
Interactive Theorem Proving (ITP) Course
Parts VII, VIII

Thomas Tuerk (tuerk@kth.se)

KTH

Academic Year 2016/17, Period 4

version 5056611 of Wed May 3 09:55:18 2017

65 / 123

Part VII

Backward Proofs

66 / 123

Motivation I

let’s prove !A B. A /\ B <=> B /\ A

(* Show |- A /\ B ==> B /\ A *)

val thm1a = ASSUME ‘‘A /\ B‘‘;

val thm1b = CONJ (CONJUNCT2 thm1a) (CONJUNCT1 thm1a);

val thm1 = DISCH ‘‘A /\ B‘‘ thm1b

(* Show |- B /\ A ==> A /\ B *)

val thm2a = ASSUME ‘‘B /\ A‘‘;

val thm2b = CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);

val thm2 = DISCH ‘‘B /\ A‘‘ thm2b

(* Combine to get |- A /\ B <=> B /\ A *)

val thm3 = IMP_ANTISYM_RULE thm1 thm2

(* Add quantifiers *)

val thm4 = GENL [‘‘A:bool‘‘, ‘‘B:bool‘‘] thm3

this is how you write down a proof

for finding a proof it is however often useful to think backwards

67 / 123

Motivation II - thinking backwards

we want to prove
◮ !A B. A /\ B <=> B /\ A

all-quantifiers can easily be added later, so let’s get rid of them

◮ A /\ B <=> B /\ A

now we have an equivalence, let’s show 2 implications

◮ A /\ B ==> B /\ A
◮ B /\ A ==> A /\ B

we have an implication, so we can use the precondition as an
assumption

◮ using A /\ B show B /\ A
◮ A /\ B ==> B /\ A

68 / 123

Motivation III - thinking backwards

we have a conjunction as assumption, let’s split it
◮ using A and B show B /\ A
◮ A /\ B ==> B /\ A

we have to show a conjunction, so let’s show both parts
◮ using A and B show B
◮ using A and B show A
◮ A /\ B ==> B /\ A

the first two proof obligations are trivial
◮ A /\ B ==> B /\ A

. . .

we are done

69 / 123

Motivation IV

common practise
◮ think backwards to find proof
◮ write found proof down in forward style

often switch between backward and forward style within a proof
Example: induction proof

◮ backward step: induct on . . .
◮ forward steps: prove base case and induction case

whether to use forward or backward proofs depend on
◮ support by the interactive theorem prover you use

⋆ HOL 4 and close family: emphasis on backward proof
⋆ Isabelle/HOL: emphasis on forward proof
⋆ Coq : emphasis on backward proof

◮ your way of thinking
◮ the theorem you try to prove

70 / 123

HOL Implementation of Backward Proofs

in HOL
◮ proof tactics / backward proofs used for most user-level proofs
◮ forward proofs used usually for writing automation

backward proofs are implemented by tactics in HOL
◮ decomposition into subgoals implemented in SML
◮ SML datastructures used to keep track of all open subgoals
◮ forward proof used to construct theorems

to understand backward proofs in HOL we need to look at
◮ goal — SML datatype for proof obligations
◮ goalStack — library for keeping track of goals
◮ tactic — SML type for functions performing backward proofs

71 / 123

Goals

goals represent proof obligations, i. e. theorems we need/want to prove

the SML type goal is an abbreviation for term list * term

the goal ([asm 1, ..., asm n], c) records that we need/want to
prove the theorem {asm 1, ..., asm n} |- c

Example Goals

Goal Theorem

([‘‘A‘‘, ‘‘B‘‘], ‘‘A /\ B‘‘) {A, B} |- A /\ B

([‘‘B‘‘, ‘‘A‘‘], ‘‘A /\ B‘‘) {A, B} |- A /\ B

([‘‘B /\ A‘‘], ‘‘A /\ B‘‘) {B /\ A} |- A /\ B

([], ‘‘(B /\ A) ==> (A /\ B)‘‘) |- (B /\ A) ==> (A /\ B)

72 / 123

Tactics

the SML type tactic is an abbreviation for
the type goal -> goal list * validation

validation is an abbreviation for thm list -> thm

given a goal, a tactic
◮ decides into which subgoals to decompose the goal
◮ returns this list of subgoals
◮ returns a validation that

