Interactive Theorem Proving (ITP) Course
Parts VII, VIII

Thomas Tuerk (tuerk@kth.se)
KTH

Academic Year 2016/17, Period 4

version 5056611 of Wed May 3 09:55:18 2017

65 /123

Motivation |

o let’'s prove 'A B. A /\ B <=>B /\ A

(* Show |- A /\ B ==>B /\ A %)

val thmla = ASSUME ‘‘A /\ B‘¢;
val thmlb = CONJ (CONJUNCT2 thmia) (CONJUNCT1 thmila);
val thmi = DISCH ‘‘A /\ B‘¢ thmib

(* Show |- B /\ A ==> A /\ B %)

val thm2a = ASSUME ‘B /\ A‘‘;
val thm2b = CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);
val thm2 = DISCH ‘‘B /\ A‘‘ thm2b

(* Combine to get |- A /\ B <=> B /\ A %)
val thm3 = IMP_ANTISYM_RULE thml thm2

(* Add quantifiers *)

val thm4 = GENL [‘‘A:bool‘‘, ‘‘B:bool‘‘] thm3

o this is how you write down a proof

o for finding a proof it is however often useful to think backwards

67 /123

Part VII

Backward Proofs

Motivation Il - thinking backwards

we want to prove
» '1AB. A/A\B<=>B/\A

all-quantifiers can easily be added later, so let's get rid of them
» A/\B<=>B/\A
now we have an equivalence, let's show 2 implications
» A/\B==>B/\A
»B /\A==>A/\B
we have an implication, so we can use the precondition as an
assumption

» using A /\ BshowB /\ A
» A /\NB==>B/\A

66 /123

68 /123



Motivation Il - thinking backwards

o we have a conjunction as assumption, let's split it
» using A and B show B /\ A
» A/\B==>B/\A
we have to show a conjunction, so let's show both parts
> using A and B show B
> using A and B show A
» A/\NB==>B/\A
the first two proof obligations are trivial
» A/\B==>B/\ A

©

©

o we are done

69 /123

HOL Implementation of Backward Proofs

o in HOL
» proof tactics / backward proofs used for most user-level proofs
» forward proofs used usually for writing automation
o backward proofs are implemented by tactics in HOL
» decomposition into subgoals implemented in SML
» SML datastructures used to keep track of all open subgoals
» forward proof used to construct theorems
o to understand backward proofs in HOL we need to look at
» goal — SML datatype for proof obligations
» goalStack — library for keeping track of goals
» tactic — SML type for functions performing backward proofs

71/123

Motivation IV

@ common practise

» think backwards to find proof

» write found proof down in forward style

o often switch between backward and forward style within a proof
Example: induction proof

Goals

» backward step: induct on ...

» forward steps: prove base case and induction case
o whether to use forward or backward proofs depend on
> support by the interactive theorem prover you use

* HOL 4 and close family: emphasis on backward proof
* |sabelle/HOL: emphasis on forward proof
* Coq : emphasis on backward proof

» your way of thinking
» the theorem you try to prove

70 /123

o goals represent proof obligations, i. e. theorems we need/want to prove

o the SML type goal is an abbreviation for term list * term

o the goal ([asm_1,

Goal

prove the theorem {asm_1, ., asmn} |- c
Example Goals
Theorem
([t{All’ ((Bll:l’ ((A /\ B(() {A, B} I_ A
([t{Btt’ ((A(l]’ ((A /\ Bt() {A, B} I_ A

(LB /\ A““], ““A/\ BY)

(1,

““(B /\ A) ==> (A /\ B)‘9)

{B/\ A} |I-A/\B

- B /\ &)

., asmn], c) records that we need/want to

/\ B
/\ B

==> (A /\ B)

