
Dynamo: Amazon’s Highly 
Available Key-value Store 

ID2210-VT13

Slides by Tallat M. Shafaat



Dynamo

• An infrastructure to host services

• Reliability and fault-tolerance at massive scale

• Availability providing an ”always-on” experience

• Cost-effectiveness

• Performance

2



Context

• Amazon’s e-commerce platform
– Shopping cart served tens of millions requests, over 3 

million checkouts in a single day

• Unavailability == $$$

• No complex queries

• Managed system
– Add/remove nodes

– Security

– Byzantine nodes

3



CAP Theorem

• Only two possible at the same time

– Consistency

– Availability

– Partition-tolerance

• Dynamo, target applications:

– Availability and Parition-tolerance

– Eventual consistency

4



Clients view on Consistency

• Strong consistency. 

– Single storage image. After the update completes, any 
subsequent access will return the updated value. 

• Weak consistency. 

– The system does not guarantee that subsequent 
accesses will return the updated value.

– Inconsistency window. 

• Eventual consistency.

– Form of weak consistency

– If no new updates are made to the object, eventually 
all accesses will return the last updated value. 

5



Eventual consistency

• Causal consistency

• Read-your-writes consistency

• ... 

6

Consistent 
data

Inconsistent copy 2
Consistent 

data

R
ec

o
n

ci
lia

ti
o

n

Inconsistent copy 3

Inconsistent copy 1



Requirements

• Query model

– Simple read/write operations on small data items

• ACID properties

– Weaker consistency model

– No isolation, only single key updates

• Efficiency

– Tradeoff between performance, cost efficiency, 
availability and durability guarantees

7



Amazon Store Architecture

8



Design considerations

• Conflict resolution

– When

– Who

• Scalability

• Symmetry

• Decentralization

• Heterogeneity

9



The big picture

Easy usage Load-balancing Replication

High availability
Easy 

management
Failure-

detection

Eventual 
consistency

Scalability

10



Easy usage: Interface

• get(key)

– return single object or list of objects with conflicting 
version and context

• put(key, context, object)

– store object and context under key

• Context encodes system meta-data, e.g. version 
number

11



Data partitioning

• Based on consistent hashing

• Hash key and put on responsible node

0
1

2

15

14

13 3

12

11

4

5

6

9 8
7

10

12



Load balancing

• Load

– Storage bits

– Popularity of the item

– Processing required to serve the item

– … 

• Consistent hashing may lead to imbalance

13



Load imbalance (1/5)

• Node identifiers may not be balanced

14



Load imbalance (2/5)

• Node identifiers may not be balanced

15



Load imbalance (3/5)

• Node identifiers may not be balanced

• Data identifiers may not be balanced

- node

- data

16



Load imbalance (4/5)

• Node identifiers may not be balanced

• Data identifiers may not be balanced

• Hot spots

britney.mp3

- node

- data

tallat-song1.mp3

tallat-song2.mp3

tallat-song3.mp3

tallat-song4.mp3

17



Load imbalance (5/5)

• Node identifiers may not be balanced

• Data identifiers may not be balanced

• Hot spots

• Heterogeneous nodes

- node

- data

18



Load balancing via Virtual Servers

• Each physical node picks multiple random 
identifiers
– Each identifier represents a virtual server

– Each node runs multiple virtual servers

• Each node responsible for noncontiguous regions

19



Virtual Servers

• How many virtual servers?
– For homogeneous, all nodes run log N virtual servers

– For heterogeneous, nodes run clogN virtual servers, 
where ‘c’ is
• small for weak nodes

• large for powerful nodes

• Move virtual servers from 

heavily loaded physical 

nodes to lightly loaded 

physical nodes

20



Replication

• Successor list replication

– Replicate the data of your N closest neighbors for a 
replication factor of N

0
1

2

15

14

13 3

12

11

4

5

6

9 8
7

10

Data: 12, 13, 14, 15, 0

Data: 1, 2, 3

Data: 4, 5

Data: 11

Data: 6, 7, 8, 9, 10

Node 0

Node 0

Node 0

Node 3

Node 3

Node 3

Node 5

Node 5

Node 5

Node 11 Node 10

Node 11

Node 10

Node 10Node 11

21



The big picture

Easy usage Load-balancing Replication

High availability
Easy 

management
Failure-

detection

Eventual 
consistency

Scalability

22



Data versioning (1/3)

• Eventual consistency, updates propagated 
asynchronously

• Each modification is a new and immutable 
version of the data
– Multiple versions of an object

• New versions can subsume older versions
– Syntactic reconciliation

– Semantic reconciliation

23



Data versioning (2/3)

• Version branching due to failures, network 
partitions, etc.