⋆ given a list of theorems for the computed subgoals
⋆ produces a theorem for the original goal

special case: empty list of subgoals
◮ the validation (given []) needs to produce a theorem for the goal

notice: a tactic might be invalid

73 / 123

Tactic Example — CONJ TAC

Γ ⊢ p ∆ ⊢ q

Γ ∪∆ ⊢ p ∧ q
CONJ

t ≡ conj1 /\ conj2

asl ⊢ conj1 asl ⊢ conj2

asl ⊢ t

val CONJ_TAC: tactic = fn (asl, t) =>

let

val (conj1, conj2) = dest_conj t

in

([(asl, conj1), (asl, conj2)],

fn [th1, th2] => CONJ th1 th2 | _ => raise Match)

end

handle HOL_ERR _ => raise ERR "CONJ_TAC" ""

74 / 123

Tactic Example — EQ TAC

Γ ⊢ p =⇒ q

∆ ⊢ q =⇒ p

Γ ∪∆ ⊢ p = q
IMP ANTISYM RULE

t ≡ lhs = rhs

asl ⊢ lhs ==> rhs

asl ⊢ rhs ==> lhs

asl ⊢ t

val EQ_TAC: tactic = fn (asl, t) =>

let

val (lhs, rhs) = dest_eq t

in

([(asl, mk_imp (lhs, rhs)), (asl, mk_imp (rhs, lhs))],

fn [th1, th2] => IMP_ANTISYM_RULE th1 th2

| _ => raise Match)

end

handle HOL_ERR _ => raise ERR "EQ_TAC" ""

75 / 123

proofManagerLib / goalStack

the proofManagerLib keeps track of open goals

it uses goalStack internally

important commands
◮ g — set up new goal
◮ e — expand a tactic
◮ p — print the current status
◮ top thm — get the proved thm at the end

76 / 123

Tactic Proof Example I

Previous Goalstack
-

User Action

g ‘!A B. A /\ B <=> B /\ A‘;

New Goalstack
Initial goal:

!A B. A /\ B <=> B /\ A

: proof

77 / 123

Tactic Proof Example II

Previous Goalstack
Initial goal:

!A B. A /\ B <=> B /\ A

: proof

User Action
e GEN_TAC;

e GEN_TAC;

New Goalstack

A /\ B <=> B /\ A

: proof

78 / 123

Tactic Proof Example III

Previous Goalstack

A /\ B <=> B /\ A

: proof

User Action
e EQ_TAC;

New Goalstack

B /\ A ==> A /\ B

A /\ B ==> B /\ A

: proof

79 / 123

Tactic Proof Example IV

Previous Goalstack

B /\ A ==> A /\ B

A /\ B ==> B /\ A : proof

User Action
e STRIP_TAC;

New Goalstack

B /\ A

0. A

1. B

80 / 123

Tactic Proof Example V

Previous Goalstack
B /\ A

0. A

1. B

User Action
e CONJ_TAC;

New Goalstack
A

0. A

1. B

B

0. A

1. B

81 / 123

Tactic Proof Example VI

Previous Goalstack
A

0. A

1. B

B

0. A

1. B

User Action
e (ACCEPT_TAC (ASSUME ‘‘B:bool‘‘));

e (ACCEPT_TAC (ASSUME ‘‘A:bool‘‘));

New Goalstack
B /\ A ==> A /\ B

: proof

82 / 123

Tactic Proof Example VII

Previous Goalstack
B /\ A ==> A /\ B

: proof

User Action
e STRIP_TAC;

e (ASM_REWRITE_TAC[]);

New Goalstack
Initial goal proved.

|- !A B. A /\ B <=> B /\ A:

proof

83 / 123

Tactic Proof Example VIII

Previous Goalstack
Initial goal proved.

|- !A B. A /\ B <=> B /\ A:

proof

User Action
val thm = top_thm();

Result
val thm =

|- !A B. A /\ B <=> B /\ A:

thm

84 / 123

Tactic Proof Example IX

Combined Tactic
val thm = prove (‘‘!A B. A /\ B <=> B /\ A‘‘,

GEN_TAC >> GEN_TAC >>

EQ_TAC >| [

STRIP_TAC >>

STRIP_TAC >| [

ACCEPT_TAC (ASSUME ‘‘B:bool‘‘),

ACCEPT_TAC (ASSUME ‘‘A:bool‘‘)

],

STRIP_TAC >>

ASM_REWRITE_TAC[]

]);

