Interactive Theorem Proving (ITP) Course

Thomas Tuerk (tuerk@kth.se)
KTH

Academic Year 2016/17, Period 4

version 5056611 of Wed May 3 09:55:18 2017

1/123

Part |

Introduction

2/123

Motivation

@ Complex systems almost certainly contain bugs.
o Critical systems (e. g. avionics) need to meet very high standards.

@ It is infeasible in practice to achieve such high standards just by
testing.

@ Debugging via testing suffers from diminishing returns.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”
— Edsger W. Dijkstra

3/123

Famous Bugs

o Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)

@ Ariane V explosion (1996)
(integer overflow, $1 billion prototype destroyed)

@ Mars Climate Orbiter (1999)
(destroyed in Mars orbit, mixup of units pound-force and newtons)
e Knight Capital Group Error in Ultra Short Time Trading (2012)
(faulty deployment, repurposing of critical flag, $440 lost in 45 min
on stock exchange)

Fun to read
http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

4/123

http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

Proof

@ proof can show absence of errors in design
@ but proofs talk about a design, not a real system

@ = testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,

they do not refer to reality.”

— Albert Einstein

5/123

Mathematical vs. Formal Proof

Mathematical Proof Formal Proof

@ informal, convince other o formal, rigorously use a

mathematicians

checked by community of
domain experts

subtle errors are hard to find

often provide some new
insight about our world

often short, but require
creativity and a brilliant idea

logical formalism

checkable by stupid
machines

very reliable

often contain no new ideas
and no amazing insights

often long, very tedious, but
largely trivial

We are interested in formal proofs in this lecture.

6

123

Detail Level of Formal Proof

In Principia Mathematica it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

7/123

Automated vs Manual (Formal) Proof

Fully Manual Proof
@ very tedious one has to grind through many trivial but detailed proofs
@ easy to make mistakes
@ hard to keep track of all assumptions and preconditions

@ hard to maintain, if something changes (see Ariane V)

Automated Proof
@ amazing success in certain areas
but still often infeasible for interesting problems

hard to get insights in case a proof attempt fails

even if it works, it is often not that automated
run automated tool for a few days
abort, change command line arguments to use different heuristics
run again and iterate till you find a set of heuristics that prove it fully
automatically in a few seconds

8/123

Interactive Proofs

@ combine strengths of manual and automated proofs
@ many different options to combine automated and manual proofs

» mainly check existing proofs (e.g. HOL Zero)

» user mainly provides lemmata statements, computer searches proofs
using previous lemmata and very few hints (e.g. ACL 2)

» most systems are somewhere in the middle

o typically the human user
» provides insights into the problem
» structures the proof
» provides main arguments
o typically the computer
» checks proof
> keeps track of all use assumptions
» provides automation to grind through lengthy, but trivial proofs

9/123

Typical Interactive Proof Activities

@ provide precise definitions of concepts

@ state properties of these concepts
@ prove these properties
» human provides insight and structure
» computer does book-keeping and automates simple proofs
build and use libraries of formal definitions and proofs
» formalisations of mathematical theories like
* lists, sets, bags, ...
* real numbers
* probability theory
» specifications of real-world artefacts like
* processors
* programming languages
* network protocols
> reasoning tools

There is a strong connection with programming.

Lessons learned in Software Engineering apply.

10/123

Different Interactive Provers

@ there are many different interactive provers, e.g.

Isabelle/HOL

Coq

PVS

HOL family of provers
ACL2

v

vV vy VY VvYYyYy

@ important differences

» the formalism used
level of trustworthiness
level of automation
libraries
languages for writing proofs
user interface

vV VY vy VY VY

11/123

Which theorem prover is the best one? :-)

@ there is no best theorem prover

@ better question: Which is the best one for a certain purpose?

@ important points to consider
> existing libraries

YV VY VY VY VY VY VvYY

used logic

level of automation

user interface

importance development speed versus trustworthiness
How familiar are you with the different provers?
Which prover do people in your vicinity use?

your personal preferences

In this course we use the HOL theorem prover,
because it is used by the TCS group.

12 /123

Part Il

Organisational Matters

13 /123

Aims of this Course

Aims
e introduction to interactive theorem proving (ITP)

@ being able to evaluate whether a problem can benefit from ITP

hands-on experience with HOL
learn how to build a formal model
learn how to express and prove important properties of such a model

learn about basic conformance testing

use a theorem prover on a small project

Required Prerequisites
@ some experience with functional programming

@ knowing Standard ML syntax

@ basic knowledge about logic (e.g. First Order Logic)

14 /123

Dates

@ Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016/2017

@ always in room 4523 or 4532
@ each week

Mondays 10:15 - 11:45 lecture
Wednesdays 10:00 - 12:00 practical session
Fridays 13:00 - 15:00 practical session

no lecture on Monday, 1st of May, instead on Wednesday, 3rd May
last lecture: 12th of June
last practical session: 21st of June

9 lectures, 17 practical sessions

15/123

Exercises

@ after each lecture an exercise sheet is handed out

@ work on these exercises alone, except if stated otherwise explicitly
@ exercise sheet contains due date

» usually 10 days time to work on it

» hand in during practical sessions

> lecture Monday — hand in at latest in next week's Friday session
@ main purpose: understanding ITP and learn how to use HOL

» no detailed grading, just pass/fail
retries possible till pass
if stuck, ask me or one another
practical sessions intend to provide this opportunity

v

v

v

16 /123

Practical Sessions

@ very informal
@ main purpose: work on exercises

v

| have a look and provide feedback

» you can ask questions

> | might sometimes explain things not covered in the lectures
> | might provide some concrete tips and tricks

> you can also discuss with each other

@ attendance not required, but highly recommended
> exception: session on 21st April

@ only requirement: turn up long enough to hand in exercises

@ you need to bring your own computer

17 /123

Handing-in Exercises

@ exercises are intended to be handed-in during practical sessions

@ attend at least one practical session each week
@ leave reasonable time to discuss exercises
» don’t try to hand your solution in Friday 14:55

@ retries possible, but reasonable attempt before deadline required
@ handing-in outside practical sessions