• Target applications aware of multiple versions

• Use vector clocks for capturing causality
– If causal, older version can be forgotten

– If concurrent, conflict exists requiring reconciliation

• A put requires a context, i.e. which version to 
update

24



Data versioning (3/3)

• Client C1 writes new object

– say via Sx

• C1 updates the object

– say via Sx

• C1 updates the object

– say via Sy

• C2 reads D2 and updates 
the object

– Say via Sz

• Reconciliation

write handled by Sx

D1 ([Sx,1])

write handled by Sx

D2 ([Sx,2])

D3 ([Sx,2], [Sy,1])

write handled by Sy

D4 ([Sx,2], [Sz,1])

write handled by Sz

D5 ([Sx,3], [Sy,1], [Sz,1])

reconsiled and written by Sx

25



Execution of operations

• put and get operations

• Client can send the request

– to the node responsible for the data

• Save on latency, code on client

– to a generic load balancer

• Extra hop

26



Quorum systems

• R / W : minimum number of nodes that must 
participate in a successul read / write

• R + W > N (overlap)

R=3, W=3, N=5 R=4, W=2, N=5

27



put (key, value, context)

• Coordinator generates new vector clock and 
writes the new version locally

• Send to N nodes

• Wait for response from W-1 nodes

• Using W=1

– High availability for writes

– Low durability

28



(value, context)  get (key)

• Coordinator requests existing versions from N

• Wait for response from R nodes

• If multiple versions, return all versions that are 
causally unrelated

• Divergent versions are then reconciled

• Reconciled version written back

• Using R=1

– High performance read engine

29



The big picture

Easy usage Load-balancing Replication

High availability
Easy 

management
Failure-

detection

Eventual 
consistency

Scalability

30



Handling transient failures

• A managed system

• Which N nodes to update?

• Say A is unreachable

• ’put’ will use D

• Later, D detects A is alive
– send the replica to A

– remove the replica

• Tolerate failure of a data center 
– Each object replicated across multiple 

data centers

1

1

1

A
B

C

D
1’

1’

1’

1’

31



Handling permanent failures (1/2)

• Anti-entropy for replica synchronization

• Use Merkle trees for fast inconsistency detection 
and minimum transfer of data

1 5 Data items: D2, D3, D4, D5

D2 D3 D4 D5

Hash Hash Hash Hash

Hash Hash

Hash

32



Handling permanent failures (2/2)

• Nodes maintain Merkle tree of each key range

• Exchange root of Merkle tree to check if the key 
ranges are up-to-date

33

1

1

1

A
B

C

1’

1’



Quorums under failures systems

• Due to partitions, quorums might not exist

• Create transient replicas

• Reconcile after partition heals

R=3, W=3, N=5

34



Membership

• A managed system

– Administrator explicitly adds and removes nodes

• Receiving node stores changes with time stamp

• Gossiping to propagate membership changes

– Eventually consistent view

– O(1) hop overlay

• log(n) hops, e.g. n=1024, 10 hops, 50ms/hop, 500ms

35



Failure detection

• Passive failure detection

– Use pings only for detection from failed to alive

– A detects B as failed if it doesnt respond to a message

– A periodically checks if B is alive again

• In the absense of client requests, A doesn’t need 
to know if B is alive

– Permanent node additions and removals are explicit

36



Adding nodes

• A new node X added to system

• X is assigned key ranges w.r.t. its virtual servers

• For each key range, it transfers the data items

Data: (A, X]

Data: (A, B]

Data: (B, C]

Node GNode A

Node ANode B

Data: (C, D]

Node BNode C

C

D

A

G

F

E

B

Node GNode A

X=B\(X,B)
B=B\(A,X)
Drop A

X=Data\(X,B)
Data=Data\(A,X)
Drop G

X

37



Removing nodes

• Reallocation of keys is a reverse process of adding 
nodes

38



Implementation details

• Local persistence

– BDS, MySQL, etc.

• Request coordination

– Read operation

• Create context

• Syntactic reconciliation

• Read repair

– Write operation

• Read-your-writes

39



Evaluation

40



Evaluation

41



Partitioning and placement (1/2)

• Data ranges are not fixed

– More time spend to locate items

– More data storage needed for indexing

• Inefficient bootstrapping

• Difficult to archive the whole data

C

D

A

G

F

E

BH

42



Partitioning and placement (2/2)

• Divide data space into equally sized ranges

• Assign ranges to nodes

C

D

A

G

F

E

BH

43



Versions of an item

• Reason

– Node failures, data center failures, network partitions

– Large number of concurrent writes to an item

• Occurence

– 99.94 % one version

– 0.00057 % two versions

– 0.00047 % three versions

– 0.00009 % four versions

• Evaluation: versioning due to concurrent writes

44



Client vs Server coordination

• Read requests coordinated by any Dynamo node

• Write requests coordinated by a node replicating 
the data item

• Request coordination can be moved to client

– Use libraries

– Reduces latency by saving one hop

– Client library updates view of membership periodically

45



End notes

Peer-to-peer techniques have been the key 
enablers for building Dynamo:

• ”... decentralized techniques can be combined to 
provide a single highly-available system.”

46



References

• Dynamo: amazon's highly available key-value 
store, Giuseppe DeCandia et. al., SOSP 2007.

• Bigtable: A Distributed Storage System for 
Structured Data, Fay Chang et. al., OSDI 2006.

• Casandra - http://cassandra.apache.org/ 

• Eventual consistency - http://www.allthingsdistri 
buted.com/ 2008/12/eventually_consistent.html

• Key values stores, No SQL

47


