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Recurrent Neural Networks (RNNs)

e RNNs are a family of networks for processing sequential data.

A RNN applies the same function recursively when traversing
network'’s graph structure.

RNN encodes a sequence x1,Xa, ..., X, into fixed length
hidden vector h...

The size of h; is independent of 7.

Amazingly flexible and powerful high-level architecture.



RNN with no outputs

]

e Graph displays processing of information for each time step.

e Information from input x is incorporated into state h.



RNN with no outputs

delay of 1 time step

/

e Graph displays processing of information for each time step.
e Information from input x is incorporated into state h.

e State h is passed forward in time.



RNN with no outputs
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Unrolled visualization of the RNN
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RNN: How hidden states generated

e Most recurrent neural networks have a function f
h; = f(ht—1,%¢;0)

that defines their hidden state over time where

- h; is the hidden state at time ¢ (a vector)
- X is the input vector at time ¢

- 0 is the parameters of f.



RNN: How hidden states generated

e Most recurrent neural networks have a function f
h; = f(ht—1,%¢;0)

that defines their hidden state over time where

- h; is the hidden state at time ¢ (a vector)
- X is the input vector at time ¢

- 0 is the parameters of f.

e 0O remains constant as ¢ changes.

Apply the same function with the same parameter values
at each iteration.



RNN with no outputs
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Unrolled visualization of the RNN
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RNN with outputs

delay of 1 time step

/

e Usually also predict an output vector at each time step



RNN with outputs
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Unrolled visualization of the RNN

e Usually also predict an output vector at each time step



Use cases of RNNs

Generation sreepgi?:fiir:aﬂon/ Encoding/decoding ~ Continuous

prediction
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[http://karpathy.github.io/2015/05/21/rnn-effectiveness/]
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Back to Vanilla RNN

e The state consists of a single hidden vector hy:
e Initial hidden state hg is assumed given.

e Fort=1,...,7 the RNN equations are

as = Wht_l + UXt +b
ht = tanh(at)
o;=Vh;+c

p: = softmax(oy)

Network’s input
- hg initial hidden state has size m x 1

- Xt input vector at time t has size d X 1



Vanilla RNN equations

e The state consists of a single hidden vector hy:
e Initial hidden state hy is assumed given.

e Fort=1,...,7 the RNN equations are

ay = Whtfl + Uxy +b
ht = tanh(at)
o;=Vh;+c
p: = softmax(oy)
Network’s output and hidden vectors

- a; hidden state at time t of size m x 1 before non-linearity

- h; hidden state at time t of size m x 1

- 04 output vector (of unnormalized log probabilities for each class) at time ¢ of size C' x 1

- P¢ output probability vector at time ¢ of size C' x 1



Vanilla RNN equations

e The state consists of a single hidden vector h:
e Initial hidden state hg is assumed given.
e Fort=1,...,T the RNN equations are
a=Why_1+Ux+b
h; = tanh(a;)
o, =Vh;+c
p: = softmax(o;)
Parameters of the network
- W weight matrix of size m x m applied to h;_1 (hidden-to-hidden connection)
- U weight matrix of size m x d applied to x; (input-to-hidden connection)
- b bias vector of size m x 1 in equation for a;
- V' weight matrix of size C' x m applied to a; (hidden-to-output connection)

- C bias vector of size C' x 1 in equation for o+



Character-level
language model
example RNN D=

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”
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Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training 3
sequence: input layer g
“hello” 0

input chars:  “h”
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Character-level
language model

ht = tanh(Wppht—1 + thﬂ?t)‘

example

Vocabulary: . 03 10 ol [0S
hidden layer | -0.1 0.3 -0.5 ——»| 0.9

[h,e,l,0] 0.9 0.1 03 07

- R R R "

Example training EE S n 5

sequence: input layer g a (1) (1)

“hello” L0 0 0 0
input chars:  “h” 4 r (i
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target chars: ‘e’ Gl Yr “o”