» only if you have a good reason

» decided on a case-by-case basis
@ electronic hand-ins

» only to get detailed feedback

» does not replace personal hand-in

> exceptions on a case-by-case basis if there is a good reason

» | recommend using a KTH GitHub repo

18 /123

Passing the ITP Course

o there is only a pass/fail mark
@ to pass you need to

» attend at least 7 of the 9 lectures
> pass 8 of the 9 exercises

19/123

Communication

e 6 o6 o

we have the advantage of being a small group
therefore we are flexible
so please ask questions, even during lectures

there are many shy people, therefore

» anonymous checklist after each lecture

» anonymous background questionnaire in first practical session
further information is posted on Interactive Theorem Proving
Course group on Group Web

contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se

20 /123

Part Il

HOL 4 History and Architecture

21/123

LCF - Logic of Computable Functions

e Standford LCF 1971-72 by Milner et al.
@ formalism devised by Dana Scott in 1969

@ intended to reason about recursively defined
functions

@ intended for computer science applications

@ strengths

» powerful simplification mechanism
» support for backward proof

@ limitations

Robin Milner
» proofs need a lot of memory (1934 - 2010)

» fixed, hard-coded set of proof commands

22/123

LCF - Logic of Computable Functions Il

@ Milner worked on improving LCF in Edinburgh

@ research assistants

v

Lockwood Morris
Malcolm Newey
Chris Wadsworth
Mike Gordon

Edinburgh LCF 1979
introduction of Meta Language (ML)

v vy

ML was invented to write proof procedures
ML become an influential functional programming language

using ML allowed implementing the LCF approach

23 /123

LCF Approach

@ implement an abstract datatype thm to represent theorems

@ semantics of ML ensure that values of type thm can only be created
using its interface

@ interface is very small

> predefined theorems are axioms
» function with result type theorem are inferences

@ —> However you create a theorem, it is valid.

@ together with similar abstract datatypes for types and terms, this
forms the kernel

24 /123

LCF Approach I

Modus Ponens Example

Inference Rule SML function
N'Fa=b Ara val MP : thm -> thm -> thm
FTUAFDb MP(TFa= b)(Ata)=(TUAF b)

@ very trustworthy — only the small kernel needs to be trusted

o efficient — no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds.

25 /123

LCF Style Systems

There are now many interactive theorem provers out there that use an
approach similar to that of Edinburgh LCF.

e HOL family

HOL theorem prover
HOL Light

HOL Zero

Proof Power

v

v v VvYy

Isabelle
Nuprl
Coq

26 /123

History of HOL

1979 Edinburgh LCF by Milner, Gordon, et al.

@ 1981 Mike Gordon becomes lecturer in Cambridge
@ 1985 Cambridge LCF

» Larry Paulson and Geérard Huet

» implementation of ML compiler

» powerful simplifier

» various improvements and extensions

1988 HOL

» Mike Gordon and Keith Hanna
» adaption of Cambridge LCF to classical higher order logic
> intention: hardware verification

1990 HOL90
reimplementation in SML by Konrad Slind at University of Calgary

1998 HOL98
implementation in Moscow ML and new library and theory mechanism

since then HOL Kananaskis releases, called informally HOL 4

27 /123

Family of HOL

Edinburgh LCF
o ProofPower
commercial version of HOL88 by Roger
Jones, Rob Arthan et al. Cambridge LCF
o HOL Light
lean CAML / OCaml port by John Harrison HOLSS
e HOL Zero /
trustworthy proof checker by Mark Adams hoto0 fabelle/HOL
o Isabelle Frooffower
» 1990 by Larry Paulson HO Light
» meta-theorem prover that supports
multiple logics
» however, mainly HOL used, ZF a little holos HOL Zero
» nowadays probably the most widely used
HOL system
» originally designed for software verification HOL4

28 /123

Part IV

HOL's Logic

29 /123

HOL Logic

o the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

@ this sounds complicated, but is intuitive for SML programmers
@ (S)ML and HOL logic designed to fit each other
@ if you understand SML, you understand HOL logic

HOL = functional programming + logic

Ambiguity Warning

The acronym HOL refers to both the HOL interactive theorem prover and
the HOL logic used by it. It's also a common abbreviation for higher order
logic in general.

30/123

Types

@ SML datatype for types

» Type Variables (’a, «, ’b, 8, ...)
Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

» Atomic Types (c)
Atomic types denote fixed types. Examples: num, bool, unit

» Compound Types ((o1,...,0,)0p)
op is a type operator of arity n and oy, ...,0, argument types. Type
operators denote operations for constructing types.
Examples: num list or ’a # ’b.

» Function Types (o1 — 03)
01 — 03 is the type of total functions from o7 to o5.

@ types are never empty in HOL, i.e.
for each type at least one value exists

@ all HOL functions are total

31/123

Terms

SML datatype for terms

Variables (x,y,...)

Constants (c,...)

Function Application (f a)

Lambda Abstraction (\x. f x or Ax. fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

vy vy VvYyy

terms have to be well-typed
same typing rules and same type-inference as in SML take place

terms very similar to SML expressions

notice: predicates are functions with return type bool, i.e. no
distinction between functions and predicates, terms and formulae

32/123

Terms Il

HOL term SML expression type HOL / SML

0 0 num / int

x:’a x:’a variable of type ’a

x:bool x:bool variable of type bool

x + 5 X +5 applying function + to x and 5

\x. x + 5 fn x => x + 5 anonymous (a. k. a. inline) function
of type num -> num

(5, T) (5, true) num # bool / int * bool

[5;3;2]1++[6] [5,3,2]@[6] num list / int list

33/123

Free and Bound Variables / Alpha Equivalence

@ in SML, the names of function arguments does not matter (much)

similarly in HOL, the names of variables used by lambda-abstractions
does not matter (much)

the lambda-expression Ax. t is said to bind the variables x in term t
variables that are guarded by a lambda expression are called bound
all other variables are free

Example: x is free and y is bound in (x =5) A (Ay. (¥ <x)) 3

the names of bound variables are unimportant semantically

e 6 6 o6 o o

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

(]