72 /123



Tactics

©

©

©

the SML type tactic is an abbreviation for
the type goal -> goal list * validation

validation is an abbreviation for thm list -> thm

given a goal, a tactic
» decides into which subgoals to decompose the goal

» returns this list of subgoals
» returns a validation that

* given a list of theorems for the computed subgoals
* produces a theorem for the original goal

special case: empty list of subgoals
» the validation (given [1) needs to produce a theorem for the goal

notice: a tactic might be invalid

Tactic Example — EQ_TAC

t = 1lhs = rhs

rN-p=g¢g asl - lhs ==> rhs
AFg=p aslt rhs ==> 1hs
———— IMP_ANTISYM_RULE
FTUAFp=gq aslkt

val EQ_TAC: tactic = fn (asl, t) =>
let
val (lhs, rhs) = dest_eq t
in

([(asl, mk_imp (lhs, rhs)), (asl, mk_imp (rhs, 1lhs))],
fn [th1l, th2] => IMP_ANTISYM_RULE thl th2
| _ => raise Match)
end
handle HOL_ERR _ => raise ERR "EQ_TAC" ""

75 /123

Tactic Example — CONJ_TAC

t =conjl /\ conj2

MN-p Al g aslt conj1 aslt conj2

CONJ

FTUAFpP A g aslkt

val CONJ_TAC: tactic = fn (asl, t) =>

let

val (conjl, conj2) = dest_conj t

in

([(asl, conj1l), (asl, conj2)],

fn [thl, th2] => CONJ thl th2 |

end

=> raise Match)

handle HOL_ERR _ => raise ERR "CONJ_TAC" ""

proofManagerLib / goalStack

o the proofManagerLib keeps track of open goals

o it uses goalStack internally

o important commands

>

»>
>
>

g — set up new goal

e — expand a tactic

p — print the current status

top_thm — get the proved thm at the end

76 /123



Tactic Proof Example |

Previous Goalstack

User Action
g “'AB. A/\B<=>B/\ A%

New Goalstack
Initial goal:

'1AB. A/\B<=>B/\A

: proof

Tactic Proof Example Ill

Previous Goalstack
A/\NB<=>B/\A

: proof

77/123

User Action
e EQ_TAC;

New Goalstack
B/\ A==>A/\B

A/NB==>B/\A

: proof

79/123

Tactic Proof Example Il

Previous Goalstack
Initial goal:

'1AB. A/\B<=>B/\A

: proof

User Action
e GEN_TAC;
e GEN_TAC;

New Goalstack
A /\ B<=>B/\A

: proof

Tactic Proof Example IV

Previous Goalstack
B/\ A==>A/\B

A /\ B==>B /\ A : proof

78 /123

User Action
e STRIP_TAC;

New Goalstack

B /\ A
0. A
1. B

80/123



Tactic Proof Example V

2

B/\ A
0. A
1. B

e CONJ_TAC; '
A

0. A

1. B
B

0. A

1. B

81/123

Tactic Proof Example VII

B/\A==>A/\B

proof

e STRIP_TAC;
e (ASM_REWRITE_TAC[]);

Initial goal proved.
I- 'AB. A/\ B <=>B/\A:
proof

83/123

Tactic Proof Example VI

0. A

1. B
B

0. A

1. B

e (ACCEPT_TAC (ASSUME ‘‘B:bool‘¢));
e (ACCEPT_TAC (ASSUME ‘‘A:bool‘‘));

|

B/\A==>A4/\B

: proof

82/123

Tactic Proof Example VIII

Initial goal proved.
I- 'AB. A/\ B <=>B/\A:
proof

val thm = top_thm(); l

val thm =
|- 1A B. A /\ B<=>B/\A:
thm

84/123



Tactic Proof Example IX

Combined Tactic

val thm = prove (‘“!A B. A /\ B <=> B /\ A‘¢,
GEN_TAC >> GEN_TAC >>
EQ_TAC >| [
STRIP_TAC >>
STRIP_TAC >| [
ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘),
ACCEPT_TAC (ASSUME ¢ ‘A:bool‘‘)
s

STRIP_TAC >>
ASM_REWRITE_TAC[]
1;