Character-level o = o 5
language model Lot B OB
example 4.1 .2 1.1 2.2
N N R (2
Vocabulary: . 03 10 ol [0S
hidden layer | -0.1 0.3 -0.5 ——»| 0.9
[h,e,l,0] 0.9 0.1 03 07
I . T 1 s
Xample training 7 5 8 5
sequence: input layer | g : .
“hello” L O | 0 0 0
input chars:  “h” “e” 4 &z
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Extend this simple approach to full alphabet and punctuation
characters
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Sonnet 116 - Let me not ...

by William Shakespeare

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
| never writ, nor no man ever loved.
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t f' t' tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astali f ogoh eoase rrranbyne ‘nhthnee e
atftirst. plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

{ train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.
{ train more
"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
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PANDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'1l drink it.

Fei-Fei Li & Andrej Karpathy & Justin Johnson

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
shall be against your honour.

Lecture 10 - 37
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How do we train a vanilla RNN?

Supervised learning via a loss function & mini-batch gradient
descent.

Loss defined for one training sequence.

e Have a sequence x1, X2, ...,X, of input vectors.
e For each x; in sequence have a target output y;.
e Define loss [; between the y; and p; for each ¢.

e Sum the loss over all time-steps

L(x1,. .y Xry Y1y Yrs W U, V. b, €) :th
t=1



Loss function for a vanilla RNN

Common to use the cross-entropy loss:

Iy = —log(y! pt)

thus

L(x1:7,y1:7, W, U, V, b, ) Zlog Y/ pt)

where x1.- = {x1,...,%x;} and y1.r = {y1,..., 9y}
e To implement mini-batch gradient descent need to compute

aL(Xlzfm Yi:7, m U, V7 b7 C) aL(X11T7 Yi:7, VV; U7 V7 b, C) o
oW ’ oUu ’

e You've guessed it, use back-prop...



Computational Graph for vanilla RNN loss

Softmax(p.)

® | oss for one labelled
training sequence
X1y.. . X7

® Bias vectors have been
omitted for clarity.



Back-prop for a vanilla RNN



Gradient of loss for the cross-entropy & softmax layers

Know from prior dealings with cross-entropy loss:

fort=1,...7
oL
= -1
Ol
oL _9Lok __ yi
Opt  Ols Opt yi pt
oL AL Op: v , T
o _ R 9Pt d _
Bor ~ Ot Bor YTpe ( iag(p+) ptpt)




Gradient of loss w.r.t. V

Children of node V' are 01,02,...,0,. Thus
OL <~ OL Do
dvec(V) £= 0o Ovec(V)

o1 =Vh, = o, = (Ic ® htT) vec(V)

aOt
Ovec(V)

=Ic®h!

From prior reshapings know:

OL <~ o
o th h;
ov =

oL

where g = Bor



Gradient of loss w.r.t. V

Children of node V' are 01,02,...,0,. Thus
L & OL Dot
dvec(V) £= 0o Ovec(V)

o1 =Vh, = o, = (Ic ® htT) vec(V)

aOt
Ovec(V)

=Ic®h!

From prior reshapings know:

OL X 1.1
_— = E g ht <— gradient needed for training network
ov
t=1
where g = oL

Doy’



Gradient of loss w.r.t. h

h, (\ast hidden state) has one child o, thus

0L  OL Odor
6h, Ho, dh,
Know
0 =Vh, — 207 _y
Oh,
Thus
oL oL

oh,  do,




Gradient of loss w.r.t. hy;

If 1 <t <7 —1 then hy has children ot and a¢41

OL _ 9L Oor 9L dar
8ht o (9075 8ht 8at+1 (91'1,5

Know
o =Vh — g—ﬁi =V
and
ar+1 = Why + Uxpp1 = % =
Thus
oL (9LV+ oL W

Bng - 67015 3at+1



radient of loss w.r.t. h;