Example: Ax. x and \y. y are alpha-equivalent

@ Example: x and y are not alpha-equivalent

34 /123

Theorems

@ theorems are of the form I' - p where
» [is a set of hypothesis
» pis the conclusion of the theorem
> all elements of I and p are formulae, i.e. terms of type bool
o [p records that using [the statement p has been proved
@ notice difference to logic: there it means can be proved
@ the proof itself is not recorded
@ theorems can only be created through a small interface in the kernel

35/123

HOL Light Kernel

o the HOL kernel is hard to explain

» for historic reasons some concepts are represented rather complicated
» for speed reasons some derivable concepts have been added

instead consider the HOL Light kernel, which is a cleaned-up version

there are two predefined constants
= ’a -> ’a -> bool

» @ : (a -> bool) —> ’a

@ there are two predefined types

> bool
> ind

>

@ the meaning of these types and constants is given by inference rules
and axioms

36 /123

HOL Light Inferences |

REFL
lFs=t
Atbt=u
— TRANS
rUAFS:u
AFu=v
types fit

COMB

lEs=t
x not free in T

ABS
M- x.s=MXx.t

—— BETA
F(Ax. t)x =t

ASSUME
{p}Fp

37/123

HOL Light Inferences Il

N-pe AF
p=4q pEQ,MP
FTUAFgq
MNe=p Al gq

DEDUCT_ANTISYM_RULE

(Mr—{ehu(Aa—-{ph)Fpegq

Flx1, .. xa] Foplx, .-y X

INST
Mt1, ... ta] Fplta, ..., ta]

Moa,...,an| F plaa, ..., an)

INST_TYPE
M-yl byl

38 /123

HOL Light Axioms and Definition Principles

@ 3 axioms needed

ETA_AX | —(Ax. tx)=t
SELECT_AX |—=P x= P((Q)P))
INFINITY_AX predefined type ind is infinite

definition principle for constants

» constants can be introduced as abbreviations
» constraint: no free vars and no new type vars

definition principle for types
> new types can be defined as non-empty subtypes of existing types
@ both principles
> lead to conservative extensions
> preserve consistency

39/123

HOL Light derived concepts

Everything else is derived from this small kernel.

T
AN

—
v
=

—def
—def
—def
—def
—def

(Ap. p) = (Ap. p)

Apg. (M. fpg)=(\f.fTT)
Apq. (PAq<p)
AP.(P=Mx.T)

AP. (Vq. (Vx. P(x) = q) = q)

40 /123

Multiple Kernels

o Kernel defines abstract datatypes for types, terms and theorems
@ one does not need to look at the internal implementation
@ therefore, easy to exchange

@ there are at least 3 different kernels for HOL

» standard kernel (de Bruijn indices)
» experimental kernel (name / type pairs)
» OpenTheory kernel (for proof recording)

41 /123

HOL Logic Summary

HOL theorem prover uses classical higher order logic

HOL logic is very similar to SML
> syntax
> type system
> type inference
HOL theorem prover very trustworthy because of LCF approach

> there is a small kernel
» proofs are not stored explicitly

you don't need to know the details of the kernel

usually one works at a much higher level of abstraction

42 /123

Part V

Basic HOL Usage

43 /123

HOL Technical Usage Issues

(]

practical issues are discussed in practical sessions
» how to install HOL

which key-combinations to use in emacs-mode

detailed signature of libraries and theories

all parameters and options of certain tools

vV vy VvYy

@ exercise sheets sometimes

> ask to read some documentation
> provide examples
> list references where to get additional information

if you have problems, ask me outside lecture (tuerk@kth.se)

covered only very briefly in lectures

44 /123

mailto:tuerk@kth.se

Installing HOL

webpage: https://hol-theorem-prover.org

HOL supports two SML implementations

» Moscow ML (http://mosml.org)
» PolyML (http://www.polyml.org)

| recommend using PolyML

please use emacs with
> hol-mode
> sml-mode
» hol-unicode, if you want to type Unicode

please install recent revision from git repo or Kananaskis 11 release

documentation found on HOL webpage and with sources

45 /123

https://hol-theorem-prover.org
http://mosml.org
http://www.polyml.org

General Architecture

@ HOL is a collection of SML modules
o starting HOL starts a SML Read-Eval-Print-Loop (REPL) with

» some HOL modules loaded

» some default modules opened

> an input wrapper to help parsing terms called unquote
@ unquote provides special quotes for terms and types

» implemented as input filter

> ‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]

» ‘‘“:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]
@ main interfaces

» emacs (used in the course)

> vim

> bare shell

46 /123

Filenames

@ *Script.sml — HOL proof script file

>

| 3
>
>

script files contain definitions and proof scripts

executing them results in HOL searching and checking proofs
this might take very long

resulting theorems are stored in *Theory.{sml|sig} files

o *Theory.{sml|sig} — HOL theory

>

>

>

auto-generated by corresponding script file
load quickly, because they don't search/check proofs
do not edit theory files

e *Syntax.{sml|sig} — syntax libraries

>

>

contain syntax related functions
i.e. functions to construct and destruct terms and types

@ *Lib.{sml|sig} — general libraries

e *Simps.{sml|sig} — simplifications

@ selftest.sml — selftest for current directory

47 /123

Directory Structure

@ bin — HOL binaries
@ src — HOL sources
o examples — HOL examples
> interesting projects by various people
» examples owned by their developer
» coding style and level of maintenance differ a lot
@ help — sources for reference manual

» after compilation home of reference HTML page
@ Manual — HOL manuals

» Tutorial

» Description

> Reference (PDF version)
> Interaction

» Quick (cheat pages)

» Style-guide

> L.