Result

val thm =
|- 'AB. A/\ B<=>B/\A:
thm

85/123

Summary Backward Proofs

o in HOL most user-level proofs are tactic-based
» automation often written in forward style
> low-level, basic proofs written in forward style
» nearly everything else is written in backward (tactic) style

©

there are many different tactics

©

in the lecture only the most basic ones will be discussed
you need to learn about tactics on your own

» good starting point: Quick manual
» learning finer points takes a lot of time
> exercises require you to read up on tactics

often there are many ways to prove a statement, which tactics to use
depends on

(+]

©

» personal way of thinking

» personal style and preferences

» maintainability, clarity, elegance, robustness
-

87/123

Tactic Proof Example X

Cleaned-up Tactic

val thm = prove (‘‘!A B. A /\ B <=> B /\ A‘¢,
REPEAT GEN_TAC >>
EQ_TAC >> (
REPEAT STRIP_TAC >>
ASM_REWRITE_TAC []
DE

Result

val thm =
|- 'AB. A/\ B<=>B/\A:
thm

Part VI

Basic Tactics

86 /123

88 /123



Syntax of Tactics in HOL

%]

originally tactics were written all in capital letters with underscores
Example: ALL_TAC

since 2010 more and more tactics have overloaded lower-case syntax
Example: all_tac

sometimes, the lower-case version is shortened

Example: REPEAT, rpt

sometimes, there is special syntax

Example: THEN, \\, >>

which one to use is mostly a matter of personal taste

> all-capital names are hard to read and type

» however, not for all tactics there are lower-case versions

» mixed lower- and upper-case tactics are even harder to read
» often shortened lower-case name is not speaking

In the lecture we will use mostly the old-style names.

89/123

Tacticals

©

©

©

tacticals are SML functions that combine tactics to form new tactics
common workflow

» develop large tactic interactively
using goalStack and editor support to execute tactics one by one
combine tactics manually with tacticals to create larger tactics
finally end up with one large tactic that solves your goal
use prove or store_thm instead of goalStack

vVvyVvy

make sure to clearly mark proof structure by e. g.

» use indentation

> use parentheses

> use appropriate connectives
>

goalStack commands like e or g should not appear in your final proof

91/123

Some Basic Tactics

GEN_TAC
DISCH_TAC
CONJ_TAC
STRIP_TAC

DISJ1_TAC
DISJ2_TAC
EQ_TAC
ASSUME_TAC thm
EXISTS_TAC term

remove outermost all-quantifier
move antecedent of goal into assumptions
splits conjunctive goal

splits on outermost connective (combination

of GEN_TAC, CONJ_TAC, DISCH_TAC, ...)
selects left disjunct
selects right disjunct
reduce Boolean equality to implications
add theorem to list of assumptions
provide witness for existential goal

Some Basic Tacticals

tacl >> tac2

tac >| tacL

tacl >- tac2
REPEAT tac

NTAC n tac
REVERSE tac
tacl ORELSE tac2
TRY tac

ALL_TAC

NO_TAC

THEN, \\
THENL
THEN1
rpt

reverse

all_tac

applies tactics in sequence
applies list of tactics to subgoals

90 /123

applies tac2 to the first subgoal of tacl

repeats tac until it fails
apply tac n times

reverses the order of subgoals
applies tacl only if tac2 fails
do nothing if tac fails

do nothing

fail

92/123



Basic Rewrite Tactics

©

we will discuss it in detail later

©

©

(equational) rewriting is at the core of HOL's automation

details complex, but basic usage is straightforward

» given a theorem rewr_thm of form |- P x = Q xand aterm t
» rewriting t with rewr_thm means
» replacing each occurrence of a term P ¢ for some c with Q cin t

o warning: rewriting may loop

Example: rewriting with theorem |- X <=> (X /\ T)