Result
val thm =

|- !A B. A /\ B <=> B /\ A:

thm

85 / 123

Tactic Proof Example X

Cleaned-up Tactic
val thm = prove (‘‘!A B. A /\ B <=> B /\ A‘‘,

REPEAT GEN_TAC >>

EQ_TAC >> (

REPEAT STRIP_TAC >>

ASM_REWRITE_TAC []

));

Result
val thm =

|- !A B. A /\ B <=> B /\ A:

thm

86 / 123

Summary Backward Proofs

in HOL most user-level proofs are tactic-based
◮ automation often written in forward style
◮ low-level, basic proofs written in forward style
◮ nearly everything else is written in backward (tactic) style

there are many different tactics

in the lecture only the most basic ones will be discussed

you need to learn about tactics on your own
◮ good starting point: Quick manual
◮ learning finer points takes a lot of time
◮ exercises require you to read up on tactics

often there are many ways to prove a statement, which tactics to use
depends on

◮ personal way of thinking
◮ personal style and preferences
◮ maintainability, clarity, elegance, robustness
◮ . . .

87 / 123

Part VIII

Basic Tactics

88 / 123

Syntax of Tactics in HOL

originally tactics were written all in capital letters with underscores
Example: ALL TAC

since 2010 more and more tactics have overloaded lower-case syntax
Example: all tac

sometimes, the lower-case version is shortened
Example: REPEAT, rpt

sometimes, there is special syntax
Example: THEN, \\, >>

which one to use is mostly a matter of personal taste
◮ all-capital names are hard to read and type
◮ however, not for all tactics there are lower-case versions
◮ mixed lower- and upper-case tactics are even harder to read
◮ often shortened lower-case name is not speaking

In the lecture we will use mostly the old-style names.

89 / 123

Some Basic Tactics

GEN TAC remove outermost all-quantifier
DISCH TAC move antecedent of goal into assumptions
CONJ TAC splits conjunctive goal
STRIP TAC splits on outermost connective (combination

of GEN TAC, CONJ TAC, DISCH TAC, . . .)
DISJ1 TAC selects left disjunct
DISJ2 TAC selects right disjunct
EQ TAC reduce Boolean equality to implications
ASSUME TAC thm add theorem to list of assumptions
EXISTS TAC term provide witness for existential goal

90 / 123

Tacticals

tacticals are SML functions that combine tactics to form new tactics

common workflow
◮ develop large tactic interactively
◮ using goalStack and editor support to execute tactics one by one
◮ combine tactics manually with tacticals to create larger tactics
◮ finally end up with one large tactic that solves your goal
◮ use prove or store thm instead of goalStack

make sure to clearly mark proof structure by e. g.
◮ use indentation
◮ use parentheses
◮ use appropriate connectives
◮ . . .

goalStack commands like e or g should not appear in your final proof

91 / 123

Some Basic Tacticals

tac1 >> tac2 THEN, \\ applies tactics in sequence
tac >| tacL THENL applies list of tactics to subgoals
tac1 >- tac2 THEN1 applies tac2 to the first subgoal of tac1
REPEAT tac rpt repeats tac until it fails
NTAC n tac apply tac n times
REVERSE tac reverse reverses the order of subgoals
tac1 ORELSE tac2 applies tac1 only if tac2 fails
TRY tac do nothing if tac fails
ALL TAC all tac do nothing
NO TAC fail

92 / 123

Basic Rewrite Tactics

(equational) rewriting is at the core of HOL’s automation

we will discuss it in detail later

details complex, but basic usage is straightforward
◮ given a theorem rewr thm of form |- P x = Q x and a term t
◮ rewriting t with rewr thm means
◮ replacing each occurrence of a term P c for some c with Q c in t

warning: rewriting may loop
Example: rewriting with theorem |- X <=> (X /\ T)

REWRITE TAC thms rewrite goal using equations found
in given list of theorems

ASM REWRITE TAC thms in addition use assumptions
ONCE REWRITE TAC thms rewrite once in goal using equations
ONCE ASM REWRITE TAC thms rewrite once using assumptions

93 / 123

Case-Split and Induction Tactics

Induct on ‘term‘ induct on term

Induct induct on all-quantor
Cases on ‘term‘ case-split on term

Cases case-split on all-quantor
MATCH MP TAC thm apply rule
IRULE TAC thm generalised apply rule

94 / 123

Assumption Tactics

POP ASSUM thm-tac use and remove first assumption
common usage POP ASSUM MP TAC

PAT ASSUM term thm-tac use (and remove) first
also PAT X ASSUM term thm-tac assumption matching pattern