48 /123

Unicode

HOL supports both Unicode and pure ASCII input and output
advantages of Unicode compared to ASCII

» easier to read (good fonts provided)
> no need to learn special ASCII syntax

disadvanges of Unicode compared to ASCII

» harder to type (even with hol-unicode.el)
> less portable between systems

whether you like Unicode is highly a matter of personal taste
HOL's policy

» no Unicode in HOL's source directory src

» Unicode in examples directory examples is fine

@ | recommend turning Unicode output off initially

» this simplifies learning the ASCII syntax
» no need for special fonts
> it is easier to copy and paste terms from HOL's output

49 /123

Where to find help?

reference manual
» available as HTML pages, single PDF file and in-system help

description manual

Style-guide (still under development)

HOL webpage (https://hol-theorem-prover.org)
mailing-list hol-info

DB.match and DB.find

*Theory.sig and selftest.sml files

ask someone, e. g. me :-) (tuerk@kth.se)

50 /123

https://hol-theorem-prover.org
mailto:tuerk@kth.se

Part VI

Forward Proofs

51/123

Kernel too detailed

@ we already discussed the HOL Logic

o the kernel itself does not even contain basic logic operators
@ usually one uses a much higher level of abstraction

» many operations and datatypes are defined
> high-level derived inference rules are used

@ let's now look at this more common abstraction level

52 /123

Common Terms and Types

type vars

type annotated term
true

false

negation

conjunction

disjunction

implication

equivalence

disequation
all-quantification
existential quantification
Hilbert's choice operator

Unicode
a, B, ...
term:type
T
F
—b
bl A b2
bl V b2
bl = b2
bl < b2
vl # v2
Vx. P x
dx. P x
@x. P x

ASCII
’a, ’b, ...
term:type

T

F

~b
bl /\ b2
bl \/ b2
bl ==> b2
bl <=> b2
vl <> v2

Ix. P x

?x. P x

0x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don't start variable names with an underscore

53 /123

Syntax conventions

@ common function syntax
» prefix notation, e.g. SUC x
> infix notation, e.g. x + y
» quantifier notation, e.g. Vx. P x means (V) (\x. P x)
@ infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are the sameasx + y
@ quantifiers of the same type don't need to be repeated
Example: Vx y. P x yisshort for Vx. Vy. P x y
@ there is special syntax for some functions
Example: if ¢ then vl else v2 is nice syntax for COND ¢ v1 v2
@ associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

54 /123

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.

55/123

Creating Terms |l

Parser Syntax Funs

““:bool"" mk_type ("bool", []) or bool type of Booleans

ceTes mk_const ("T", bool) or T term true

R A mk_neg (negation of
mk_var ("b", bool)) Boolean var b

el /N LY mkeconj (L., L) conjunction

oo N/ Lo mkdisj Gol., L) disjunction

Coooe==> .0 mkiimp (..., ...) implication

el = Lo mkeq (..., ...) equation

oLl <= L0 Y mkeq (L., olll) equivalence

L. <> L0 mkneg (mkeq (..., ...)) negated equation

56 /123

Inference Rules for Equality

REFL

Ft=t

lEs=t
x not free in T

M= Ax. s = Ax.t

lFs=t
ArFu=v
types fit

FUAF s(u) =t(v)

MK_COMB

lFs=t
— GSYM
l—t=s
lEs=t
AFt=u
———— TRANS
FTUAFs=u
NlN-p&e AF
peq P B MP
FTUAFgq
BETA

F(Ax. t)x=t

57 /123

Inference Rules for free Variables

M[x1, ..oy xa] Foplx, ..y X
Mt1, ..., ta] F plt1, ..., tn]

INST

Maa, ..., an] Fplat, ..., an)

INST_TYPE
r[717 .. 77"] F P[’Yh CIEaE 77n]

58 /123

Inference Rules for Implication

-p=g¢g
AFp
—— © MP, MATCH.MP e
FTUAF g p DISCH
r—{g}Fg=p
rFrp=gq EQ_IMP_RULE
TEp— o QMP- Mq—
rFp=gq 9= P ynpiscu
N-g—op ru{qttop
N-p=gq N-p=—F
AFg— p i NOT_INTRO
— T 7" IMP_ANTISYM_RULE ~P
FTUAFp=gq
re-p NOT_ELIM
-p=gq M-p— }
AF-qg=r
IMP_TRANS

TUAF p=—r

59 /123

Inference Rules for Conjunction / Disjunction

"P isn

[A+ R
p qCONJ N-p V q

FTUAFpPp A g

"9 Dbige
F-p A I
P~ 9 conguNcTI F=pVva
MN=p

lpVvag

FEp A AL U{ptEr
#CONJUNCT2 A;U%Z{H
Fq DISJ_CASES

FTUATUA T

60 /123

Inference Rules for Quantifiers

- p[u/x] EXISTS
M= t free in - o -
P X NOt Tree In GEN I+ Jx. p

N=-vx.p
N-3x. p
[F Vx. AU u/x|t = r
rl—[u/)l:] SPEC u not free{[iJrE F/,]A},p and r
P CHOOSE

FTUAETr

61/123

Forward Proofs

@ axioms and inference rules are used to derive theorems
@ this method is called forward proof

> one starts with basic building blocks
» one moves step by step forward
» finally the theorem one is interested in is derived

@ one can also implement own proof tools

62 /123

Forward Proofs — Example |
Let's prove Vp. p = p.

val IMP_REFL_THM = let

val tml = ‘‘p:bool‘‘; > val tml = “‘p‘‘: term

val thml = ASSUME tml; > val thml = [p] |- p: thm

val thm2 = DISCH tml thml; > val thm2 = |- p ==> p: thm
in

GEN tml thm2 > val IMP_REFL_THM =

|- 'p. p ==> p: thm

end
fun IMP_REFL t = > val IMP_REFL =

SPEC t IMP_REFL_THM; fn: term -> thm

63 /123

Forward Proofs — Example Il

Let's prove
val tm_v = ‘‘v:’a‘‘;
val tm_P = ‘‘P:’a -> bool‘‘;
val tm_lhs = “‘?x. (x = v) /\ P x°¢

val tm_rhs = mk_comb (tm_P, tm_v);

val thml = let
val thmla = ASSUME tm_rhs;
val thmlb =
CONJ (REFL tm_v) thmla;
val thmlc =
EXISTS (tm_lhs, tm_v) thmlb
in
DISCH tm_rhs thmlc
end

VPv.(3x. (x=v)AP x) < P v.

val thmia = [P v] |- P v: thm
val thmlb =

[Pv] |- (v=v)/\Pv: thm
val thmlc =

[Pv] |I-7x. (x=v) /\Px

val thml = [] |-
Pv==>7x. (x=v) /\Px: thm

64

123

Forward Proofs — Example Il cont.

