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RNN with no

OB,

e Graph displays processing of information for each time step.

e Information from input x is incorporated into state h.

al Networks (RNNs)

e RNNs are a family of networks for processing sequential data.

e A RNN applies the same function recursively when traversing
network'’s graph structure.

e RNN encodes a sequence X1, Xa, ..., X, into fixed length
hidden vector h.

e The size of h. is independent of 7.

e Amazingly flexible and powerful high-level architecture.

o Graph displays processing of information for each time step.
e Information from input x is incorporated into state h.

o State h is passed forward in time.



RNN with no RNN: How

idden states generated

e Most recurrent neural networks have a function f
hy = f(he—1,%;0)

that defines their hidden state over time where

- hy is the hidden state at time ¢ (a vector)
- X is the input vector at time ¢
- @ is the parameters of f.

Unrolled visualization of the RNN

RNN: How hidden states generated RNN with no

e Most recurrent neural networks have a function f
hy = f(he-1,%;0)

that defines their hidden state over time where

- hy is the hidden state at time ¢ (a vector)

- X is the input vector at time ¢
- @ is the parameters of f

e 0 remains constant as ¢ changes. Unrolled visualization of the RNN

Apply the same function with the same parameter values
at each iteration



RNN with outputs RNN with outputs
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Unrolled visualization of the RNN

e Usually also predict an output vector at each time step
e Usually also predict an output vector at each time step

Back to Vanilla RNN

e The state consists of a single hidden vector h;:

Use cases of RNNs

e Initial hidden state hy is assumed given.

P Encodil Continuous e Fort=1,...,7 the RNN equations are
i
Prediction prediction

Generation
a;=Why_1 +Ux; +b

Output D D Q D D Q D D D D hy = tanh(ay)

n T
o,=Vh;+c¢

RNN D,DD D.D..D Mﬂ D—D-D Pt = softmax(o;)
t tt ot ttot t ot s inou
= 0 DO0 0ub D00

- X input vector at time ¢ has size d x 1

[http://karpathy.github.io/2015/05/21/rnn-effectiveness/]




anilla RNN equations illa RNN equations

o The state consists of a single hidden vector h;: o The state consists of a single hidden vector h:
o Initial hidden state hg is assumed given. o Initial hidden state h is assumed given.
e Fort=1,...,7 the RNN equations are e Fort=1,...,T the RNN equations are

ag=Wh_ 1 +Ux¢+b
h; = tanh(a;)

o =Vh +c

Pt = softmax(oy)

a;=Why 1 +Ux;+b
hy = tanh(a,)

o, =Vh;+c¢

pt = softmax(o;)

Parameters of the network
Network’s output and hidden vectors w

weight matrix of size m x m applied to h¢_1 (hidden-to-hidden connection)

- @y hidden state at time ¢ of size m x 1 before non-linearity , |
¢ hidden state at tim ize m X 1 before non-linearity - U weight matrix of size m x d applied to x; (input-to-hidden connection)

- hy hidden state at time ¢ of size m x 1

- b bias vectos m x 1 in equation

= Oy output vector (of unnormalized o t at time ¢ of size C' x 1 -V weight matrix of size C x m applied to a; (hidden-to-output connectio

- Pt output probability vector at time ¢ of size C' x 1 - € bias vector of size C x 1 in equation for o
Character-level Character-level
language model language model
example example
Vocabulary: Vocabulary:
[helo] [he.l.o]
Example training Example training 5
sequence: sequence: input layer H ﬂ ﬂ H
“hello” “hello” 0

input chars:  “h" e - b

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016 | Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 19 8 Feb 2016




Character-level
language model
example

Vocabulary:
[h.e,l,0]

Example training
sequence:
“hello”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 20 8 Feb 2016

‘ht = tanh(Whnhi—1 + th$t)‘

hidden laye

input layer

input chars:

Extend this simple approach to full alphabet and punctuation

characters

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 21 8 Feb 2016

target chars: ‘e’ T G

output layer

T W_xh
0
0
1
)
=

T T
o
e =

input chars:

— RNN
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Sonnet 116 - Let me not .. atfirst: plia thirgd € o idoe ns,sntt  h ne etie h,hregtrs nigtike,oonemns Lng
by William Shakespeare | train more
“Tront thithey® fonesscerliund
et me ot o he mariage of ue minds Keushey. Thon
ediments. Love is not ove sheule, amerenith o sivh I lalterthend Blsipe shue {51 o asstrions
i s when It akeration finds, coaniogemc Phe Lisn thond hon at. MeiDinorotion in ther thiz
 bends with the remover to remove
0 nol s o ever- hed mark )
at looks on tempests and \s never shaken; J train more
el g vy i
 Jmose wors unkrowr, ough his helah b aken AT A G At e e ro (P s el e e R timale
Love Sv:‘l?‘l:‘;‘".: ;!’"d“”';SKKIE,'S°2:’L"‘;:;;'S:’M her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
ol o b s T e how, and Gogition 1s so overelical and ofter.
s it out even to the edge of doom.
R ooty i | train more
I never writ, nor no man ever loved.
“Why do what that day,* replied Natasha, and wishing to hinself the fact the
princess, Princess Mary was casier, fed in had oftened hin.

Pierre aking his soul came to the packs and drove up his father-in-law women.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 35 8 Feb 2016 | Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 36 8 Feb 2016

How do we train a vanilla RNN?

Alas, 1 think he shall be cone approached and the day

Whon 11ttle srain would bo attain'd into boing nover fed,
And who s but a chain and subjects of hia desth,

2 ahou1d not sieep.

Supervised learning via a loss function & mini-batch gradient
descent.

Loss defined for one training sequence.

Sacond sanator:
hey ace avey this produced upon ny soul,
i s s L B A AR e

The carth and thoughts of many statos.

e Have a sequence x;,X»,...,X, of input vectors.

CDEIED i o For each x; in sequence have a target output y;.
They vould be rulod atter thin chesbor, and

oy taix nuse bagun out of the fact, to be e,
Whous noble souls 11 have the heazt of the

o Define loss I; between the y; and p; for each t.

5o dzop upon your Lozdahip’s head, and your opinion

i S2411ib Sqbthayous hosdie: e Sum the loss over all time-steps
Come iz, T witl makn €1 bebold yous vrstip.
.
oy LOx1, oo Xr sy WU VD) = 3
1

ei Li & Andrej Karpathy & Justin Johnson Lecture 10- 37 8 Feb 2016




Loss function for a vanilla RNN Computational Graph for vanilla RNN loss
(e

Common to use the cross-entropy loss:

Iy = —log(y! 1)

thus
.
4 . (T
L(Xr, y1ir, WU,V byc) = = 3 log(y{ pr) + Loss for one labelled
=1 training sequence
where x1.- = {x1,..., %} and y1.r = {y1,..., Y-} . ;;s .v::;ors have been

e To implement mini-batch gradient descent need to compute omitted for clarity.

AL(X1r, Y1, W,U, V;b,€) OL(X1r, 41, W, U, Viby)
oW ’ ou ’

e You've guessed it, use back-prop...

Gradient of loss for the cross-entropy & softmax layers

Know from prior dealings with cross-entropy loss:

fort=1,..r
aL
oL _y
Ay
Back-prop for a vanilla RNN oL _oLdk _ vl
ope  dlop:  ylp:
9L _ 9L dp: vl

P di —pep}
Bor ~ Bp: 9o o ( iag(pt) — Ptpy )




Gradient of loss w.r.t. V

Children of node V' are 01,02, ...,0r. Thus

oL
dvec(V) &=

Know

or=Vh, = o = (IU ® h,T) vec(V)

ot "
= ——— =] h,
Bvec(v) ~ @M

From prior reshapings know:

AL~ ror
v = th hy
W

where g; = %.

Gradient of loss w.r.t. h,

Ty (st hidden statc) has one child o thus

L AL do-

oh,  Jo. dh,
Know

or =Vh, =

Thus

oL _ dL

oh; ~ do.

Gradient of loss w.r.t.