WEAKEN TAC term-pred removes first assumption
satisfying predicate

95 / 123

Decision Procedure Tactics

decision procedures try to solve the current goal completely

they either succeed of fail

no partial progress

decision procedures vital for automation

TAUT TAC propositional logic tautology checker
DECIDE TAC linear arithmetic for num
METIS TAC thms first order prover
numLib.ARITH TAC Presburger arithmetic
intLib.ARITH TAC uses Omega test

96 / 123

Subgoal Tactics

it is vital to structure your proofs well
◮ improved maintainability
◮ improved readability
◮ improved reusability
◮ saves time in medium-run

therefore, use many small lemmata

also, use many explicit subgoals

‘term-frag‘ by tac show term with tac and
add it to assumptions

‘term-frag‘ sufficies by tac show it sufficies to prove term

97 / 123

Term Fragments / Term Quotations

notice that by and sufficies by take term fragments

term fragments are also called term quotations

they represent (partially) unparsed terms

parsing takes time place during execution of tactic in context of goal

this helps to avoid type annotations

however, this means syntax errors show late as well

the library Q defines many tactics using term fragments

98 / 123

Importance of Exercises

here many tactics are presented in a very short amount of time

there are many, many more important tactics out there

few people can learn a programming language just by reading manuals

similar few people can learn HOL just by reading and listening

you should write your own proofs and play around with these tactics

solving the exercises is highly recommended
(and actually required if you want credits for this course)

99 / 123

Tactical Proof - Example I - Slide 1

we want to prove !l. LENGTH (APPEND l l) = 2 * LENGTH l

first step: set up goal on goalStack

at same time start writing proof script

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

Actions

run g ‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘

this is done by hol-mode

move cursor inside term and press M-h g

(menu-entry HOL - Goalstack - New goal)

100 / 123

Tactical Proof - Example I - Slide 2

Current Goal
!l. LENGTH (l ++ l) = 2 * LENGTH l

the outermost connective is an all-quantor

let’s get rid of it via GEN TAC

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (l ++ l) = 2 * LENGTH l‘‘,

GEN_TAC

Actions
run e GEN TAC

this is done by hol-mode

mark line with GEN TAC and press M-h e

(menu-entry HOL - Goalstack - Apply tactic)

101 / 123

Tactical Proof - Example I - Slide 3

Current Goal
LENGTH (l ++ l) = 2 * LENGTH l

LENGTH of APPEND can be simplified

let’s search an appropriate lemma with DB.match

Actions

run DB.print match [] ‘‘LENGTH (++)‘‘

this is done via hol-mode

press M-h m and enter term pattern
(menu-entry HOL - Misc - DB match)

this finds the theorem listTheory.LENGTH APPEND

|- !l1 l2. LENGTH (l1 ++ l2) = LENGTH l1 + LENGTH l2

102 / 123

Tactical Proof - Example I - Slide 4

Current Goal
LENGTH (l ++ l) = 2 * LENGTH l

let’s rewrite with found theorem listTheory.LENGTH APPEND

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

GEN_TAC >>

REWRITE_TAC[listTheory.LENGTH APPEND]

Actions

connect the new tactic with tactical >> (THEN)

use hol-mode to expand the new tactic

103 / 123

Tactical Proof - Example I - Slide 5

Current Goal
LENGTH l + LENGTH l = 2 * LENGTH l

let’s search a theorem for simplifying 2 * LENGTH l

prepare for extending the previous rewrite tactic

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

GEN_TAC >>

REWRITE_TAC[listTheory.LENGTH APPEND]

Actions

DB.match finds theorem arithmeticTheory.TIMES2

press M-h b and undo last tactic expansion
(menu-entry HOL - Goalstack - Back up)

104 / 123

Tactical Proof - Example I - Slide 6

Current Goal
LENGTH (l ++ l) = 2 * LENGTH l

extend the previous rewrite tactic

finish proof

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

GEN_TAC >>

REWRITE_TAC[listTheory.LENGTH APPEND, arithmeticTheory.TIMES2]);

Actions

add TIMES2 to the list of theorems used by rewrite tactic

use hol-mode to expand the extended rewrite tactic

goal is solved, so let’s add closing parenthesis and semicolon

105 / 123

Tactical Proof - Example I - Slide 7

we have a finished tactic proving our goal

notice that GEN TAC is not needed

let’s polish the proof script

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

GEN_TAC >>

REWRITE_TAC[listTheory.LENGTH APPEND, arithmeticTheory.TIMES2]);

Polished Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

REWRITE_TAC[listTheory.LENGTH APPEND, arithmeticTheory.TIMES2]);

106 / 123

Tactical Proof - Example II - Slide 1

let’s prove something slightly more complicated

drop old goal by pressing M-h d

(menu-entry HOL - Goalstack - Drop goal)

set up goal on goalStack (M-h g)

at same time start writing proof script

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 l1 l2 l3.

