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Object Detection 
(Faster R-CNN)

Image Captioning: CNN + RNN

CNN pretrained 
on ImageNet
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Object Detection 
(Faster R-CNN)

Image Captioning: CNN + RNN

CNN pretrained 
on ImageNet

Word vectors pretrained 
from word2vec
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Takeaway for your projects/beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has similar data, train a 
big ConvNet there.

2. Transfer learn to your dataset

Caffe ConvNet library  has a “Model Zoo” of pretrained models:
https://github.com/BVLC/caffe/wiki/Model-Zoo
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Classification Classification 
+ Localization

Computer Vision Tasks

Object Detection Instance 
Segmentation
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Classification + Localization: Task
Classification: C classes

Input: Image
Output: Class label
Evaluation metric: Accuracy

Localization:
Input: Image
Output: Box in the image (x, y, w, h)
Evaluation metric: Intersection over Union

Classification + Localization: Do both

CAT

(x, y, w, h)
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Classification Classification 
+ Localization

Computer Vision Tasks

Object Detection Instance 
Segmentation

Lecture 8 - 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 201610

Classification + Localization: Task
Classification: C classes

Input: Image
Output: Class label
Evaluation metric: Accuracy

Localization:
Input: Image
Output: Box in the image (x, y, w, h)
Evaluation metric: Intersection over Union

Classification + Localization: Do both

CAT

(x, y, w, h)
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Idea #1: Localization as Regression

Input: image

Output: 
Box coordinates

(4 numbers)

Neural Net

Correct output:  
box coordinates

(4 numbers)

Loss:
L2 distance

Only one object, 
simpler than detection
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Simple Recipe for Classification + Localization
Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)

Image

Convolution
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Softmax loss
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Simple Recipe for Classification + Localization
Step 2: Attach new fully-connected “regression head” to the network

Image

Convolution
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Fully-connected 
layers

Box coordinates

“Classification head”

“Regression head”
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Simple Recipe for Classification + Localization
Step 3: Train the regression head only with SGD and L2 loss

Image

Convolution
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Fully-connected 
layers

Box coordinates

L2 loss
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Simple Recipe for Classification + Localization
Step 4: At test time use both heads

Image

Convolution
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Fully-connected 
layers

Box coordinates
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Per-class vs class agnostic regression

Image

Convolution
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Fully-connected 
layers

Box coordinates

Assume classification 
over C classes: Classification head:

C numbers 
(one per class)

Class agnostic:
4 numbers
(one box)
Class specific:
C x 4 numbers
(one box per class)
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Where to attach the regression head?

Image

Convolution
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Softmax loss

After conv layers:
Overfeat, VGG

After last FC layer:
DeepPose, R-CNN

How to stack convolutional layers efficiently?
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The power of small filters

Suppose we stack two 3x3 conv layers (stride 1)
Each neuron sees 3x3 region of previous activation map

Input First Conv Second Conv
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The power of small filters

Question: How big of a region in the input does a neuron on the 
second conv layer see?

Input First Conv Second Conv
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The power of small filters

Question: How big of a region in the input does a neuron on the 
second conv layer see?
Answer: 5 x 5

Input First Conv Second Conv
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The power of small filters

Question: If we stack three 3x3 conv layers, how big of an input 
region does a neuron in the third layer see?
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The power of small filters

Question: If we stack three 3x3 conv layers, how big of an input 
region does a neuron in the third layer see?

X

X

Answer: 7 x 7
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The power of small filters

Question: If we stack three 3x3 conv layers, how big of an input 
region does a neuron in the third layer see?

X

X

Answer: 7 x 7

Three 3 x 3 conv 
gives similar
representational
power as a single 
7 x 7 convolution
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:

three CONV with 3 x 3 filters

Number of weights:
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:
= C x (7 x 7 x C) = 49 C2

three CONV with 3 x 3 filters

Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:
= C x (7 x 7 x C) = 49 C2

three CONV with 3 x 3 filters

Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Fewer parameters, more nonlinearity = GOOD
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:
= C x (7 x 7 x C) = 49 C2

Number of multiply-adds:

three CONV with 3 x 3 filters

Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Number of multiply-adds:
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:
= C x (7 x 7 x C) = 49 C2

Number of multiply-adds:
= (H x W x C) x (7 x 7 x C)
= 49 HWC2

three CONV with 3 x 3 filters

Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Number of multiply-adds:
= 3 x (H x W x C) x (3 x 3 x C)
= 27 HWC2
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters

Number of weights:
= C x (7 x 7 x C) = 49 C2

Number of multiply-adds:
= 49 HWC2

three CONV with 3 x 3 filters

Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Number of multiply-adds:
= 27 HWC2

Less compute, more nonlinearity = GOOD
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

1. “bottleneck” 1 x 1 conv
to reduce dimension
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)
Conv 3x3, C/2 filters

1. “bottleneck” 1 x 1 conv
to reduce dimension

2. 3 x 3 conv at reduced 
dimension
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

1. “bottleneck” 1 x 1 conv
to reduce dimension

2. 3 x 3 conv at reduced 
dimension

3. Restore dimension 
with another 1 x 1 conv

[Seen in Lin et al, “Network in Network”, 
GoogLeNet, ResNet]
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

H x W x C

Conv 3x3, C filters

H x W x C
Single

3 x 3 conv

Bottleneck
sandwich
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

H x W x C

Conv 3x3, C filters

H x W x C

3.25 C2

parameters

9 C2

parameters

More nonlinearity,
fewer params, 
less compute!
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The power of small filters

Still using 3 x 3 filters … can we break it up?
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The power of small filters

H x W x C
Conv 1x3, C filters

H x W x C

H x W x C
Conv 3x1, C filters

Still using 3 x 3 filters … can we break it up?
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The power of small filters

H x W x C
Conv 1x3, C filters

H x W x C

H x W x C
Conv 3x1, C filters

Still using 3 x 3 filters … can we break it up?

6 C2

parameters
Conv 3x3, C filters

H x W x C
9 C2

parameters

H x W x C

More nonlinearity,
fewer params, 
less compute!
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The power of small filters

Latest version of GoogLeNet incorporates all these ideas

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”
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How to stack convolutions: Recap

● Replace large convolutions (5 x 5, 7 x 7) with stacks of 
3 x 3 convolutions

● 1 x 1 “bottleneck” convolutions are very efficient
● Can factor N x N convolutions into 1 x N and N x 1
● All of the above give fewer parameters, less compute, 

more nonlinearity
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