Children of node V are 01,02, ..., or. Thus

OL 0L 9oy
Dvec(V) ; o; dvec(V)

Know
or=Vhy = o = (10 ® h'[) vec(V)

01 .
00w
Fvec(v) e O
From prior reshapings know:
oL
= 251{? gradient needed for training network
=

where g, = 2L

Gradient of loss w.r.t. h;

If 1 <t <7 —1 then h¢ has children o; and a¢+1

L IL do, | L dai

= a— e+
Oh, ~ Do, Ohy | Oay; Ok
Know
do.
=Vh =
o .= oo
and
- da
a1 = Why +Uxipr = =l = W
¢
Thus

L 9L aL

oL _ oL W
Oh, ~ Do, darp




Recursively compute gra for all a; and h;

If 1 <t <7 —1 then h¢ has children o; and a1 The gradient w.r.t. ar

L IL 9hy

9L _ 9L dor AL dagy ) o
dag  Ihy day

Oh; Do Ob; | Gar: ohe

Know Know
dot Ohe .
—v Joe _y, h; = tanh 2 — diag (tanh’
or=Vhy = F =V ¢ = tanh(ar) = 7 = diag (tanh(ar))
= diag (1 — tanh®(a;))
and
a, Thus
are1 = Whe + Uxpyn = b —
ohy oL _ aL 2
I = o die (1~ tanh®(a0))
Thus ar ¢
oL oL oL
Ohe  dor | davn
Have two different time steps in expression =

must iterate backwards in time to compute all 25

adient of loss w.r.t. W

The gradient of the loss w.r.t. node W,

oL

® Assume £l calculated for 1 <t < 7. Children of W are ay,...a, thus

Iz
 Calculate aL oL _da
oL _ oL oL _ oL , Ovec(IV) Dar dvec(W)
= V& —= diag (1 — tanh?(a,
h, ~ dor B, ~ o, e (1~ anh(ar))
Know
o fort=7—17-2...,1
- Compute ap = Why_1 +Ux; = a; = (In ® h_)vec(W) + Ux;
dar T
: p ; =, @h
oL _ 0L, . oL = Bvec(W) ®hioy
ohy  doy Oari1
From prior reshapings know:
- Compute
5 p oL -
oL aL 2 == &lhi,
v Rmag (1 - tanh*(a;)) aw =
where g; = 2L



Gradient of loss w.r.t. W Gradient of loss w.r.t. U

The gradient of the loss w.r.t. node W. The gradient of the loss w.r.t. node U.

Children of W are ay,...a- thus Children of V are ay,...a, thus
L T OL  day

vec(U) £ Day vec(U)

IL T 9L da;
Avec(W) ; ay dvec(W)

Know Know

a;=Whi1 +Uxe = ar = Why_1 + (In ® x] vec(U)
day

a;=Why1 +Uxe = a¢ = (Im @i )vec(W) + Ux;
day

Im®x]
= Bvec(W ®x;

Iy ®hi_ —
®hi Bvec(U

From prior reshapings know: From prior reshapings know:

oL Z
i = D 8T i radient nesded o raiing nevork
1
where g; = 2L . where g, = 5L

Oa;

Gradient of loss w.r.t. U

The gradient of the loss w.r.t. node U’
Children of V are ay,...a, thus
oL oL _day
Ovec(U) Dar dvec(U)

=
RNNs in Translation Applications

Know

ay = Why_1 +Ux; = a; = Why_1 + (Inm ® x} )vec(U)
Y
dvec(U)

From prior reshapings know.

I ror
X7 gradient needed for training network
0 Z}gz g &
where gy = 2L

Da;



RNN-based Sentence Representation (Encoder)

o Given a sentence in on language translate it to another
language

o le chien sur la plage — Dog on the beach

\tlwwtlw' lwwtlwt
1-of-N encoding  1-of-N encoding 1-of-N encoding  1-of-N encoding 1-of-N encoding
of “le" of “chien” of “sur” of “la” of “plage”
. [Cho etal, “Learning Phrase Representations )
Encoder-Decoder Architecture iR treoderoecade o satstcal RNN-based Sentence Generation (Decoder)
P(nextwordis  P(nextwordis  P(nextwordis  P(nextword is
Contex “dog”) “on”) “the”) “beach”)

I-'_E>[

—| v

1-of-N encoding 1-of-N encoding 1-of-N encodlng 1-of-N encodlng

I i of i i

1-0f-N enco -of-N encoding » Model long-term information

f of “chien” of “sur” f X "
_




Image Captioning

IH

\ %ﬁﬂg
START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent C Networks for Visual
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 51 8 Feb 2016

test image

and Description, Donahue et al.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 52 8 Feb 2016

Recurrent Neural Network

TART “straw” “hat”

Convolutional Neural Network

test image

softmax



<START>

test image

test image

before:
h = tanh(Wxh * x + Whh * h)

now:

h = tanh(Wxh * x + Whh * h + Wih * v)

test image

test image

sample!