(MEM x1 l1 /\ MEM x2 l2 /\ MEM x3 l3) /\

((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>

~(ALL_DISTINCT (l1 ++ l2 ++ l3))‘‘,

107 / 123

Tactical Proof - Example II - Slide 2

Current Goal
!x1 x2 x3 l1 l2 l3.

(MEM x1 l1 /\ MEM x2 l2 /\ MEM x3 l3) /\

x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>

~ALL_DISTINCT (l1 ++ l2 ++ l3)

let’s strip the goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 l1 l2 l3.

(MEM x1 l1 /\ MEM x2 l2 /\ MEM x3 l3) /\

((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>

~(ALL_DISTINCT (l1 ++ l2 ++ l3))‘‘,

REPEAT STRIP TAC

108 / 123

Tactical Proof - Example II - Slide 2

Current Goal
!x1 x2 x3 l1 l2 l3.

(MEM x1 l1 /\ MEM x2 l2 /\ MEM x3 l3) /\

x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>

~ALL_DISTINCT (l1 ++ l2 ++ l3)

let’s strip the goal

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

REPEAT STRIP TAC

Actions

add REPEAT STRIP TAC to proof script

expand this tactic using hol-mode

109 / 123

Tactical Proof - Example II - Slide 3

Current Goal
F

0. MEM x1 l1 4. x2 <= x3

1. MEM x2 l2 5. x3 <= SUC x1

2. MEM x3 l3 6. ALL_DISTINCT (l1 ++ l2 ++ l3)

3. x1 <= x2

oops, we did too much, we would like to keep ALL DISTINCT in goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...‘‘,

REPEAT GEN TAC >> STRIP TAC

Actions

undo REPEAT STRIP TAC (M-h b)

expand more fine-tuned strip tactic

110 / 123

Tactical Proof - Example II - Slide 4

Current Goal
~ALL_DISTINCT (l1 ++ l2 ++ l3)

0. MEM x1 l1 3. x1 <= x2

1. MEM x2 l2 4. x2 <= x3

2. MEM x3 l3 5. x3 <= SUC x1

now let’s simplify ALL DISTINCT

search suitable theorems with DB.match

use them with rewrite tactic

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...‘‘,

REPEAT GEN TAC >> STRIP TAC >>

REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND]

111 / 123

Tactical Proof - Example II - Slide 5

Current Goal
~((ALL_DISTINCT l1 /\ ALL_DISTINCT l2 /\ !e. MEM e l1 ==> ~MEM e l2) /\

ALL_DISTINCT l3 /\ !e. MEM e l1 \/ MEM e l2 ==> ~MEM e l3)

0. MEM x1 l1 3. x1 <= x2

1. MEM x2 l2 4. x2 <= x3

2. MEM x3 l3 5. x3 <= SUC x1

from assumptions 3, 4 and 5 we know x2 = x1 \/ x2 = x3

let’s deduce this fact by DECIDE TAC

Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...‘‘,

REPEAT GEN TAC >> STRIP TAC >>

REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND] >>

‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC

112 / 123

Tactical Proof - Example II - Slide 6

Current Goals — 2 subgoals, one for each disjunct
~((ALL_DISTINCT l1 /\ ALL_DISTINCT l2 /\ !e. MEM e l1 ==> ~MEM e l2) /\

ALL_DISTINCT l3 /\ !e. MEM e l1 \/ MEM e l2 ==> ~MEM e l3)

0. MEM x1 l1 4. x2 <= x3

1. MEM x2 l2 5. x3 <= SUC x1

2. MEM x3 l3 6a. x2 = x1

3. x1 <= x2 6b. x2 = x3

both goals are easily solved by first-order reasoning

let’s use METIS TAC[] for both subgoals

Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...‘‘,

REPEAT GEN TAC >> STRIP TAC >>

REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND] >>

‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC >> (

METIS TAC[]

));

113 / 123

Tactical Proof - Example II - Slide 7

Finished Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (

‘‘!x1 x2 x3 l1 l2 l3.