REWRITE_TAC thms

rewrite goal using equations found

in given list of theorems

ASM REWRITE TAC thms
ONCE_REWRITE_TAC thms

in addition use assumptions
rewrite once in goal using equations

ONCE_ASM REWRITE_TAC thms rewrite once using assumptions

Assumption Tactics

POP_ASSUM thm-tac

PAT_ASSUM term thm-tac
also PAT_X_ASSUM term thm-tac

WEAKEN_TAC term-pred

93 /123

use and remove first assumption
common usage POP_ASSUM MP_TAC

use (and remove) first
assumption matching pattern

removes first assumption
satisfying predicate

95 /123

Case-Split and Induction Tactics

Induct_on ‘term’
Induct

Cases_on ‘term’
Cases
MATCH_MP_TAC thm
IRULE_TAC thm

induct on term

induct on all-quantor
case-split on term
case-split on all-quantor

apply rule
generalised apply rule

Decision Procedure Tactics

o decision procedures try to solve the current goal completely

©

they either succeed of fail

@ no partial progress

o decision procedures vital for automation

TAUT_TAC
DECIDE_TAC
METIS_TAC thms
numLib.ARITH_TAC
intLib.ARITH_TAC

propositional logic tautology checker
linear arithmetic for num

first order prover

Presburger arithmetic

uses Omega test

96 /123



Subgoal Tactics

o it is vital to structure your proofs well
» improved maintainability
» improved readability
» improved reusability
» saves time in medium-run

o therefore, use many small lemmata

o also, use many explicit subgoals

show term with tac and
add it to assumptions
‘term-frag’ sufficies_by tac show it sufficies to prove term

‘term-frag’ by tac

Importance of Exercises

here many tactics are presented in a very short amount of time

©

©

there are many, many more important tactics out there

few people can learn a programming language just by reading manuals

©

similar few people can learn HOL just by reading and listening

©

©

you should write your own proofs and play around with these tactics

©

solving the exercises is highly recommended
(and actually required if you want credits for this course)

99 /123

Term Fragments / Term Quotations

@ notice that by and sufficies_by take term fragments

o term fragments are also called term quotations

o they represent (partially) unparsed terms

o parsing takes time place during execution of tactic in context of goal
o this helps to avoid type annotations

o however, this means syntax errors show late as well

o the library Q defines many tactics using term fragments

98 /123

Tactical Proof - Example | - Slide 1

o we want to prove !1. LENGTH (APPEND 1 1) = 2 * LENGTH 1
o first step: set up goal on goalStack

o at same time start writing proof script

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,

Actions
o rung “‘!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢¢
o this is done by hol-mode

o move cursor inside term and press M-h g
(menu-entry HOL - Goalstack - New goal)

100 /123



Tactical Proof - Example | - Slide 2

Current Goal
11. LENGTH (1 ++ 1) = 2 * LENGTH 1

o the outermost connective is an all-quantor
o let's get rid of it via GEN_TAC

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (1 ++ 1) = 2 * LENGTH 1°°¢,
GEN_TAC

Actions
@ run e GEN_TAC
o this is done by hol-mode

o mark line with GEN_TAC and press M-h e
(menu-entry HOL - Goalstack - Apply tactic)

101 /123

Tactical Proof - Example | - Slide 4

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1

o let's rewrite with found theorem listTheory.LENGTH_APPEND

Proof Script

val LENGTH_APPEND_SAME = prove (

€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°‘°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
o connect the new tactic with tactical >> (THEN)

o use hol-mode to expand the new tactic

103 /123

Tactical Proof - Example | - Slide 3

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

o LENGTH of APPEND can be simplified

o let's search an appropriate lemma with DB.match

Actions
o run DB.print match [] ‘‘LENGTH (_ ++ _) ‘¢
o this is done via hol-mode
o press M-h m and enter term pattern
(menu-entry HOL - Misc - DB match)

o this finds the theorem listTheory.LENGTH APPEND
|- 111 12. LENGTH (11 ++ 12) = LENGTH 11 + LENGTH 12

102 /123

Tactical Proof - Example | - Slide 5

Current Goal
LENGTH 1 + LENGTH 1 = 2 * LENGTH 1 J

o let's search a theorem for simplifying 2 * LENGTH 1
o prepare for extending the previous rewrite tactic

