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Recurrent Neural Networks (RNNs)

• RNNs are a family of networks for processing sequential data.

• A RNN applies the same function recursively when traversing
network’s graph structure.

• RNN encodes a sequence x1,x2, . . . ,xτ into fixed length
hidden vector hτ .

• The size of hτ is independent of τ .

• Amazingly flexible and powerful high-level architecture.



RNN with no outputs
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• Graph displays processing of information for each time step.

• Information from input x is incorporated into state h.



RNN with no outputs
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delay of 1 time step

• Graph displays processing of information for each time step.

• Information from input x is incorporated into state h.

• State h is passed forward in time.
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RNN: How hidden states generated

• Most recurrent neural networks have a function f

ht = f(ht−1,xt;θ)

that defines their hidden state over time where

- ht is the hidden state at time t (a vector)

- xt is the input vector at time t

- θ is the parameters of f .

• θ remains constant as t changes.

Apply the same function with the same parameter values
at each iteration.
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RNN with outputs
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delay of 1 time step

• Usually also predict an output vector at each time step



RNN with outputs
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Unrolled visualization of the RNN

• Usually also predict an output vector at each time step



Use cases of RNNs

[http://karpathy.github.io/2015/05/21/rnn-effectiveness/]
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Back to Vanilla RNN

• The state consists of a single hidden vector h:

• Initial hidden state h0 is assumed given.

• For t = 1, . . . , T the RNN equations are

at =Wht−1 + Uxt + b

ht = tanh(at)

ot = V ht + c

pt = softmax(ot)

Network’s input

- h0 initial hidden state has size m× 1

- xt input vector at time t has size d× 1



Vanilla RNN equations

• The state consists of a single hidden vector h:

• Initial hidden state h0 is assumed given.

• For t = 1, . . . , T the RNN equations are

at =Wht−1 + Uxt + b

ht = tanh(at)

ot = V ht + c

pt = softmax(ot)

Network’s output and hidden vectors

- at hidden state at time t of size m× 1 before non-linearity

- ht hidden state at time t of size m× 1

- ot output vector (of unnormalized log probabilities for each class) at time t of size C × 1

- pt output probability vector at time t of size C × 1



Vanilla RNN equations

• The state consists of a single hidden vector h:

• Initial hidden state h0 is assumed given.

• For t = 1, . . . , T the RNN equations are

at =Wht−1 + Uxt + b

ht = tanh(at)

ot = V ht + c

pt = softmax(ot)

Parameters of the network

- W weight matrix of size m×m applied to ht−1 (hidden-to-hidden connection)

- U weight matrix of size m× d applied to xt (input-to-hidden connection)

- b bias vector of size m× 1 in equation for at

- V weight matrix of size C ×m applied to at (hidden-to-output connection)

- c bias vector of size C × 1 in equation for ot
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Example training
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Extend this simple approach to full alphabet and punctuation
characters
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train more
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at first:
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How do we train a vanilla RNN?

Supervised learning via a loss function & mini-batch gradient
descent.

Loss defined for one training sequence.

• Have a sequence x1,x2, . . . ,xτ of input vectors.

• For each xt in sequence have a target output yt.

• Define loss lt between the yt and pt for each t.

• Sum the loss over all time-steps

L(x1, . . . ,xτ , y1, . . . , yτ ,W,U, V,b, c) =

τ∑
t=1

lt



Loss function for a vanilla RNN

Common to use the cross-entropy loss:

lt = − log(yTt pt)

thus

L(x1:τ , y1:τ ,W,U, V,b, c) = −
τ∑
t=1

log(yTt pt)

where x1:τ = {x1, . . . ,xτ} and y1:τ = {y1, . . . , yτ}.
• To implement mini-batch gradient descent need to compute

∂L(x1:τ , y1:τ ,W,U, V,b, c)

∂W
,
∂L(x1:τ , y1:τ ,W,U, V,b, c)

∂U
, · · ·

• You’ve guessed it, use back-prop...



Computational Graph for vanilla RNN loss
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• Loss for one labelled
training sequence
x1, . . .xτ

• Bias vectors have been
omitted for clarity.



