Interactive Theorem Proving (ITP) Course
Parts VII, VIII

Thomas Tuerk (tuerk@kth.se)
KTH

Academic Year 2016/17, Period 4

version 5056611 of Wed May 3 09:55:18 2017

65/123

Part VII

Backward Proofs

66 /123

Motivation |

@ let's prove 'A B. A /\ B <=>B /\ A

(* Show |- A /\ B ==>B /\ A %)

val thmia = ASSUME ‘‘A /\ B‘¢;

val thmlb = CONJ (CONJUNCT2 thmia) (CONJUNCT1 thmila);
val thmil DISCH ‘A /\ B‘¢ thmlb

(* Show |- B /\ A ==> A /\ B *)

val thm2a = ASSUME ‘‘B /\ A¢¢;
val thm2b = CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);
val thm2 = DISCH ‘‘B /\ A‘‘ thm2b

(* Combine to get |- A /\ B <=> B /\ A %)
val thm3 = IMP_ANTISYM_RULE thml thm2

(¥ Add quantifiers x)

val thm4 = GENL [€‘A:bool‘‘, ‘‘B:bool‘‘] thm3

@ this is how you write down a proof
o for finding a proof it is however often useful to think backwards

67 /123

Motivation |l - thinking backwards

@ we want to prove
» '1AB. A/\B<=>B/\A
@ all-quantifiers can easily be added later, so let's get rid of them
» A /\ B<=>B/\A
@ now we have an equivalence, let's show 2 implications
» A /\B==>B/\A
»B/\NA==>A/\B
@ we have an implication, so we can use the precondition as an
assumption

» using A /\ BshowB /\ A
» A /\B==>B/\A

68 /123

Motivation Il - thinking backwards

@ we have a conjunction as assumption, let's split it
> using A and B show B /\ A
» A /\B==>B/\A
we have to show a conjunction, so let's show both parts
» using A and B show B
» using A and B show A
» A /\ B==>B/\A
the first two proof obligations are trivial
» A /\B==>B/\A

@ we are done

69 /123

Motivation IV

@ common practise

» think backwards to find proof
» write found proof down in forward style

@ often switch between backward and forward style within a proof
Example: induction proof
» backward step: induct on ...
» forward steps: prove base case and induction case
@ whether to use forward or backward proofs depend on
» support by the interactive theorem prover you use
* HOL 4 and close family: emphasis on backward proof
* Isabelle/HOL: emphasis on forward proof
* Coq : emphasis on backward proof
» your way of thinking
> the theorem you try to prove

70 /123

HOL Implementation of Backward Proofs

e in HOL

» proof tactics / backward proofs used for most user-level proofs
» forward proofs used usually for writing automation
@ backward proofs are implemented by tactics in HOL

» decomposition into subgoals implemented in SML
» SML datastructures used to keep track of all open subgoals
» forward proof used to construct theorems

@ to understand backward proofs in HOL we need to look at

» goal — SML datatype for proof obligations
» goalStack — library for keeping track of goals
» tactic — SML type for functions performing backward proofs

71/123

Goals

@ goals represent proof obligations, i.e. theorems we need /want to prove
@ the SML type goal is an abbreviation for term list * term

@ the goal ([asm_1, ..., asmn], c) records that we need/want to
prove the theorem {asm_1, ..., asmn} |- ¢

Example Goals

Goal Theorem

([((A({, ((th]’ ”A /\ B(z) {A, B} |—A/\B
([((B(t’ ((A((]’ ((A /\ B(() {A, B} |_ A /\ B
(LB /\ AT, ““A /\ BY) {B/\ A} |I-A/\B

(1, ““@/\NA) =>QA/N\B) |- @B/ A =>(A/\B)

v

72 /123

Tactics

@ the SML type tactic is an abbreviation for

the type goal -> goal list * validation
@ validation is an abbreviation for thm list -> thm
@ given a goal, a tactic

» decides into which subgoals to decompose the goal
» returns this list of subgoals
» returns a validation that

* given a list of theorems for the computed subgoals
* produces a theorem for the original goal

@ special case: empty list of subgoals
» the validation (given [1) needs to produce a theorem for the goal