(MEM x1 l1 /\ MEM x2 l2 /\ MEM x3 l3) /\

((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>

~(ALL_DISTINCT (l1 ++ l2 ++ l3))‘‘,

REPEAT GEN TAC >> STRIP TAC >>

REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND] >>

‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC >> (

METIS TAC[]

));

notice that proof structure is explicit

parentheses and indentation used to mark new subgoals

114 / 123

Part IX

Induction Proofs

115 / 123

Mathematical Induction

mathematical (a. k. a. natural) induction principle:
If a property P holds for 0 and P(n) implies P(n + 1) for all n,
then P(n) holds for all n.

HOL is expressive enough to encode this principle as a theorem.

|- !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n

Performing mathematical induction in HOL means applying this
theorem (e. g. via HO MATCH MP TAC)

there are many similarish induction theorems in HOL

Example: complete induction principle

|- !P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n

116 / 123

Structural Induction Theorems

structural induction theorems are an important special form of
induction theorems

they describe performing induction on the structure of a datatype

Example: |- !P. P [] /\ (!t. P t ==> !h. P (h::t)) ==> !l. P l

structural induction is used very frequently in HOL

for each algabraic datatype, there is an induction theorem

117 / 123

Other Induction Theorems

there are many induction theorems in HOL
◮ datatype definitions lead to induction theorems
◮ recursive function definitions produce corresponding induction theorems
◮ recursive relation definitions give rise to induction theorems
◮ many are manually defined

Examples

|- !P. P [] /\ (!l. P l ==> !x. P (SNOC x l)) ==> !l. P l

|- !P. P FEMPTY /\

(!f. P f ==> !x y. x NOTIN FDOM f ==> P (f |+ (x,y))) ==> !f. P f

|- !P. P {} /\

(!s. FINITE s /\ P s ==> !e. e NOTIN s ==> P (e INSERT s)) ==>

!s. FINITE s ==> P s

|- !R P. (!x y. R x y ==> P x y) /\ (!x y z. P x y /\ P y z ==> P x z) ==>

!u v. R+ u v ==> P u v

118 / 123

Induction (and Case-Split) Tactics

the tactic Induct (or Induct on) usually used to start induction
proofs

it looks at the type of the quantifier (or its argument) and applies the
default induction theorem for this type

this is usually what one needs

other (non default) induction theorems can be applied via
INDUCT THEN or HO MATCH MP TAC

similarish Cases on picks and applies default case-split theorems

119 / 123

Induction Proof - Example I - Slide 1

let’s prove via induction
!l1 l2. REVERSE (l1 ++ l2) = REVERSE l2 ++ REVERSE l1

we set up the goal and start and induction proof on l1

Proof Script

val REVERSE_APPEND = prove (

‘‘!l1 l2. REVERSE (l1 ++ l2) = REVERSE l2 ++ REVERSE l1‘‘,

Induct

120 / 123

Induction Proof - Example I - Slide 2

the induction tactic produced two cases

base case:
!l2. REVERSE ([] ++ l2) = REVERSE l2 ++ REVERSE []

induction step:

!h l2. REVERSE (h::l1 ++ l2) = REVERSE l2 ++ REVERSE (h::l1)

!l2. REVERSE (l1 ++ l2) = REVERSE l2 ++ REVERSE l1

both goals can be easily proved by rewriting

Proof Script
val REVERSE_APPEND = prove (‘‘

!l1 l2. REVERSE (l1 ++ l2) = REVERSE l2 ++ REVERSE l1‘‘,

Induct >| [

REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_NIL],

ASM_REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_ASSOC]

]);

121 / 123

Induction Proof - Example II - Slide 2

let’s prove via induction
!l. REVERSE (REVERSE l) = l

we set up the goal and start and induction proof on l

Proof Script

val REVERSE_REVERSE = prove (

‘‘!l. REVERSE (REVERSE l) = l‘‘,

Induct

122 / 123

Induction Proof - Example II - Slide 2

the induction tactic produced two cases

base case:
REVERSE (REVERSE []) = []

induction step:

!h. REVERSE (REVERSE (h::l1)) = h::l1

--

REVERSE (REVERSE l) = l

again both goals can be easily proved by rewriting

Proof Script
val REVERSE_REVERSE = prove (

‘‘!l. REVERSE (REVERSE l) = l‘‘,

Induct >| [

REWRITE_TAC[REVERSE_DEF],

ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]

]);

123 / 123