Back-prop for a vanilla RNN



Gradient of loss for the cross-entropy & softmax layers

L

y1 · · · yτ−2 yτ−1 yτ

l1 · · · lτ−2 lτ−1 lτ

p1 · · · pτ−2 pτ−1 pτ

o1 · · · oτ−2 oτ−1 oτ

V

h0 h1 · · · hτ−2 hτ−1 hτ

a1 · · · aτ−2 aτ−1 aτ

x1 xτ−2 xτ−1 xτ

W U

tanh(a1) tanh(aτ−2) tanh(aτ−1) tanh(aτ )

W
h
0 +

U
x
1

W
h
1 +

U
x
2

W
h
τ−2 + Ux

τ−1

W
h
τ−1 + Ux

τ

V h1 V hτ

Softmax(p1) Softmax(pτ−2) Softmax(pτ−1) Softmax(pτ )

− log(yT1 p1) − log(yTτ−2pτ−2) − log(yTt pτ−1) − log(yTτ pτ )

l 1
+

· ·
·+

l τ

V hτV hτ−2

Know from prior dealings with cross-entropy loss:

for t = 1, . . . τ

∂L

∂lt
= 1

∂L

∂pt
=
∂L

∂lt

∂lt

∂pt
= − yTt

yTt pt

∂L

∂ot
=

∂L

∂pt

∂pt

∂ot
= − yTt

yTt pt

(
diag(pt)− ptp

T
t

)



Gradient of loss w.r.t. V
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Children of node V are o1,o2, . . . ,oτ . Thus

∂L

∂vec(V )
=

τ∑
t=1

∂L

∂ot

∂ot

∂vec(V )

Know

ot = V ht =⇒ ot = (IC ⊗ ht) vec(V )

=⇒ ∂ot

∂vec(V )
= IC ⊗ ht

From prior reshapings know:

∂L

∂V
=

τ∑
t=1

gTt h
T
t

where gt =
∂L
∂ot

.



Gradient of loss w.r.t. V
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Children of node V are o1,o2, . . . ,oτ . Thus

∂L

∂vec(V )
=

τ∑
t=1

∂L

∂ot

∂ot

∂vec(V )

Know

ot = V ht =⇒ ot = (IC ⊗ ht) vec(V )

=⇒ ∂ot

∂vec(V )
= IC ⊗ ht

From prior reshapings know:

∂L

∂V
=

τ∑
t=1

gTt h
T
t ← gradient needed for training network

where gt =
∂L
∂ot

.



Gradient of loss w.r.t. hτ
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hτ (last hidden state) has one child oτ thus

∂L

∂hτ
=

∂L

∂oτ

∂oτ

∂hτ

Know

oτ = V hτ =⇒ ∂oτ

∂hτ
= V

Thus

∂L

∂hτ
=

∂L

∂oτ
V



Gradient of loss w.r.t. ht
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If 1 ≤ t ≤ τ − 1 then ht has children ot and at+1

∂L
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=
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+
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Know

ot = V ht =⇒ ∂ot
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Thus
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Gradient of loss w.r.t. ht
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If 1 ≤ t ≤ τ − 1 then ht has children ot and at+1

∂L
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=
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Have two different time steps in expression =⇒
must iterate backwards in time to compute all ∂L

∂ht



Gradient of loss w.r.t. at
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The gradient w.r.t. at
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Know

ht = tanh(at) =⇒ ∂ht
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)
= diag
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)
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Recursively compute gradients for all at and ht
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• Assume ∂L
∂ot

calculated for 1 ≤ t ≤ τ .

• Calculate
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• for t = τ − 1, τ − 2, . . . , 1
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Gradient of loss w.r.t. W
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The gradient of the loss w.r.t. node W .

Children of W are a1, . . .aτ thus
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=

τ∑
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Know
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∂L

∂W
=

τ∑
t=1

gTt h
T
t−1

where gt =
∂L
∂at

.



Gradient of loss w.r.t. W
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The gradient of the loss w.r.t. node W .

Children of W are a1, . . .aτ thus

∂L
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Know

at =Wht−1 + Uxt =⇒ at = (Im ⊗ ht−1)vec(W ) + Uxt
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.



Gradient of loss w.r.t. U
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The gradient of the loss w.r.t. node V .