If 1 <t <7 —1 then hy has children ot and a¢41

OL _ 9L Oor 9L dar
8ht o (9075 8ht 8at+1 (91'1,5

Know

doy
=Vhy —= — =V
ot ¢ ohy

and

Oaii1

=Wh, +U =
at41 t + Ux¢41 oh,

Thus

oL _ 0L, . 0L
aht - 6075 6at+1

Have two different time steps in expression —>
must iterate backwards in time to compute all C‘?}ﬁ




Gradient of loss w.r.t. a;

The gradient w.r.t. a;

oL _ oL oh
da;  Ohg day

Know

oh
h; = tanh(a;) = — = diag (tanh’(a¢))

Gat

= diag (1 — tanhQ(at))

Thus

oL oL
—— = ——diag (1 — tanh?
90, oh, |ag( an (at))




Recursively compute gradients for all a; and h;

oL

® Assume Do calculated for 1 <t < 7.

® Calculate

oL oL oL oL
\%4

oh.  do, da,  Oh,

diag (1 — tanhQ(aT))

® fort=7—1,7—2,...,1

- Compute

oL oL oL
=V

— = w
Ohy doy + dagy1

- Compute

oL oL
= ——diag (1 — tanh®
90, oh, iag ( an (at))



Gradient of loss w.r.t. W

The gradient of the loss w.r.t. node W.

Children of W are aj,...a, thus

oL " 9L  Oay

Ovec(W) = da; dvec(W)
Know

ar=Whi_1+Uxt = ar=[In ® htT_l)vec(W) + Ux¢
8at

=In®hi
Ovec(W) ©hi-

From prior reshapings know:

oL o
o § g hy
1214 =

oL

where g = Par



Gradient of loss w.r.t.

The gradient of the loss w.r.t. node W.

Children of W are aj,...a, thus

oL " 9L  Oay

Ovec(W) = da; dvec(W)
Know

ar=Whi_1+Uxt = ar=[In ® htT_l)vec(W) + Ux¢
8at

=In®hl
Ovec(W) ©hit

From prior reshapings know:

-
oL LT
= E g ht—l“ gradient needed for training network
ow
t=1
where g = OL

day ”



Gradient of loss w.r.t. U

The gradient of the loss w.r.t. node U.

Children of V are aj,...a, thus

oL < OL  Oay
dvec(U) — Oa; Ovec(U)

t

Know

a; =Whi_1 +Uxy = a; = Whe_1 + (Im ®xtT)vec(U)
8at

= ————— =1In T
Ovec(U) ©x

From prior reshapings know:

oL . o7
a7 = E 8 X¢
BU t=1

oL

where g = ba; -



Gradient of loss w.r.t. U

The gradient of the loss w.r.t. node U.

Children of V are aj,...a, thus

oL < OL  Oay
dvec(U) — Oa; Ovec(U)

t

Know

a; =Whi_1 +Uxy = a; = Whe_1 + (Im ®xtT)vec(U)
8at

= ————— =1In T
Ovec(U) ©x

From prior reshapings know:

ju
oL T
_— = E g; X; < gradient needed for training network
ou
t=1
where g = oL

day ”



RNNs in Translation Applications



Language translation

e Given a sentence in on language translate it to another
language

e le chien sur la plage — Dog on the beach



RNN-based Sentence Representation (Encoder)

| | | | | | | |
1-of-N encoding  1-of-N encoding 1-of-N encoding  1-of-N encoding 1-of-N encoding
of “le” of “chien” of “sur” of “la” of “plage”

Language Technologies Institute




[Cho et al., “Learning Phrase Representations

Encoder-Decoder Architecture = jnory ercoterpeceder of st

?
=
>

N e - | -

1-of-N encoding  1-of-N encoding 1-of-N encoding  1-of-N encoding 1-of-N encoding
of “le” of “chien” of “sur” of “la” of “plage”

Language Technologies Institute
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RNN-based Sentence Generation (Decoder)

P(nextwordis  P(nextwordis  P(nextword is P(next word is
“dog”) “on”) “the”) “beach”)

Context : :

vy
1
-

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding

of “START” of “dog” of “on” of “the”
» Model long-term information

Language Technologies Institute

ey | ey




Image Captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 51 8 Feb 2




Recurrent Neural Network

“straw” "-hat" END

START “straw” “hat”