@ notice: a tactic might be invalid

73 /123

Tactic Example — CONJ_TAC

t =conjl /\ conj2
MN=p AlFg asl F conj1 asl F conj2

CONJ
FTUAFpPp A g aslF t

val CONJ_TAC: tactic = fn (asl, t) =>

let

val (conjl, conj2) = dest_conj t
in

([(asl, conj1), (asl, conj2)],

fn [thl, th2] => CONJ thl th2 | _ => raise Match)
end

handle HOL_ERR _ => raise ERR "CONJ_TAC" ""

74 /123

Tactic Example — EQ_TAC

t = 1lhs = rhs
asl 1hs ==> rhs

N-p=—=gq
AF-qg=1p asl F rhs ==> lhs
—— IMP_ANTISYM_RULE
FTUAFp=gq aslkF t

val EQ_TAC: tactic = fn (asl, t) =>

let
val (lhs, rhs) = dest_eq t
in
([(asl, mk_imp (1lhs, rhs)), (asl, mk_imp (rhs, 1lhs))],
fn [thl, th2] => IMP_ANTISYM_RULE thi th2
| => raise Match)

end
handle HOL_ERR _ => raise ERR "EQ_TAC" ""

75

123

proofManagerLib / goalStack

@ the proofManagerLib keeps track of open goals

@ it uses goalStack internally
@ important commands

» g — set up new goal

» e — expand a tactic

> p — print the current status

> top_thm — get the proved thm at the end

76 /123

Tactic Proof Example |

Previous Goalstack

User Action
g ‘'AB. A/\ B<=>B/\ A

New Goalstack
Initial goal:

'AB. A/\NB<=>B/\A

: proof

u]
o)
I

i
it

77/123

Tactic Proof Example Il

Previous Goalstack
Initial goal:

1A B. A/\B<=>B/\A

: proof

User Action
e GEN_TAC;
e GEN_TAC;

New Goalstack
A /\B<=>B/\A

: proof

v

78 /123

Tactic Proof Example Il

Previous Goalstack
A /\B<=>B/\A

: proof

User Action
e EQ_TAC,;

New Goalstack
B/\ A==>A/\B

A/\NB==>B/\A

: proof

79/123

Tactic Proof Example IV

Previous Goalstack
B/\ A==>A/\B

A /\ B==>B /\ A : proof

User Action
e STRIP_TAC;

New Goalstack
B /\ A

80/123

Tactic Proof Example V

Previous Goalstack
B /\ A

0. A
1. B

User Action
e CONJ_TAC;

New Goalstack

A
0. A
1. B
B
0. A
1. B

81/123

Tactic Proof Example VI

Previous Goalstack

A

0 A

1 B
B

0 A

1 B

4

User Action

e (ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘));
e (ACCEPT_TAC (ASSUME ‘‘A:bool‘‘));

New Goalstack
B/\A==>4/\B

: proof

v

82/123

Tactic Proof Example VII

Previous Goalstack
B /\ A ==>4 /\B

: proof

User Action

e STRIP_TAC;
e (ASM_REWRITE_TAC[]);

New Goalstack

Initial goal proved.
|- 'AB. A/\ B <=>B/\A:
proof

D Q>

83/123

Tactic Proof Example VIII

Previous Goalstack

Initial goal proved.
|- 'AB. A/\ B<=>B/\ A:
proof

User Action
val thm = top_thm();

Result

val thm =
|- 'AB. A/\ B<=>B/\A:
thm

u]
o)
I
i
it

Qe

84 /123

Tactic Proof Example IX

Combined Tactic

val thm = prove (‘“!A B. A /\ B <=> B /\ A¢‘,
GEN_TAC >> GEN_TAC >>
EQ_TAC >| [
STRIP_TAC >>
STRIP_TAC >| [
ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘),
ACCEPT_TAC (ASSUME ¢‘A:bool‘‘)
1,

STRIP_TAC >>
ASM_REWRITE_TAC[]
D;