Children of V are a1, . . .aτ thus

∂L

∂vec(U)
=

τ∑
t=1

∂L

∂at

∂at

∂vec(U)

Know

at =Wht−1 + Uxt =⇒ at =Wht−1 + (Im ⊗ xt)vec(U)

=⇒ ∂at

∂vec(U)
= Im ⊗ xt

From prior reshapings know:

∂L

∂U
=

τ∑
t=1

gTt x
T
t

where gt =
∂L
∂at

.



Gradient of loss w.r.t. U
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W U

tanh(a1) tanh(aτ−2) tanh(aτ−1) tanh(aτ )
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0 +

U
x
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h
1 +

U
x
2

W
h
τ−2 + Ux

τ−1

W
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τ−1 + Ux

τ

V h1 V hτ
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− log(yT1 p1) − log(yTτ−2pτ−2) − log(yTt pτ−1) − log(yTτ pτ )

l 1
+

· ·
·+

l τ

V hτV hτ−2

The gradient of the loss w.r.t. node V .

Children of V are a1, . . .aτ thus

∂L

∂vec(U)
=

τ∑
t=1

∂L

∂at

∂at

∂vec(U)

Know

at =Wht−1 + Uxt =⇒ at =Wht−1 + (Im ⊗ xt)vec(U)

=⇒ ∂at

∂vec(U)
= Im ⊗ xt

From prior reshapings know:

∂L

∂U
=

τ∑
t=1

gTt x
T
t ← gradient needed for training network

where gt =
∂L
∂at

.



RNNs in Translation Applications



Language translation

• Given a sentence in on language translate it to another
language

• le chien sur la plage → Dog on the beach



RNN-based Sentence Generation (Decoder)

1-of-N encoding 

of “START”
1-of-N encoding 

of “dog”

1-of-N encoding 

of “on”
1-of-N encoding 

of “the”

Model long-term information

P(next word is 

“dog”)
P(next word is 

“on”)
P(next word is 

“the”)
P(next word is 

“beach”)

Context



RNN-based Sentence Representation (Encoder) 

1-of-N encoding 

of “le”
1-of-N encoding 

of “chien”

1-of-N encoding 

of “la”
1-of-N encoding 

of “plage”

1-of-N encoding 

of “sur”



Encoder-Decoder Architecture

1-of-N encoding 

of “le”
1-of-N encoding 

of “chien”

1-of-N encoding 

of “la”
1-of-N encoding 

of “plage”

1-of-N encoding 

of “sur”

Context

[Cho et al., “Learning Phrase Representations 

using RNN Encoder-Decoder for Statistical 

Machine Translation”, EMNLP 2014]
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test image

x0
<STA
RT>

<START>



h0

x0
<STA
RT>

y0

<START>

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih
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y0

<START>

test image

straw

sample!
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h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.







Evaluation of text translation results

• Tricky to do automatically!

• Ideally want humans to evaluate
- What do you ask?

- Can’t use human evaluation for validating models - too slow and
expensive.

• Use standard machine translation metrics instead
- BLEU

- ROUGE CIDER

- Meteor



Image Sentence Datasets

Microsoft COCO
[Tsung-Yi Lin et al. 2014]
mscoco.org

currently:
~120K images
~5 sentences each



Problem of exploding and vanishing gradients in an RNN



Focus on gradient of loss w.r.t. W

• Take a closer look at

∂L

∂W
=

τ∑
t=1

gTt h
T
t−1 where gt =

∂L

∂at

• =⇒ ∂L
∂W depends on ht−1 and ∂L

∂at
for t = 1, . . . , τ .

• Let’s take a closer look at ∂L
∂at

....



Focus on ∂L
∂at

• Denote

got =
∂L

∂ot
and D(at) = diag(1− tanh2(at))

• Remember

∂L

∂hτ
= goτV =⇒ ∂L

∂aτ
= goτV D(aτ )

and for t = τ − 1, τ − 2, . . . , 1:

∂L

∂ht
= gotV +

∂L

∂at+1
W and

∂L

∂at
=

∂L

∂ht
D(at)

• Then you can show by recursive substitution that

∂L

∂ht
=

τ∑
j=t

gojV

(
j−t∏
k=1

D(at+k)

)
W j−t

and

∂L

∂at
=

τ∑
j=t

gojV

(
j−t∏
k=0

D(at+k)