Convolutional Neural Network

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 52 8 Feb 2016




test image




[ image | <
conv-64
conv-64

‘maxpool

test image

| conv-128

conv-128
‘maxpool

__conv-256

conv-256

. maxpool

| conv-512

conv-512
|_maxpool

| conv-512

| conv-512
' maxpool

|_FC-096 |
_ FC-4096
FC-1000

| softmax



[ image | <
conv-64
conv-64

‘maxpool

test image

| conv-128

conv-128
‘maxpool

__conv-256

conv-256

. maxpool

| conv-512

conv-512
|_maxpool

| conv-512

| conv-512
' maxpool

| FC-4096

| FC-4096

F 0
s0f X




[ image | <
conv-64
conv-64

‘maxpool

test image

| conv-128

conv-128
‘maxpool

__conv-256

conv-256

. maxpool

| conv-512

conv-512
|_maxpool

| conv-512

| conv-512

' maxpool

| FC-4096 ©
| _FC-4096 G

<START>



Wih

<ST.

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)



| conv-64

test image

| conv-64
| maxpool

|_conv-128

| conv-128

| _conv-512
. conv-512 Sample'
|_maxpool |
| conv-512
| conv-512

' maxpool

| FC-4096

RT>

<START>



test image

8
S
s
-
N
@

conv-256
. conv-256

. maxpool

| conv-512

conv-512
__maxpool
| conv-512

| conv-512

' maxpool

|_FC-4096 ST

<START>



| conv-64

test image

\ conv-64

| maxpool

conv-128 |

|_conv-128
|
|

‘maxpool
| _conv-256
| conv-256

. maxpool
| _conv-512
. conv-512 Sample!
| maxpool _
| conv-512
| conv-512
' maxpool

| FC-4096
| FC-4096

RT>

<START>



test image

| conv-512

conv-512

__maxpool

| conv-512

| conv-512

[
I

‘maxpool
| FC-4096

|_FC-4096 ST

<START>



conv-64

test image

conv-64
‘maxpool

conv-128

lconv-128 |
maxpool

conv-256

conv-256
‘maxpool

sample
<END> token
=> finish.

conv-512
conv-512

| maxpool

| conv-512

RT>

<START>



"man in black shirt is playing “construction worker in orange "two young girls are playing with "boy is doing backflip on
guitar." safety vest is working on road." lego toy." wakeboard.”



“construction worker in orange "two young girls are playing with "boy is doing backflip on
guitar." safety vest is working on road." lego toy." wakeboard.”

"a young boy is holding a ‘a cat is sitting on a couch witha  "a woman holding a teddy bearin  “a horse is standing in the middle
baseball bat." remote contral." front of a mirror." of aroad."



Evaluation of text translation results

e Tricky to do automatically!
e |deally want humans to evaluate
- What do you ask?
- Can’t use human evaluation for validating models - too slow and
expensive.
e Use standard machine translation metrics instead
- BLEU
- ROUGE CIDER

- Meteor



Image Sentence Datasets

a man riding a bike on a dirt path through a forest.
bicyclist raises his fist as he rides on desert dirt trail.

this dirt bike rider is smiling and raising his fist in triumph. .
a man riding a bicycle while pumping his fist in the air. M I Crosoft ‘ : O ‘ :O

a mountain biker pumps his fist in celebration.