Result

val thm =
|- 'AB. A /\ B<=>B/\A:
thm

85/

123

Tactic Proof Example X

Cleaned-up Tactic

val thm = prove (‘‘!'A B. A /\ B <=>B /\ A‘‘,
REPEAT GEN_TAC >>
EQ_TAC >> (
REPEAT STRIP_TAC >>
ASM_REWRITE_TAC []

)); 4
Result
val thm =
|- 'A B. A/\ B<=>B/\A:
thm)

86 /123

Summary Backward Proofs

@ in HOL most user-level proofs are tactic-based

» automation often written in forward style
> low-level, basic proofs written in forward style
> nearly everything else is written in backward (tactic) style

@ there are many different tactics

@ in the lecture only the most basic ones will be discussed
@ you need to learn about tactics on your own

» good starting point: Quick manual
> learning finer points takes a lot of time
> exercises require you to read up on tactics

@ often there are many ways to prove a statement, which tactics to use
depends on
» personal way of thinking
> personal style and preferences
» maintainability, clarity, elegance, robustness
>

87 /123

Part VIII

Basic Tactics

88 /123

Syntax of Tactics in HOL

@ originally tactics were written all in capital letters with underscores
Example: ALL_TAC

@ since 2010 more and more tactics have overloaded lower-case syntax
Example: all _tac

@ sometimes, the lower-case version is shortened
Example: REPEAT, rpt

@ sometimes, there is special syntax
Example: THEN, \\, >>
@ which one to use is mostly a matter of personal taste
all-capital names are hard to read and type
however, not for all tactics there are lower-case versions

>
» mixed lower- and upper-case tactics are even harder to read
» often shortened lower-case name is not speaking

v

In the lecture we will use mostly the old-style names.

89 /123

Some Basic Tactics

GEN_TAC
DISCH_TAC
CONJ_TAC
STRIP_TAC

DISJ1_TAC
DISJ2_TAC
EQ_TAC
ASSUME_TAC thm
EXISTS_TAC term

remove outermost all-quantifier

move antecedent of goal into assumptions

splits conjunctive goal

splits on outermost connective (combination
of GEN_TAC, CONJ_TAC, DISCH_TAC, ...)

selects left disjunct

selects right disjunct

reduce Boolean equality to implications

add theorem to list of assumptions

provide witness for existential goal

90 /123

Tacticals

@ tacticals are SML functions that combine tactics to form new tactics
@ common workflow

» develop large tactic interactively

» using goalStack and editor support to execute tactics one by one
» combine tactics manually with tacticals to create larger tactics

» finally end up with one large tactic that solves your goal

> use prove or store_thm instead of goalStack

@ make sure to clearly mark proof structure by e. g.

> use indentation

> use parentheses

> Uuse appropriate connectives
>

@ goalStack commands like e or g should not appear in your final proof

91/123

Some Basic Tacticals

tacl >> tac2 THEN, \\ applies tactics in sequence

tac >| tacL THENL applies list of tactics to subgoals

tacl >- tac2 THEN1 applies tac2 to the first subgoal of tacl
REPEAT tac rpt repeats tac until it fails

NTAC n tac apply tac n times

REVERSE tac reverse reverses the order of subgoals

tacl ORELSE tac2 applies tacl only if tac2 fails

TRY tac do nothing if tac fails

ALL_TAC all tac do nothing

NO_TAC fail

92 /123

Basic Rewrite Tactics

@ (equational) rewriting is at the core of HOL's automation

o we will discuss it in detail later
@ details complex, but basic usage is straightforward
> given a theorem rewr_thm of form |- P x = Q xand aterm t
> rewriting t with rewr_thm means
» replacing each occurrence of a term P ¢ for some c with Q cint
@ warning: rewriting may loop
Example: rewriting with theorem |- X <=> (X /\ T)

REWRITE_TAC thms rewrite goal using equations found
in given list of theorems

ASM_REWRITE_TAC thms in addition use assumptions

ONCE_REWRITE_TAC thms rewrite once in goal using equations

ONCE_ASM REWRITE TAC thms rewrite once using assumptions

93 /123

Case-Split and Induction Tactics

Induct_on ‘term’
Induct

Cases_on ‘term’
Cases
MATCH_MP_TAC thm
IRULE_TAC thm

induct on term
induct on all-quantor
case-split on term
case-split on all-quantor

apply rule
generalised apply rule

94 /123

Assumption Tactics

POP_ASSUM thm-tac use and remove first assumption
common usage POP_ASSUM MP_TAC

PAT_ASSUM term thm-tac use (and remove) first
also PAT_X_ASSUM term thm-tac assumption matching pattern