LECae |



test image

test image

| rcaose A
L SCAms ) W

<START>

conv512

[_eomv128 |
_come-128 |

test image

sample!

test image

sample
<END> token
=> finish.



[ -
‘consiruction worker in orange “two young gils are playing with boy s doing backflp on nworkerinrange “two young girs are playing wi
tis working on roac.” legotoy.” wakeboard. safe g on road. lego toy.

‘ayoung boy is holding a s ting on a couch with a
baseballbat remote control”

Evaluation of text translation results

e Tricky to do automatically! |mage Sentence Datasets

e Ideally want humans to evaluate

aman g a ke on it pth hough a orest.

ing i st in

- !~ &N
oy dong backflpon
wokcboord
a

!

ding in the middle
of aroad

- What do you ask? g a byl bl PO i e 1 1 Microsoft COCO

- Can't use human evaluation for validating models - too slow and
expensive.

o Use standard machine translation metrics instead

- BLEU

- ROUGE CIDER

- Meteor

amountan ber pups s e i colabraton.

currently:
~120K images
~5 sentences each

[Tsung-Yi Lin et al. 2014]
mscoco.org



Fo

gradient of loss

o Take a closer look at
L < o L
2 = E h! h ==
aw = 8 My where g; Da

depends on h;_; and gﬂL fort=1,...,7

Problem of exploding and vanishing gradients in an RNN
= &

o Let's take a closer look at %

® Denote ® Denote
L nd Diay) = diag(1 — tank?(ay) oL
8~ Jo, t) = diagl t Bo = o, and Dla) = diag(1  tanh’ (a,))
® Remember oL oL © Then you can show by recursive substitution that
BT,:g"’V — BTT:gQJD(av) P =t .
, i
and fort =7 —1,7-2,...,1: o, = 28V ([L o) |1
oL L oL oL _ oL o =
o =BV W and g = GDan) and

- it
Then you can show by recursive substitution that oL _ 3 gV ( rimt
==Y g,V T p@is) W
aat i=t ! k=0

0}. Zgo % (H Di(arsx) ) Wit
:

tikely has small values on diagonal
Why? Each matrix D(ayx) has tanh’(a; ) on its diagonal and
0 < tanh’(a) < 1. Thus (tanh'(a))~**1 is highly likely to have a small value

- ot
. even for not too large j —t + 1

o,V D(a Wit

Zg 3 (AUO ( '*”) = 2L only depends on first few entries in the sum

and
oL
da,




Focus on ~

® Denote

o, = % and Diay) = diag(1 — tanh*(a,))
e Then you can show by recursive substitution that
aL = .
on; = 28V (H Dacr) | W7
= r=r
and

on o [
5a = 2_ 8oV (I Dlae) u

potentially has very large or small values

Why?

Focus on
® Denote
aL )
Boi = 5o and  D(a;) = diag(1 — tanh®(a;))
® Then you can show by recursive substitution that

o < [ »
8—hl=2golv T p@iw | w
= i1

and

o -
5o > go,V | [1 D(acss) W
= i=o

potentially has very large or small values

Thus for sufficiently large j — ¢ either entries in 17" can explode or
vanish

Focus on W™

Remember W has size m x m.
Assume W is diagonalizable.
Let its eigen-decomposition be

W =QAQ"

where @ is orthogonal and A is a diagonal matrix containing the
eigenvalues of W.

Then
W =QA"Q"
Let Ar..... An be the e-values of W. Thus

- If A > 1 = AT will explode as n increases

S If A <1 = A 0 as n increases

)L
Summary on &=
Denote

and D(a;) = diag(1 — tanh®(a;))

Then you can show by recursive substitution that

- =
. o, V Di(a wit
=k, <E, [,m)

and
i
I Dlacs) | wi™t
k=0
If 17~ explodes for j —t > N = 2L explodes => J% explodes
If W7 vanishes for j —t > N
== $ only has contributions from nearby go,, where t <t <+ N
= JL is based on aggregation of gradients from subsets of temporally

nearby states.



ummary o

® Denote
go. = 2L and D(ar) = diag(1 — tanh(a))
9or
o Then you can show by recursive substitution that

/i:g.,j v (:Ij: D“M)) it Solution to Exploding & Vanishing Gradients

ga,v<1'[ D(n,m) witt
ko

o If W/ explodes for j — ¢ > N = 2L explodes —> 2% explodes

® If W/~" vanishes for j —t N
., oI

> only has contributions from nearby go,, where ¢ <t' <t + N

is based on aggregation of gradients from subsets of temporally

W
nearby states
— Cannot learn long-range dependencies between states.