Proof Script

val LENGTH_APPEND_SAME = prove (

€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
o DB.match finds theorem arithmeticTheory.TIMES2

o press M-h b and undo last tactic expansion
(menu-entry HOL - Goalstack - Back up)

104 /123



Tactical Proof - Example | - Slide 6

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1

o extend the previous rewrite tactic
o finish proof

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Actions
o add TIMES2 to the list of theorems used by rewrite tactic

o use hol-mode to expand the extended rewrite tactic

o goal is solved, so let's add closing parenthesis and semicolon

Tactical Proof - Example Il - Slide 1

©

let’s prove something slightly more complicated

©

drop old goal by pressing M-h d
(menu-entry HOL - Goalstack - Drop goal)

©

set up goal on goalStack (M-h g)

©

at same time start writing proof script

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
~(ALL_DISTINCT (11 ++ 12 ++ 13))¢¢,

107 /123

Tactical Proof - Example | - Slide 7

o we have a finished tactic proving our goal
o notice that GEN_TAC is not needed
o let's polish the proof script

Proof Script
val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,

GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Polished Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

106 /123

Tactical Proof - Example Il - Slide 2

Current Goal

Ixl x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>
~ALL_DISTINCT (11 ++ 12 ++ 13)

o let's strip the goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
~“(ALL_DISTINCT (11 ++ 12 ++ 13))°¢,

REPEAT STRIP_TAC

108 /123



Tactical Proof - Example Il - Slide 2

Current Goal

Ix1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==
~ALL_DISTINCT (11 ++ 12 ++ 13)

o let's strip the goal

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1‘°¢,
REPEAT STRIP_TAC

Actions
o add REPEAT STRIP_TAC to proof script
o expand this tactic using hol-mode

109 /123

Tactical Proof - Example Il - Slide 4

Current Goal
~ALL_DISTINCT (11 ++ 12 ++ 13)

0. MEM x1 11 3. x1 <= x2

1. MEM x2 12 4. x2 <= x3

2. MEM x3 13 5. x3 <= SUC x1
o now let's simplify ALL_ DISTINCT

o search suitable theorems with DB.match

o use them with rewrite tactic

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...°¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM_APPEND]

111 /123

Tactical Proof - Example Il - Slide 3

Current Goal

F
0. MEM x1 11 4. x2 <= x3
1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6. ALL_DISTINCT (11 ++ 12 ++ 13)
3. x1 <= x2

o oops, we did too much, we would like to keep ALL_DISTINCT in goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...°¢,
REPEAT GEN_TAC >> STRIP_TAC

Actions
o undo REPEAT STRIP_TAC (M-h b)

o expand more fine-tuned strip tactic

110 /123

Tactical Proof - Example Il - Slide 5

Current Goal

~((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ 'e. MEM e 11 ==> "MEM e 12) /\
ALL_DISTINCT 13 /\ 'e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)

0. MEM x1 11 3. x1 <=x2
1. MEM x2 12 4. x2 <= x3
2. MEM x3 13 5. x3 <= SUC x1

o from assumptions 3, 4 and 5 we know x2 = x1 \/ x2 = x3
o let’s deduce this fact by DECIDE_TAC

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,

REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC

112 /123



Tactical Proof - Example Il - Slide 6

Current Goals — 2 subgoals, one for each disjunct

“((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ '!e. MEM e 11 ==> “MEM e 12) /\
ALL_DISTINCT 13 /\ !e. MEM e 11 \/ MEM e 12 ==> “MEM e 13)

0. MEM x1 11 4. x2 <= x3

1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6a. x2 = x1

3. x1 <= x2 6b. x2 = x3

o both goals are easily solved by first-order reasoning
o let's use METIS_TAC[] for both subgoals

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
“(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC >> (
METIS_TAC[]
));