val thm2 = let
val thm2a =
ASSUME ‘“(u:’a =v) /\ P u‘*
val thm2b = AP_TERM tm_P
(CONJUNCT1 thm2a);
val thm2c = EQ_MP thm2b
(CONJUNCT2 thm2a);
val thm2d =
CHOOSE (‘‘u:’a‘‘,
ASSUME tm_lhs) thm2c
in
DISCH tm_lhs thm2d
end

val thm3 = IMP_ANTISYM_RULE thm2 thml

val thm4 = GENL [tm_P, tm_v] thm3

val thm2a
(u=v)

val thm2b
P u <=>

val thm2c
Pv

val thm2d
Pv

val thm2
7x. (x

val thm3

oo

7x. (x =

val thm4
7x. (x

[(w=v) /\NPul |-
/\ P u: thm
[(w=v) /\NPul |-

A

[(w=v) /\NPul |-

[?x. (x = v) /\ P x]

(1

v)

[]
v)

v)

|_
/NP x==>Pyv

|-
/NP x<=>Pv
|- 1P v.

/NP x<=>Pv

65 /123

Part VII

Backward Proofs

66 /123

Motivation |

@ let's prove 'A B. A /\ B <=>B /\ A

(* Show |- A /\ B ==>B /\ A %)

val thmia = ASSUME ‘‘A /\ B‘¢;

val thmlb = CONJ (CONJUNCT2 thmia) (CONJUNCT1 thmila);
val thmil DISCH ‘A /\ B‘¢ thmlb

(* Show |- B /\ A ==> A /\ B *)

val thm2a = ASSUME ‘‘B /\ A¢¢;
val thm2b = CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);
val thm2 = DISCH ‘‘B /\ A‘‘ thm2b

(* Combine to get |- A /\ B <=> B /\ A %)
val thm3 = IMP_ANTISYM_RULE thml thm2

(¥ Add quantifiers x)

val thm4 = GENL [€‘A:bool‘‘, ‘‘B:bool‘‘] thm3

@ this is how you write down a proof
o for finding a proof it is however often useful to think backwards

67 /123

Motivation |l - thinking backwards

@ we want to prove
» '1AB. A/\B<=>B/\A
@ all-quantifiers can easily be added later, so let's get rid of them
» A /\ B<=>B/\A
@ now we have an equivalence, let's show 2 implications
» A /\B==>B/\A
»B/\NA==>A/\B
@ we have an implication, so we can use the precondition as an
assumption

» using A /\ BshowB /\ A
» A /\B==>B/\A

68 /123

Motivation Il - thinking backwards

@ we have a conjunction as assumption, let's split it
> using A and B show B /\ A
» A /\B==>B/\A
we have to show a conjunction, so let's show both parts
» using A and B show B
» using A and B show A
» A /\ B==>B/\A
the first two proof obligations are trivial
» A /\B==>B/\A

@ we are done

69 /123

Motivation IV

@ common practise

» think backwards to find proof
» write found proof down in forward style

@ often switch between backward and forward style within a proof
Example: induction proof
» backward step: induct on ...
» forward steps: prove base case and induction case
@ whether to use forward or backward proofs depend on
» support by the interactive theorem prover you use
* HOL 4 and close family: emphasis on backward proof
* Isabelle/HOL: emphasis on forward proof
* Coq : emphasis on backward proof
» your way of thinking
> the theorem you try to prove

70 /123

HOL Implementation of Backward Proofs

e in HOL

» proof tactics / backward proofs used for most user-level proofs
» forward proofs used usually for writing automation
@ backward proofs are implemented by tactics in HOL

» decomposition into subgoals implemented in SML
» SML datastructures used to keep track of all open subgoals
» forward proof used to construct theorems

@ to understand backward proofs in HOL we need to look at

» goal — SML datatype for proof obligations
» goalStack — library for keeping track of goals
» tactic — SML type for functions performing backward proofs

71/123

Goals

@ goals represent proof obligations, i.e. theorems we need /want to prove
@ the SML type goal is an abbreviation for term list * term

@ the goal ([asm_1, ..., asmn], c) records that we need/want to
prove the theorem {asm_1, ..., asmn} |- ¢

Example Goals

Goal Theorem

([((A({, ((th]’ ”A /\ B(z) {A, B} |—A/\B
([((B(t’ ((A((]’ ((A /\ B(() {A, B} |_ A /\ B
(LB /\ AT, ““A /\ BY) {B/\ A} |I-A/\B

(1, ““@/\NA) =>QA/N\B) |- @B/ A =>(A/\B)

v

72 /123

Tactics

@ the SML type tactic is an abbreviation for

the type goal -> goal list * validation
@ validation is an abbreviation for thm list -> thm
@ given a goal, a tactic

» decides into which subgoals to decompose the goal
» returns this list of subgoals
» returns a validation that

* given a list of theorems for the computed subgoals
* produces a theorem for the original goal

@ special case: empty list of subgoals
» the validation (given [1) needs to produce a theorem for the goal

@ notice: a tactic might be invalid

73 /123

Tactic Example — CONJ_TAC

t =conjl /\ conj2
MN=p AlFg asl F conj1 asl F conj2

CONJ
FTUAFpPp A g aslF t

val CONJ_TAC: tactic = fn (asl, t) =>

let

val (conjl, conj2) = dest_conj t
in

([(asl, conj1), (asl, conj2)],

fn [thl, th2] => CONJ thl th2 | _ => raise Match)
end

handle HOL_ERR _ => raise ERR "CONJ_TAC" ""

74 /123

Tactic Example — EQ_TAC

t = 1lhs = rhs
asl 1hs ==> rhs

N-p=—=gq
AF-qg=1p asl F rhs ==> lhs
—— IMP_ANTISYM_RULE
FTUAFp=gq aslkF t

val EQ_TAC: tactic = fn (asl, t) =>

let
val (lhs, rhs) = dest_eq t
in
([(asl, mk_imp (1lhs, rhs)), (asl, mk_imp (rhs, 1lhs))],
fn [thl, th2] => IMP_ANTISYM_RULE thi th2
| => raise Match)

end
handle HOL_ERR _ => raise ERR "EQ_TAC" ""