WEAKEN_TAC term-pred removes first assumption
satisfying predicate

95 /123

Decision Procedure Tactics

@ decision procedures try to solve the current goal completely
@ they either succeed of fail
@ no partial progress

@ decision procedures vital for automation

TAUT_TAC propositional logic tautology checker
DECIDE_TAC linear arithmetic for num

METIS_TAC thms first order prover
numLib.ARITH_TAC Presburger arithmetic
intLib.ARITH.TAC uses Omega test

96 /123

Subgoal Tactics

@ it is vital to structure your proofs well

» improved maintainability
» improved readability
» improved reusability
> saves time in medium-run

o therefore, use many small lemmata

@ also, use many explicit subgoals

‘term-frag’ by tac show term with tac and
add it to assumptions
‘term-frag’ sufficies by tac show it sufficies to prove term

97 /123

Term Fragments / Term Quotations

notice that by and sufficies_ by take term fragments

term fragments are also called term quotations

they represent (partially) unparsed terms

parsing takes time place during execution of tactic in context of goal
this helps to avoid type annotations

however, this means syntax errors show late as well

the library Q defines many tactics using term fragments

98 /123

Importance of Exercises

here many tactics are presented in a very short amount of time

there are many, many more important tactics out there

few people can learn a programming language just by reading manuals
similar few people can learn HOL just by reading and listening

you should write your own proofs and play around with these tactics

solving the exercises is highly recommended
(and actually required if you want credits for this course)

99 /123

Tactical Proof - Example | - Slide 1

@ we want to prove !1. LENGTH (APPEND 1 1) = 2 * LENGTH 1
o first step: set up goal on goalStack

@ at same time start writing proof script

Proof Script

val LENGTH_APPEND_SAME = prove (
€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,

Actions
@ rung ‘‘!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢
@ this is done by hol-mode

@ move cursor inside term and press M-h g
(menu-entry HOL - Goalstack - New goal)

100 /123

Tactical Proof - Example | - Slide 2

Current Goal
11. LENGTH (1 ++ 1) = 2 * LENGTH 1

@ the outermost connective is an all-quantor
@ let's get rid of it via GEN_TAC

Proof Script
val LENGTH_APPEND_SAME = prove (

€“11. LENGTH (1 ++ 1) = 2 * LENGTH 1°¢,
GEN_TAC

Actions
@ run e GEN_TAC
@ this is done by hol-mode

@ mark line with GEN_TAC and press M-h e
(menu-entry HOL - Goalstack - Apply tactic)

v

101 /123

Tactical Proof - Example | - Slide 3

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

@ LENGTH of APPEND can be simplified

@ let’s search an appropriate lemma with DB.match

Actions
@ run DB.printmatch [] ¢‘LENGTH (_ ++)¢
@ this is done via hol-mode

@ press M-h m and enter term pattern
(menu-entry HOL - Misc - DB match)

@ this finds the theorem listTheory.LENGTH APPEND
|- '11 12. LENGTH (11 ++ 12) = LENGTH 11 + LENGTH 12

102 /123

Tactical Proof - Example | - Slide 4

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

o let's rewrite with found theorem listTheory.LENGTH_APPEND

Proof Script

val LENGTH_APPEND_SAME = prove (

€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
@ connect the new tactic with tactical >> (THEN)

@ use hol-mode to expand the new tactic

103 /123

Tactical Proof - Example | - Slide 5

Current Goal
LENGTH 1 + LENGTH 1 = 2 *x LENGTH 1 J

@ let's search a theorem for simplifying 2 * LENGTH 1
@ prepare for extending the previous rewrite tactic

Proof Script

val LENGTH_APPEND_SAME = prove (

€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
@ DB.match finds theorem arithmeticTheory.TIMES2