* Gradient clipping o Solution 1: Initialize TV as the identity matrix as opposed a
Let G = 2L then random initialization.
) e
a- {HGHG iflGl =6 o Solution 2: Use ReLU instead of tanh as the non-linear
G otherwise activation function.

where 6 is some sensible threshold.

e A simple heuristic first introduced by Thomas Mikolov.

Dashed arrow shows what happens when the gradient is rescaled to a

fixed size when its norm is above a threshold



Easy partial solutions to vanishing gradients

o Solution 1: Initialize W as the identity matrix as opposed a
random initialization.

 Solution 2: Use ReLU instead of tanh as the non-linear
activation function. Long-Short-Term-Memories (LSTMs) - capturing long-range
dependencies

Still hard for an RNN to capture long-term dependencies

LSTMs Core Idea: Introduce a memory cell TMs Core Idea: Introduce a memory cell

High-level graphic of an RNN

® LSTMs similar to RNN but they introduce a memory cell state c;. High-level graphic of a LSTM

LSTMs similar to RNN but they introduce a memory cell state ¢;.

LSTMs have the ability to remove or add information to c¢; regulated by
structures called gates based on context.

Update of c; designed so gradients flows these nodes backward in time
easily.

c; then controls what information from h;—1 and x; and ¢ should be
used to generate h;.



LSTMs formal details LSTMs basic unit

© LSTMs (Hochreiter & Schmichuer, 1097) better at capturing long term
dependencies.

e Introduces gates to calculate hy, ¢; from ¢;—1,h;—; and x¢.

o Formal description of a LSTM unit:

i = o(Wixg + Uhy—1) g core
£ = o(Wyxe + Uphy_1) oo
o = o(Woxt + Uphy_1)  ouput/Exposure ace

& = tanh(Wex; + Uchy—1)  vew memory cel
ci=f;Ocio1+if ©C  Final memory cen
h; = o; ® tanh(c;)

where

- () is the sigmoid function and
- © denotes element by element multiplication.

LSTMs basic unit LSTMs basic unit

o New temporary memory: Use x;
and h¢_1 to generate new memory
that includes aspects of x;

o New temporary memory: Use x;
and h¢—1 to generate new memory
that includes aspects of x;

® Input gate: Use x; and h,; to
determine whether the temporary
memory & is worth preserving.




* New temporary memory: Use x;
and hy_1 to generate new memory
that includes aspects of x;

Input gate: Use x; and h_1 to
determine whether the temporary
memory & is worth preserving.

Forget gate: Assess whether the
past memory cell ¢;_1 should be
included in c;

New temporary memory: Use x;
and h¢—1 to generate new memory
that includes aspects of x;

Input gate: Use x; and h;_; to
determine whether the temporary
memory & is worth preserving

Forget gate: Assess whether the
past memory cell ¢;_; should be
included in c;.

Updated memory state: Use the
forget and input gates to combine
the new temporary memory and the
current memory cell state to get c;

Output gate: Decides which part
of ¢; should be exposed to hy.

Can go deep with LSTMs

LSTMs basic unit LSTMs basic unit

New temporary memory: Use x;
and hy_; to generate new memory
that includes aspects of x;

Input gate: Use x; and h;_1 to
determine whether the temporary
memory & is worth preserving.

Forget gate: Assess whether the
past memory cell ¢;—; should be
included in ¢t

Updated memory state: Use the
forget and input gates to combine
the new temporary memory and the
current memory cell state to get c;



Deep LSTM Network

Language Technologies Institute

Summary

RNNs allow a lot of flexibility in architecture design
Backward flow of gradients in RNN can explode or vanish.

Vanilla RNNs are simple but find it hard to learn long-term
dependencies.

Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

Common to use LSTMs: their additive interactions improve
gradient flow

Bi-directional LSTM Network