75

123

proofManagerLib / goalStack

@ the proofManagerLib keeps track of open goals

@ it uses goalStack internally
@ important commands

» g — set up new goal

» e — expand a tactic

> p — print the current status

> top_thm — get the proved thm at the end

76 /123

Tactic Proof Example |

Previous Goalstack

User Action
g ‘'AB. A/\ B<=>B/\ A

New Goalstack
Initial goal:

'AB. A/\NB<=>B/\A

: proof

u]
o)
I

i
it

77/123

Tactic Proof Example Il

Previous Goalstack
Initial goal:

1A B. A/\B<=>B/\A

: proof

User Action
e GEN_TAC;
e GEN_TAC;

New Goalstack
A /\B<=>B/\A

: proof

v

78 /123

Tactic Proof Example Il

Previous Goalstack
A /\B<=>B/\A

: proof

User Action
e EQ_TAC,;

New Goalstack
B/\ A==>A/\B

A/\NB==>B/\A

: proof

79/123

Tactic Proof Example IV

Previous Goalstack
B/\ A==>A/\B

A /\ B==>B /\ A : proof

User Action
e STRIP_TAC;

New Goalstack
B /\ A

80/123

Tactic Proof Example V

Previous Goalstack
B /\ A

0. A
1. B

User Action
e CONJ_TAC;

New Goalstack

A
0. A
1. B
B
0. A
1. B

81/123

Tactic Proof Example VI

Previous Goalstack

A

0 A

1 B
B

0 A

1 B

4

User Action

e (ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘));
e (ACCEPT_TAC (ASSUME ‘‘A:bool‘‘));

New Goalstack
B/\A==>4/\B

: proof

v

82/123

Tactic Proof Example VII

Previous Goalstack
B /\ A ==>4 /\B

: proof

User Action

e STRIP_TAC;
e (ASM_REWRITE_TAC[]);

New Goalstack

Initial goal proved.
|- 'AB. A/\ B <=>B/\A:
proof

D Q>

83/123

Tactic Proof Example VIII

Previous Goalstack

Initial goal proved.
|- 'AB. A/\ B<=>B/\ A:
proof

User Action
val thm = top_thm();

Result

val thm =
|- 'AB. A/\ B<=>B/\A:
thm

u]
o)
I
i
it

Qe

84 /123

Tactic Proof Example IX

Combined Tactic

val thm = prove (‘“!A B. A /\ B <=> B /\ A¢‘,
GEN_TAC >> GEN_TAC >>
EQ_TAC >| [
STRIP_TAC >>
STRIP_TAC >| [
ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘),
ACCEPT_TAC (ASSUME ¢‘A:bool‘‘)
1,

STRIP_TAC >>
ASM_REWRITE_TAC[]
D;

Result

val thm =
|- 'AB. A /\ B<=>B/\A:
thm

85/

123

Tactic Proof Example X

Cleaned-up Tactic

val thm = prove (‘‘!'A B. A /\ B <=>B /\ A‘‘,
REPEAT GEN_TAC >>
EQ_TAC >> (
REPEAT STRIP_TAC >>
ASM_REWRITE_TAC []

)); 4
Result
val thm =
|- 'A B. A/\ B<=>B/\A:
thm)

86 /123

Summary Backward Proofs

@ in HOL most user-level proofs are tactic-based

» automation often written in forward style
> low-level, basic proofs written in forward style
> nearly everything else is written in backward (tactic) style

@ there are many different tactics

@ in the lecture only the most basic ones will be discussed
@ you need to learn about tactics on your own

» good starting point: Quick manual
> learning finer points takes a lot of time
> exercises require you to read up on tactics

@ often there are many ways to prove a statement, which tactics to use
depends on
» personal way of thinking
> personal style and preferences
» maintainability, clarity, elegance, robustness
>

87 /123

Part VIII

Basic Tactics

88 /123

Syntax of Tactics in HOL

@ originally tactics were written all in capital letters with underscores
Example: ALL_TAC

@ since 2010 more and more tactics have overloaded lower-case syntax
Example: all _tac

@ sometimes, the lower-case version is shortened
Example: REPEAT, rpt

@ sometimes, there is special syntax
Example: THEN, \\, >>
@ which one to use is mostly a matter of personal taste
all-capital names are hard to read and type
however, not for all tactics there are lower-case versions

>
» mixed lower- and upper-case tactics are even harder to read
» often shortened lower-case name is not speaking

v

In the lecture we will use mostly the old-style names.

89 /123

Some Basic Tactics

GEN_TAC
DISCH_TAC
CONJ_TAC
STRIP_TAC

DISJ1_TAC
DISJ2_TAC
EQ_TAC
ASSUME_TAC thm
EXISTS_TAC term

remove outermost all-quantifier

move antecedent of goal into assumptions

splits conjunctive goal

splits on outermost connective (combination
of GEN_TAC, CONJ_TAC, DISCH_TAC, ...)

selects left disjunct

selects right disjunct

reduce Boolean equality to implications

add theorem to list of assumptions

provide witness for existential goal

90 /123

Tacticals

@ tacticals are SML functions that combine tactics to form new tactics
@ common workflow

» develop large tactic interactively

» using goalStack and editor support to execute tactics one by one
» combine tactics manually with tacticals to create larger tactics

» finally end up with one large tactic that solves your goal

> use prove or store_thm instead of goalStack

@ make sure to clearly mark proof structure by e. g.