@ press M-h b and undo last tactic expansion
(menu-entry HOL - Goalstack - Back up)

v

104 /123

Tactical Proof - Example | - Slide 6

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

@ extend the previous rewrite tactic
o finish proof

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
GEN_TAC >>
REWRITE_TAC[1listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Actions
@ add TIMES?2 to the list of theorems used by rewrite tactic

@ use hol-mode to expand the extended rewrite tactic

@ goal is solved, so let's add closing parenthesis and semicolon

v

105 /123

Tactical Proof - Example | - Slide 7

@ we have a finished tactic proving our goal
@ notice that GEN_TAC is not needed
@ let's polish the proof script

Proof Script

val LENGTH_APPEND_SAME = prove (
¢“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Polished Proof Script

val LENGTH_APPEND_SAME = prove (
€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

106 /123

Tactical Proof - Example Il - Slide 1

let’'s prove something slightly more complicated

drop old goal by pressing M-h d
(menu-entry HOL - Goalstack - Drop goal)

set up goal on goalStack (M-h g)

@ at same time start writing proof script

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!xl x2 x3 11 12 13.

(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
~(ALL_DISTINCT (11 ++ 12 ++ 13)) ‘¢,

107 /123

Tactical Proof - Example Il - Slide 2

Current Goal

Ix1l x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>
“ALL_DISTINCT (11 ++ 12 ++ 13)

@ let's strip the goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!xl x2 x3 11 12 13.

(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
“(ALL_DISTINCT (11 ++ 12 ++ 13))°‘¢,

REPEAT STRIP_TAC

108 /123

Tactical Proof - Example Il - Slide 2

Current Goal

Ixl x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>
“ALL_DISTINCT (11 ++ 12 ++ 13)

@ let's strip the goal

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
REPEAT STRIP_TAC

Actions
@ add REPEAT STRIP_TAC to proof script

@ expand this tactic using hol-mode

v

109 /123

Tactical Proof - Example Il - Slide 3

Current Goal

0. MEM x1 11
1. MEM x2 12
2. MEM x3 13
3 x1 <= x2

x2 <= x3
x3 <= SUC x1
ALL_DISTINCT (11 ++ 12 ++ 13)

@ oops, we did too much, we would like to keep ALL_DISTINCT in goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...°¢°¢,
REPEAT GEN_TAC >> STRIP_TAC

Actions

@ undo REPEAT STRIP_TAC (M-h b)

@ expand more fine-tuned strip tactic

v

110 /123

Tactical Proof - Example Il - Slide 4

Current Goal
“ALL_DISTINCT (11 ++ 12 ++ 13)

0. MEM x1 11 3. x1 <= x2

1. MEM x2 12 4. x2 <= x3

2. MEM x3 13 5. x3 <= SUC x1
@ now let's simplify ALL_DISTINCT

@ search suitable theorems with DB.match

@ use them with rewrite tactic

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[1listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND]

111 /123

Tactical Proof - Example Il - Slide 5

Current Goal
~((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ !e. MEM e 11 ==> “MEM e 12) /\
ALL_DISTINCT 13 /\ 'e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)

0. MEM x1 11 3. x1 <= x2
1. MEM x2 12 4. x2 <= x3
2. MEM x3 13 5. x3 <= SUC x1

@ from assumptions 3, 4 and 5 we know x2 = x1 \/ x2 = x3

@ let's deduce this fact by DECIDE_TAC

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,

REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>

“(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC

112 /123

Tactical Proof - Example Il - Slide 6

Current Goals — 2 subgoals, one for each disjunct
~((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ l'e. MEM e 11 ==> “MEM e 12) /\
ALL_DISTINCT 13 /\ !e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)
0. MEM x1 11 4. x2 <= x3
1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6a. x2 = x1
3. x1 <= x2 6b. x2 = x3

@ both goals are easily solved by first-order reasoning
@ let's use METIS_TAC[] for both subgoals

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC >> (

METIS_TAC[]
));

113 /123

Tactical Proof - Example Il - Slide 7

Finished Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (
““1x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==
~“(ALL_DISTINCT (11 ++ 12 ++ 13))°°,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC [listTheory .ALL_DISTINCT_APPEND, listTheory. MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC >> (
METIS_TAC[]
)

@ notice that proof structure is explicit

@ parentheses and indentation used to mark new subgoals

114 /123

Part IX

Induction Proofs

115 /123

Mathematical Induction

@ mathematical (a. k. a. natural) induction principle:
If a property P holds for 0 and P(n) implies P(n+ 1) for all n,
then P(n) holds for all n.