)
W j−t



Focus on ∂L
∂at

• Denote

got =
∂L

∂ot
and D(at) = diag(1− tanh2(at))

• Then you can show by recursive substitution that

∂L

∂ht
=

τ∑
j=t

gojV

(
j−t∏
k=1

D(at+k)

)
W j−t

and

∂L

∂at
=

τ∑
j=t

gojV

(
j−t∏
k=0

D(at+k)

)
︸ ︷︷ ︸

likely has small values on diagonal

W j−t

Why? Each matrix D(at+k) has tanh′(at+k) on its diagonal and
0 ≤ tanh′(a) ≤ 1. Thus (tanh′(a))j−t+1 is highly likely to have a small value
even for not too large j − t+ 1.

=⇒ ∂L
∂at

only depends on first few entries in the sum.



Focus on ∂L
∂at

• Denote

got =
∂L

∂ot
and D(at) = diag(1− tanh2(at))

• Then you can show by recursive substitution that

∂L

∂ht
=

τ∑
j=t

gojV

(
j−t∏
k=1

D(at+k)

)
W j−t

and

∂L

∂at
=

τ∑
j=t

gojV

(
j−t∏
k=0

D(at+k)

)
W j−t︸ ︷︷ ︸

potentially has very large or small values

Why? ......



Focus on W n

• Remember W has size m×m.

• Assume W is diagonalizable.

• Let its eigen-decomposition be

W = QΛQT

where Q is orthogonal and Λ is a diagonal matrix containing the
eigenvalues of W .

• Then

Wn = QΛnQT

• Let λ1, . . . , λm be the e-values of W . Thus

- If λi > 1 =⇒ λni will explode as n increases.

- If λi < 1 =⇒ λni → 0 as n increases.



Focus on ∂L
∂at

• Denote

got =
∂L

∂ot
and D(at) = diag(1− tanh2(at))

• Then you can show by recursive substitution that

∂L

∂ht
=

τ∑
j=t

gojV

(
j−t∏
k=1

D(at+k)

)
W j−t

and

∂L

∂at
=

τ∑
j=t

gojV

(
j−t∏
k=0

D(at+k)

)
W j−t︸ ︷︷ ︸

potentially has very large or small values

Thus for sufficiently large j − t either entries in W j−t can explode or
vanish.



Summary on ∂L
∂at

• Denote

got =
∂L

∂ot
and D(at) = diag(1− tanh2(at))

• Then you can show by recursive substitution that

∂L

∂ht
=

τ∑
j=t

goj
V

j−t∏
k=1

D(at+k)

W
j−t

and

∂L

∂at
=

τ∑
j=t

goj
V

j−t∏
k=0

D(at+k)

W
j−t

• If W j−t explodes for j − t > N =⇒ ∂L
∂at

explodes =⇒ ∂L
∂W

explodes.

• If W j−t vanishes for j − t > N
=⇒ ∂L

∂at
only has contributions from nearby got′ where t ≤ t′ ≤ t+N

=⇒ ∂L
∂W

is based on aggregation of gradients from subsets of temporally
nearby states.



Summary on ∂L
∂at

• Denote

got =
∂L

∂ot
and D(at) = diag(1− tanh2(at))

• Then you can show by recursive substitution that

∂L

∂ht
=

τ∑
j=t

goj
V

j−t∏
k=1

D(at+k)

W
j−t

and

∂L

∂at
=

τ∑
j=t

goj
V

j−t∏
k=0

D(at+k)

W
j−t

• If W j−t explodes for j − t > N =⇒ ∂L
∂at

explodes =⇒ ∂L
∂W

explodes.

• If W j−t vanishes for j − t > N
=⇒ ∂L

∂at
only has contributions from nearby got′ where t ≤ t′ ≤ t+N

=⇒ ∂L
∂W

is based on aggregation of gradients from subsets of temporally
nearby states.
=⇒ Cannot learn long-range dependencies between states.



Solution to Exploding & Vanishing Gradients



Easy solution to exploding gradients

• Gradient clipping

Let G = ∂L
∂W

then

G =

{
θ
‖G‖G if ‖G‖ ≥ θ

G otherwise

where θ is some sensible threshold.