> use indentation

> use parentheses

> Uuse appropriate connectives
>

@ goalStack commands like e or g should not appear in your final proof

91/123

Some Basic Tacticals

tacl >> tac2 THEN, \\ applies tactics in sequence

tac >| tacL THENL applies list of tactics to subgoals

tacl >- tac2 THEN1 applies tac2 to the first subgoal of tacl
REPEAT tac rpt repeats tac until it fails

NTAC n tac apply tac n times

REVERSE tac reverse reverses the order of subgoals

tacl ORELSE tac2 applies tacl only if tac2 fails

TRY tac do nothing if tac fails

ALL_TAC all tac do nothing

NO_TAC fail

92 /123

Basic Rewrite Tactics

@ (equational) rewriting is at the core of HOL's automation

o we will discuss it in detail later
@ details complex, but basic usage is straightforward
> given a theorem rewr_thm of form |- P x = Q xand aterm t
> rewriting t with rewr_thm means
» replacing each occurrence of a term P ¢ for some c with Q cint
@ warning: rewriting may loop
Example: rewriting with theorem |- X <=> (X /\ T)

REWRITE_TAC thms rewrite goal using equations found
in given list of theorems

ASM_REWRITE_TAC thms in addition use assumptions

ONCE_REWRITE_TAC thms rewrite once in goal using equations

ONCE_ASM REWRITE TAC thms rewrite once using assumptions

93 /123

Case-Split and Induction Tactics

Induct_on ‘term’
Induct

Cases_on ‘term’
Cases
MATCH_MP_TAC thm
IRULE_TAC thm

induct on term
induct on all-quantor
case-split on term
case-split on all-quantor

apply rule
generalised apply rule

94 /123

Assumption Tactics

POP_ASSUM thm-tac use and remove first assumption
common usage POP_ASSUM MP_TAC

PAT_ASSUM term thm-tac use (and remove) first
also PAT_X_ASSUM term thm-tac assumption matching pattern

WEAKEN_TAC term-pred removes first assumption
satisfying predicate

95 /123

Decision Procedure Tactics

@ decision procedures try to solve the current goal completely
@ they either succeed of fail
@ no partial progress

@ decision procedures vital for automation

TAUT_TAC propositional logic tautology checker
DECIDE_TAC linear arithmetic for num

METIS_TAC thms first order prover
numLib.ARITH_TAC Presburger arithmetic
intLib.ARITH.TAC uses Omega test

96 /123

Subgoal Tactics

@ it is vital to structure your proofs well

» improved maintainability
» improved readability
» improved reusability
> saves time in medium-run

o therefore, use many small lemmata

@ also, use many explicit subgoals

‘term-frag’ by tac show term with tac and
add it to assumptions
‘term-frag’ sufficies by tac show it sufficies to prove term

97 /123

Term Fragments / Term Quotations

notice that by and sufficies_ by take term fragments

term fragments are also called term quotations

they represent (partially) unparsed terms

parsing takes time place during execution of tactic in context of goal
this helps to avoid type annotations

however, this means syntax errors show late as well

the library Q defines many tactics using term fragments

98 /123

Importance of Exercises

here many tactics are presented in a very short amount of time

there are many, many more important tactics out there

few people can learn a programming language just by reading manuals
similar few people can learn HOL just by reading and listening

you should write your own proofs and play around with these tactics

solving the exercises is highly recommended
(and actually required if you want credits for this course)

99 /123

Tactical Proof - Example | - Slide 1

@ we want to prove !1. LENGTH (APPEND 1 1) = 2 * LENGTH 1
o first step: set up goal on goalStack

@ at same time start writing proof script

Proof Script

val LENGTH_APPEND_SAME = prove (
€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,

Actions
@ rung ‘‘!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢
@ this is done by hol-mode

@ move cursor inside term and press M-h g
(menu-entry HOL - Goalstack - New goal)

100 /123

Tactical Proof - Example | - Slide 2

Current Goal
11. LENGTH (1 ++ 1) = 2 * LENGTH 1

@ the outermost connective is an all-quantor
@ let's get rid of it via GEN_TAC

Proof Script
val LENGTH_APPEND_SAME = prove (

€“11. LENGTH (1 ++ 1) = 2 * LENGTH 1°¢,
GEN_TAC

Actions
@ run e GEN_TAC
@ this is done by hol-mode

@ mark line with GEN_TAC and press M-h e
(menu-entry HOL - Goalstack - Apply tactic)

v

101 /123

Tactical Proof - Example | - Slide 3

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

@ LENGTH of APPEND can be simplified

@ let’s search an appropriate lemma with DB.match

Actions
@ run DB.printmatch [] ¢‘LENGTH (_ ++)¢
@ this is done via hol-mode

@ press M-h m and enter term pattern
(menu-entry HOL - Misc - DB match)

@ this finds the theorem listTheory.LENGTH APPEND
|- '11 12. LENGTH (11 ++ 12) = LENGTH 11 + LENGTH 12

102 /123

Tactical Proof - Example | - Slide 4

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

o let's rewrite with found theorem listTheory.LENGTH_APPEND

Proof Script

val LENGTH_APPEND_SAME = prove (

€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
@ connect the new tactic with tactical >> (THEN)

@ use hol-mode to expand the new tactic

103 /123

Tactical Proof - Example | - Slide 5

Current Goal
LENGTH 1 + LENGTH 1 = 2 *x LENGTH 1 J

@ let's search a theorem for simplifying 2 * LENGTH 1
@ prepare for extending the previous rewrite tactic

Proof Script

val LENGTH_APPEND_SAME = prove (

€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
@ DB.match finds theorem arithmeticTheory.TIMES2

@ press M-h b and undo last tactic expansion
(menu-entry HOL - Goalstack - Back up)

v

104 /123

Tactical Proof - Example | - Slide 6

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

@ extend the previous rewrite tactic
o finish proof

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
GEN_TAC >>
REWRITE_TAC[1listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Actions
@ add TIMES?2 to the list of theorems used by rewrite tactic

@ use hol-mode to expand the extended rewrite tactic

@ goal is solved, so let's add closing parenthesis and semicolon

v

105 /123

Tactical Proof - Example | - Slide 7

@ we have a finished tactic proving our goal
@ notice that GEN_TAC is not needed
@ let's polish the proof script

Proof Script

val LENGTH_APPEND_SAME = prove (
¢“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Polished Proof Script

val LENGTH_APPEND_SAME = prove (
€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

106 /123

Tactical Proof - Example Il - Slide 1

let’'s prove something slightly more complicated

drop old goal by pressing M-h d
(menu-entry HOL - Goalstack - Drop goal)

set up goal on goalStack (M-h g)

@ at same time start writing proof script

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!xl x2 x3 11 12 13.

(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
~(ALL_DISTINCT (11 ++ 12 ++ 13)) ‘¢,

107 /123

Tactical Proof - Example Il - Slide 2

Current Goal

Ix1l x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>
“ALL_DISTINCT (11 ++ 12 ++ 13)

@ let's strip the goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!xl x2 x3 11 12 13.