[Tsung-Yi Lin et al. 2014]
MSCOC0.0rg

currently:
~120K images
~5 sentences each




Problem of exploding and vanishing gradients in an RNN



Focus on gradient of loss w.r.t. W

e Take a closer look at

OL <~ 1.7 oL
W ;gt h; ;| whereg; = Day
° = 8L depends on h;_; and 6L fort=1,...,7.

e Let's take a closer look at (%



Focus on 5
ag

® Denote
oL . 2
8o, = =—— and D(a;) = diag(l — tanh”(a;))
80,5
® Remember
oL L
=g, =go.VD(a,
oh, — 8V = g =8 VD(ar)
and fort=7—-1,7—2,...,1:
oL oL oL oL
—— =g, d —=—D
aht & tV+ 8at+1W an aat 8ht (at)

® Then you can show by recursive substitution that
oL p -
oh, > g,V <H D(at+k)> w7
j=t k=1
and

8L T j—t it
87315 = ZgojV HD(at-Hc) w
=t k=0



Focus on

e Denote
OL

g0, = =— and D(a;) = diag(1 — tanh®(a;))
80t

® Then you can show by recursive substitution that

Y = _
= v (I ot )
t o k=1
and

j—t
Bat Zgog (H D(at+k)> w7t
k=0

likely has small values on diagonal

Why? Each matrix D(a;4 ) has tanh’(a;4 ) on its diagonal and
0 < tanh’(a) < 1. Thus (tanh’(a))?~**1 is highly likely to have a small value

even for not too large j — ¢t + 1.

- g—i only depends on first few entries in the sum.

oL

0 at



Focus on 0
ag

e Denote

8o, = oL and D(a;) = diag(1 — tanh®(a;))
E)ot

® Then you can show by recursive substitution that
oL = -
oh, > 8,V <H D(at%)) Wt
j=t k=1
and

5L - j—t o
Day = Zgojv HD(atJrk) W
j=t

k=0 potentially has very large or small values

Why? ...



Al

Focus on W

® Remember W has size m x m.
® Assume W is diagonalizable.

® |et its eigen-decomposition be
W =QAQ"

where @ is orthogonal and A is a diagonal matrix containing the
eigenvalues of W.

® Then
Wn — QAnQT
® let A\i,..., Ay, be the e-values of W. Thus

- If X\i >1 = A} will explode as n increases.

- IfA\; <1 = A — 0 as n increases.



Focus on 0
At

e Denote

8o, = oL and D(a;) = diag(1 — tanh®(a;))
80t

® Then you can show by recursive substitution that

L & = -
h, > o,V | [I Dear) | W
j=t k=1
and

T j—t
8at Z go] <H D(at+k)> \WJ - L,
k=0

potentially has very large or small values

Thus for sufficiently large j — ¢ either entries in W7 ™" can explode or
vanish.



e Denote

8o, = oL and D(a;) = diag(1 — tanh®(a;))
80t

® Then you can show by recursive substitution that

T j—t .
= Vv D(a wi—t
ons > 8o, (kI;II ( t+k)>

and

e If W/t explodes for j —t > N = 2L L

oL
RrY explodes = &3 explodes.

o If W7~" vanishes for j —t > N

== (‘3: only has contributions from nearby go,, where ¢t < ' <t+ N
. oL

s Is based on aggregation of gradients from subsets of temporally
nearby states.



e Denote

8o, = 8L and D(a;) = diag(1 — tanh®(a;))
80t

® Then you can show by recursive substitution that

oL ZT: % j]:[tD( )| witt
_— = y a
Ohy j=tg J Ke1 ek
and
oL - j—t ,
- = .V D wi—t
ooy jgtg J (kl;[o (at+k)>
o If W7t explodes for j —t > N = 2L explodes = 2% explodes
. day oW :
e If W9~ vanishes for j —t > N
== 3—; only has contributions from nearby go,, where t <t' <t 4+ N
== ddT% is based on aggregation of gradients from subsets of temporally

nearby states.
— Cannot learn long-range dependencies between states.



Solution to Exploding & Vanishing Gradients



Easy solution to exploding gradients

¢ Gradient clipping

_ oL
Let G = gy then

o (G Gl =0
G otherwise

where 6 is some sensible threshold.

e A simple heuristic first introduced by Thomas Mikolov.

—2.0
. 26 —24 722
“ -2.8 ~26 jicofb

Dashed arrow shows what happens when the gradient is rescaled to a

fixed size when its norm is above a threshold.