• A simple heuristic first introduced by Thomas Mikolov.

cs 224d: deep learning for nlp 6

The exponential term (bW bh)
t�k can easily become a very small or

large number when bW bh is much smaller or larger than 1 and t� k
is sufficiently large. Recall a large t � k evaluates the cross entropy
error due to faraway words. The contribution of faraway words to
predicting the next word at time-step t diminishes when the gradient
vanishes early on.

During experimentation, once the gradient value grows extremely
large, it causes an overflow (i.e. NaN) which is easily detectable at
runtime; this issue is called the Gradient Explosion Problem. When the
gradient value goes to zero, however, it can go undetected while dras-
tically reducing the learning quality of the model for far-away words
in the corpus; this issue is called the Vanishing Gradient Problem.

To gain practical intuition about the vanishing gradient problem,
you may visit the following example website.

2.2 Solution to the Exploding & Vanishing Gradients

Now that we gained intuition about the nature of the vanishing gradi-
ents problem and how it manifests itself in deep neural networks, let
us focus on a simple and practical heuristic to solve these problems.

To solve the problem of exploding gradients, Thomas Mikolov first
introduced a simple heuristic solution that clips gradients to a small
number whenever they explode. That is, whenever they reach a cer-
tain threshold, they are set back to a small number as shown in Algo-
rithm 1. Algorithm 1: Psudo-code for norm clip-

ping in the gradients whenever they ex-
plodeĝ ∂E

∂W
if k ĝ k� threshold then

ĝ threshold
k ĝ k ĝ

end if

Figure 5 visualizes the effect of gradient clipping. It shows the de-
cision surface of a small recurrent neural network with respect to its
W matrix and its bias terms, b. The model consists of a single unit
of recurrent neural network running through a small number of time-
steps; the solid arrows illustrate the training progress on each gradient
descent step. When the gradient descent model hits the high error wall
in the objective function, the gradient is pushed off to a far-away loca-
tion on the decision surface. The clipping model produces the dashed
line where it instead pulls back the error gradient to somewhere close
to the original gradient landscape.

On the di�culty of training Recurrent Neural Networks

Figure 6. We plot the error surface of a single hidden unit
recurrent network, highlighting the existence of high cur-
vature walls. The solid lines depicts standard trajectories
that gradient descent might follow. Using dashed arrow
the diagram shows what would happen if the gradients is
rescaled to a fixed size when its norm is above a threshold.

explode so does the curvature along v, leading to a
wall in the error surface, like the one seen in Fig. 6.

If this holds, then it gives us a simple solution to the
exploding gradients problem depicted in Fig. 6.

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.

The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. The key insight is that all the
steps taken when the gradient explodes are aligned
with v and ignore other descent direction (i.e. the
model moves perpendicular to the wall). At the wall, a
small-norm step in the direction of the gradient there-
fore merely pushes us back inside the smoother low-
curvature region besides the wall, whereas a regular
gradient step would bring us very far, thus slowing or
preventing further training. Instead, with a bounded
step, we get back in that smooth region near the wall
where SGD is free to explore other descent directions.

The important addition in this scenario to the classical
high curvature valley, is that we assume that the val-
ley is wide, as we have a large region around the wall
where if we land we can rely on first order methods
to move towards the local minima. This is why just
clipping the gradient might be su�cient, not requiring
the use a second order method. Note that this algo-

rithm should work even when the rate of growth of the
gradient is not the same as the one of the curvature
(a case for which a second order method would fail
as the ratio between the gradient and curvature could
still explode).