113 /123

Part IX

Induction Proofs

115 /123

Tactical Proof - Example Il - Slide 7

Finished Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (
“f1x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
~(ALL_DISTINCT (11 ++ 12 ++ 13))¢°¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND] >>
“(x2 = x1) \/ (x2 = x3)° by DECIDE_TAC >> (
METIS_TAC[]
));

@ notice that proof structure is explicit

o parentheses and indentation used to mark new subgoals

Mathematical Induction

o mathematical (a. k. a. natural) induction principle:
If a property P holds for 0 and P(n) implies P(n+ 1) for all n,
then P(n) holds for all n.

o HOL is expressive enough to encode this principle as a theorem.
|- 'P. PO /\ (!n. Pn==>P (SUCn)) ==>In. Pn

o Performing mathematical induction in HOL means applying this
theorem (e. g. via HO_MATCH MP_TAC)

o there are many similarish induction theorems in HOL

o Example: complete induction principle

|- 'P. ('n. (!m. m <n==>Pm) ==>Pn) ==>In. Pn

114 /123

116 /123



Structural Induction Theorems

structural induction theorems are an important special form of
induction theorems

they describe performing induction on the structure of a datatype
Example: |- tp. P [J /\ (1t. P t ==> th. P (h::t)) ==> !11. P 1
structural induction is used very frequently in HOL

for each algabraic datatype, there is an induction theorem

Induction (and Case-Split) Tactics

the tactic Induct (or Induct_on) usually used to start induction
proofs

it looks at the type of the quantifier (or its argument) and applies the
default induction theorem for this type

this is usually what one needs

other (non default) induction theorems can be applied via
INDUCT_THEN or HO_MATCH_MP_TAC

similarish Cases_on picks and applies default case-split theorems

119 /123

Other Induction Theorems

o there are many induction theorems in HOL
» datatype definitions lead to induction theorems
» recursive function definitions produce corresponding induction theorems
» recursive relation definitions give rise to induction theorems
» many are manually defined

o Examples

|- 'P. P [1/\ (11. P1==>1Ix. P (SNOC x 1)) ==> !1. P 1

|- 'P. P FEMPTY /\
(1f. P £ ==> !x y. x NOTIN FDOM f ==> P (f |+ (x,y))) ==> !f. P f

|- tp. P {} /\
(!s. FINITE s /\ P s ==> le. e NOTIN s ==> P (e INSERT s)) ==>
!s. FINITE s ==> P s

|I-"mP. (!xy.Rxy==>Pxy) /\ (xyz. Pxy/\Pyz==>Pxz) ==

luv. Rfruv==>Puv

118 /123

Induction Proof - Example | - Slide 1

o let's prove via induction
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

o we set up the goal and start and induction proof on 11

Proof Script

val REVERSE_APPEND = prove (
€111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°¢°¢,
Induct

120 /123



Induction Proof - Example | - Slide 2

o the induction tactic produced two cases

o base case:
112. REVERSE ([] ++ 12) = REVERSE 12 ++ REVERSE []

o induction step:

'h 12. REVERSE (h::11 ++ 12) = REVERSE 12 ++ REVERSE (h::11)

112. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

o both goals can be easily proved by rewriting

Proof Script

val REVERSE_APPEND = prove (‘¢
'11 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°¢°,
Induct >| [
REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_NIL],
ASM_REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_ASSOC]
1;

Induction Proof - Example Il - Slide 2

o the induction tactic produced two cases

o base case:
REVERSE (REVERSE []) = []

o induction step:

'h. REVERSE (REVERSE (h::11)) = h::11

REVERSE (REVERSE 1) = 1

o again both goals can be easily proved by rewriting

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1°°¢,
Induct >| [
REWRITE_TAC[REVERSE_DEF],
ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]
D;

121 /123

123 /123

Induction Proof - Example Il - Slide 2

o let's prove via induction
'1. REVERSE (REVERSE 1) =1

o we set up the goal and start and induction proof on 1

Proof Script

val REVERSE_REVERSE = prove (
€€11. REVERSE (REVERSE 1) = 1¢¢,
Induct

122 /123