Easy partial solutions to vanishing gradients

e Solution 1: Initialize W as the identity matrix as opposed a
random initialization.

e Solution 2: Use RelLU instead of tanh as the non-linear
activation function.



Easy partial solutions to vanishing gradients

e Solution 1: Initialize W as the identity matrix as opposed a
random initialization.

e Solution 2: Use RelLU instead of tanh as the non-linear
activation function.

Still hard for an RNN to capture long-term dependencies.



Long-Short-Term-Memories (LSTMs) - capturing long-range
dependencies



LSTMs Core Idea: Introduce a memory cell

High-level graphic of an RNN

® [ STMs similar to RNN but they introduce a memory cell state c;.



TMs Core Idea: Introduce a memory cell

High-level graphic of a LSTM
® L STMs similar to RNN but they introduce a memory cell state c;.

® LSTMs have the ability to remove or add information to c; regulated by
structures called gates based on context.

® Update of c¢; designed so gradients flows these nodes backward in time
easily.

® ¢, then controls what information from h;_; and x; and c;_1 should be
used to generate h;.



LSTMs formal details

° LSTMS (Hochreiter&Schmidhuer, 1997) better at Capturing |Ong term
dependencies.

e Introduces gates to calculate hy, c; from c;_1,h;_1 and x;.

e Formal description of a LSTM unit:

ip = o(Wixy + Uihy—1)  oput gore

f, = U(fot + Ufhtfl) Forget gate

oy = U(Woxt + Uohtfl) Output/Exposure gate
C; = tanh(WCXt + Uchtfl) New memory cell
¢, =f®Oci—1 +1i ®Ct  Final memory cell

h; = o; ® tanh(c;)

where

- o(-) is the sigmoid function and
- © denotes element by element multiplication.



LSTMs basic unit

Input gate

o © tanh(c)

fioe it
ci1

Forget gate



LSTMs basic unit

Input gate

® New temporary memory: Use x;
and h;_1 to generate new memory
that includes aspects of x+.

e +ioe o0 © tanh(ce)




LSTMs basic unit

Input gate

® New temporary memory: Use x;
and h;_1 to generate new memory
that includes aspects of x+.

® Input gate: Use x; and h;_; to
determine whether the temporary
memory C; is worth preserving.

e +ioe o0 © tanh(ce)




LSTMs basic unit

Input gate

® New temporary memory: Use x;
and h;_1 to generate new memory
that includes aspects of x+.

® Input gate: Use x; and h;_; to
determine whether the temporary
memory C; is worth preserving.

o Forget gate: Assess whether the

foe1thod 01 0 tanh(er) past memory cell c¢¢_; should be

included in c¢.



LSTMs basic unit

Input gate

® New temporary memory: Use x;
and h;_1 to generate new memory
that includes aspects of x+.

® Input gate: Use x; and h;_; to
determine whether the temporary
memory C; is worth preserving.

o Forget gate: Assess whether the

past memory cell c¢¢_; should be

e +ioe o0 © tanh(ce)

included in c¢.

e Updated memory state: Use the
forget and input gates to combine
the new temporary memory and the
current memory cell state to get c:.



LSTMs basic unit

Input gate

o0 © tanh(ce)

G

New temporary memory: Use x;
and h;_1 to generate new memory
that includes aspects of x+.

Input gate: Use x; and h;_; to
determine whether the temporary
memory C; is worth preserving.

Forget gate: Assess whether the
past memory cell c¢¢_; should be
included in c¢.

Updated memory state: Use the
forget and input gates to combine

the new temporary memory and the
current memory cell state to get c:.

Output gate: Decides which part
of ¢t should be exposed to hy.



Can go deep with LSTMs



Deep LSTM Network

a4 o
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Language Technologies Institute




Bi-directional LSTM Network

(v)
LSTMl’

34
Language Technologies Institute



e RNNs allow a lot of flexibility in architecture design
e Backward flow of gradients in RNN can explode or vanish.

e Vanilla RNNs are simple but find it hard to learn long-term
dependencies.

e Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

e Common to use LSTMs: their additive interactions improve
gradient flow