Our hypothesis could also help to understand the re-
cent success of the Hessian-Free approach compared
to other second order methods. There are two key dif-
ferences between Hessian-Free and most other second-
order algorithms. First, it uses the full Hessian matrix
and hence can deal with exploding directions that are
not necessarily axis-aligned. Second, it computes a
new estimate of the Hessian matrix before each up-
date step and can take into account abrupt changes in
curvature (such as the ones suggested by our hypothe-
sis) while most other approaches use a smoothness as-
sumption, i.e., averaging 2nd order signals over many
steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Given that the parame-
ters initialized with small values, the spectral radius of
Wrec is probably smaller than 1, from which it follows
that the gradient can not explode (see necessary condi-
tion found in section 2.1). The regularization term can
ensure that during training the spectral radius never
exceeds 1. This approach limits the model to a sim-
ple regime (with a single point attractor at the origin),
where any information inserted in the model has to die
out exponentially fast in time. In such a regime we can
not train a generator network, nor can we exhibit long
term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if
the model exhibits from the beginning the same kind
of asymptotic behaviour as the one required by the
target, then there is no need to cross a bifurcation
boundary. The downside is that one can not always
know the required asymptotic behaviour, and, even if
such information is known, it is not trivial to initial-
ize a model in this specific regime. We should also
note that such initialization does not prevent cross-
ing the boundary between basins of attraction, which,
as shown, could happen even though no bifurcation
boundary is crossed.

Teacher forcing is a more interesting, yet a not very
well understood solution. It can be seen as a way of
initializing the model in the right regime and the right

Figure 5: Gradient explosion clipping
visualization

To solve the problem of vanishing gradients, we introduce two tech-
niques. The first technique is that instead of initializing W(hh) ran-
domly, start off from an identify matrix initialization. Dashed arrow shows what happens when the gradient is rescaled to a

fixed size when its norm is above a threshold.



Easy partial solutions to vanishing gradients

• Solution 1: Initialize W as the identity matrix as opposed a
random initialization.

• Solution 2: Use ReLU instead of tanh as the non-linear
activation function.



Easy partial solutions to vanishing gradients

• Solution 1: Initialize W as the identity matrix as opposed a
random initialization.

• Solution 2: Use ReLU instead of tanh as the non-linear
activation function.

Still hard for an RNN to capture long-term dependencies.



Long-Short-Term-Memories (LSTMs) - capturing long-range
dependencies



LSTMs Core Idea: Introduce a memory cell

ot−1 ot ot+1

h.. ht−1 ht ht+1 h..

xt−1 xt xt+1

High-level graphic of an RNN

• LSTMs similar to RNN but they introduce a memory cell state ct.



LSTMs Core Idea: Introduce a memory cell

ot−1 ot ot+1

h.. ht−1 ht ht+1 h..

xt−1 xt xt+1

c.. ct−1 ct ct+1 c..

High-level graphic of a LSTM

• LSTMs similar to RNN but they introduce a memory cell state ct.

• LSTMs have the ability to remove or add information to ct regulated by
structures called gates based on context.

• Update of ct designed so gradients flows these nodes backward in time
easily.

• ct then controls what information from ht−1 and xt and ct−1 should be
used to generate ht.



LSTMs formal details

• LSTMs (Hochreiter & Schmidhuer, 1997) better at capturing long term
dependencies.

• Introduces gates to calculate ht, ct from ct−1,ht−1 and xt.

• Formal description of a LSTM unit:

it = σ(Wixt + Uiht−1) Input gate

ft = σ(Wfxt + Ufht−1) Forget gate

ot = σ(Woxt + Uoht−1) Output/Exposure gate

c̃t = tanh(Wcxt + Ucht−1) New memory cell

ct = ft � ct−1 + it � c̃t Final memory cell

ht = ot � tanh(ct)

where
- σ(·) is the sigmoid function and
- � denotes element by element multiplication.



LSTMs basic unit
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determine whether the temporary
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included in ct.

• Updated memory state: Use the
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the new temporary memory and the

current memory cell state to get ct.

• Output gate: Decides which part

of ct should be exposed to ht.
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Can go deep with LSTMs
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Deep LSTM Network

𝒙(1)

𝒛(𝟏)

𝑽

𝑾𝟐

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝐿(2)

𝑦(2)

𝒙(3)

𝒛(3)

𝐿(3)

𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝐿(𝜏)

𝑦(𝜏)

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝑾𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

1 1 1 1

2222



34

Bi-directional LSTM Network
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𝑦(3)

𝒙(𝜏)

𝒛(𝜏)

𝐿(𝜏)

𝑦(𝜏)
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𝑾𝟏
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Summary

• RNNs allow a lot of flexibility in architecture design

• Backward flow of gradients in RNN can explode or vanish.

• Vanilla RNNs are simple but find it hard to learn long-term
dependencies.

• Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

• Common to use LSTMs: their additive interactions improve
gradient flow