@ HOL is expressive enough to encode this principle as a theorem.
|- 'P. PO /\ (!n. Pn==>P (SUCn)) ==> !n. Pn

@ Performing mathematical induction in HOL means applying this
theorem (e. g. via HO_MATCH_MP_TAC)

@ there are many similarish induction theorems in HOL

@ Example: complete induction principle

|- 'P. (In. (!m. m <n==>Pm) ==>Pn) ==> In. Pn

116 /123

Structural Induction Theorems

structural induction theorems are an important special form of
induction theorems

they describe performing induction on the structure of a datatype
Example: |- 'p. P [0 /\ (1t. Pt ==> th. P (h::t)) ==> !1. P 1
structural induction is used very frequently in HOL

for each algabraic datatype, there is an induction theorem

117 /123

Other Induction Theorems

@ there are many induction theorems in HOL

» datatype definitions lead to induction theorems

» recursive function definitions produce corresponding induction theorems
> recursive relation definitions give rise to induction theorems

» many are manually defined

@ Examples
[-'P. P[] /\ (11. P1==>1!x. P (SNOC x 1)) ==> !1. P 1

|- 'P. P FEMPTY /\
('f. P £ ==> Ix y. x NOTIN FDOM f ==> P (f |+ (x,y))) ==> !f. P £

|- 'p. P {} /\
(!'s. FINITE s /\ P

s ==> le. e NOTIN s ==> P (e INSERT s)) ==>
!'s. FINITE s ==> P s

|- P. (!lxy.Rxy==>Pxy) /\(Uxyz. Pxy/\Pyz-==>Pxz) ==>

lwuv. Rftuv==>Puv

118 /123

Induction (and Case-Split) Tactics

@ the tactic Induct (or Induct_on) usually used to start induction
proofs

o it looks at the type of the quantifier (or its argument) and applies the
default induction theorem for this type

@ this is usually what one needs

@ other (non default) induction theorems can be applied via
INDUCT_THEN or HO_MATCH_MP_TAC

@ similarish Cases_on picks and applies default case-split theorems

119 /123

Induction Proof - Example | - Slide 1

@ let’s prove via induction
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

@ we set up the goal and start and induction proof on 11

Proof Script

val REVERSE_APPEND = prove (
€¢111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°,
Induct

120 /123

Induction Proof - Example | - Slide 2

@ the induction tactic produced two cases

@ base case:
112. REVERSE ([] ++ 12) = REVERSE 12 ++ REVERSE []

@ induction step:

'h 12. REVERSE (h::11 ++ 12) = REVERSE 12 ++ REVERSE (h::11)

112. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

@ both goals can be easily proved by rewriting

Proof Script

val REVERSE_APPEND = prove (‘¢
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°,
Induct >| [
REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_NIL],
ASM_REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_ASSOC]
D

121 /123

Induction Proof - Example Il - Slide 2

@ let’s prove via induction
1. REVERSE (REVERSE 1) =1

@ we set up the goal and start and induction proof on 1

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1¢°¢,
Induct

122 /123

Induction Proof - Example Il - Slide 2

@ the induction tactic produced two cases

@ base case:
REVERSE (REVERSE [1) = []

@ induction step:

'h. REVERSE (REVERSE (h::11)) = h::11

REVERSE (REVERSE 1) =1

@ again both goals can be easily proved by rewriting

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1°¢¢,
Induct >| [
REWRITE_TAC [REVERSE_DEF],
ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]
D

123 /123

	Backward Proofs
	Motivation
	Backward Proofs
	General Discussion

	Basic Tactics
	Basic Tactics
	Examples

	Induction Proofs