(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
“(ALL_DISTINCT (11 ++ 12 ++ 13))°‘¢,

REPEAT STRIP_TAC

108 /123

Tactical Proof - Example Il - Slide 2

Current Goal

Ixl x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>
“ALL_DISTINCT (11 ++ 12 ++ 13)

@ let's strip the goal

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
REPEAT STRIP_TAC

Actions
@ add REPEAT STRIP_TAC to proof script

@ expand this tactic using hol-mode

v

109 /123

Tactical Proof - Example Il - Slide 3

Current Goal

0. MEM x1 11
1. MEM x2 12
2. MEM x3 13
3 x1 <= x2

x2 <= x3
x3 <= SUC x1
ALL_DISTINCT (11 ++ 12 ++ 13)

@ oops, we did too much, we would like to keep ALL_DISTINCT in goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...°¢°¢,
REPEAT GEN_TAC >> STRIP_TAC

Actions

@ undo REPEAT STRIP_TAC (M-h b)

@ expand more fine-tuned strip tactic

v

110 /123

Tactical Proof - Example Il - Slide 4

Current Goal
“ALL_DISTINCT (11 ++ 12 ++ 13)

0. MEM x1 11 3. x1 <= x2

1. MEM x2 12 4. x2 <= x3

2. MEM x3 13 5. x3 <= SUC x1
@ now let's simplify ALL_DISTINCT

@ search suitable theorems with DB.match

@ use them with rewrite tactic

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[1listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND]

111 /123

Tactical Proof - Example Il - Slide 5

Current Goal
~((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ !e. MEM e 11 ==> “MEM e 12) /\
ALL_DISTINCT 13 /\ 'e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)

0. MEM x1 11 3. x1 <= x2
1. MEM x2 12 4. x2 <= x3
2. MEM x3 13 5. x3 <= SUC x1

@ from assumptions 3, 4 and 5 we know x2 = x1 \/ x2 = x3

@ let's deduce this fact by DECIDE_TAC

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,

REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>

“(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC

112 /123

Tactical Proof - Example Il - Slide 6

Current Goals — 2 subgoals, one for each disjunct
~((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ l'e. MEM e 11 ==> “MEM e 12) /\
ALL_DISTINCT 13 /\ !e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)
0. MEM x1 11 4. x2 <= x3
1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6a. x2 = x1
3. x1 <= x2 6b. x2 = x3

@ both goals are easily solved by first-order reasoning
@ let's use METIS_TAC[] for both subgoals

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC >> (

METIS_TAC[]
));

113 /123

Tactical Proof - Example Il - Slide 7

Finished Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (
““1x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==
~“(ALL_DISTINCT (11 ++ 12 ++ 13))°°,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC [listTheory .ALL_DISTINCT_APPEND, listTheory. MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC >> (
METIS_TAC[]
)

@ notice that proof structure is explicit

@ parentheses and indentation used to mark new subgoals

114 /123

Part IX

Induction Proofs

115 /123

Mathematical Induction

@ mathematical (a. k. a. natural) induction principle:
If a property P holds for 0 and P(n) implies P(n+ 1) for all n,
then P(n) holds for all n.

@ HOL is expressive enough to encode this principle as a theorem.
|- 'P. PO /\ (!n. Pn==>P (SUCn)) ==> !n. Pn

@ Performing mathematical induction in HOL means applying this
theorem (e. g. via HO_MATCH_MP_TAC)

@ there are many similarish induction theorems in HOL

@ Example: complete induction principle

|- 'P. (In. (!m. m <n==>Pm) ==>Pn) ==> In. Pn

116 /123

Structural Induction Theorems

structural induction theorems are an important special form of
induction theorems

they describe performing induction on the structure of a datatype
Example: |- 'p. P [0 /\ (1t. Pt ==> th. P (h::t)) ==> !1. P 1
structural induction is used very frequently in HOL

for each algabraic datatype, there is an induction theorem

117 /123

Other Induction Theorems

@ there are many induction theorems in HOL

» datatype definitions lead to induction theorems

» recursive function definitions produce corresponding induction theorems
> recursive relation definitions give rise to induction theorems

» many are manually defined

@ Examples
[-'P. P[] /\ (11. P1==>1!x. P (SNOC x 1)) ==> !1. P 1

|- 'P. P FEMPTY /\
('f. P £ ==> Ix y. x NOTIN FDOM f ==> P (f |+ (x,y))) ==> !f. P £

|- 'p. P {} /\
(!'s. FINITE s /\ P

s ==> le. e NOTIN s ==> P (e INSERT s)) ==>
!'s. FINITE s ==> P s

|- P. (!lxy.Rxy==>Pxy) /\(Uxyz. Pxy/\Pyz-==>Pxz) ==>

lwuv. Rftuv==>Puv

118 /123

Induction (and Case-Split) Tactics

@ the tactic Induct (or Induct_on) usually used to start induction
proofs

o it looks at the type of the quantifier (or its argument) and applies the
default induction theorem for this type

@ this is usually what one needs

@ other (non default) induction theorems can be applied via
INDUCT_THEN or HO_MATCH_MP_TAC

@ similarish Cases_on picks and applies default case-split theorems

119 /123

Induction Proof - Example | - Slide 1

@ let’s prove via induction
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

@ we set up the goal and start and induction proof on 11

Proof Script

val REVERSE_APPEND = prove (
€¢111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°,
Induct

120 /123

Induction Proof - Example | - Slide 2

@ the induction tactic produced two cases

@ base case:
112. REVERSE ([] ++ 12) = REVERSE 12 ++ REVERSE []

@ induction step:

'h 12. REVERSE (h::11 ++ 12) = REVERSE 12 ++ REVERSE (h::11)

112. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

@ both goals can be easily proved by rewriting

Proof Script

val REVERSE_APPEND = prove (‘¢
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°,
Induct >| [
REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_NIL],
ASM_REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_ASSOC]
D

121 /123

Induction Proof - Example Il - Slide 2

@ let’s prove via induction
1. REVERSE (REVERSE 1) =1

@ we set up the goal and start and induction proof on 1

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1¢°¢,
Induct

122 /123

Induction Proof - Example Il - Slide 2

@ the induction tactic produced two cases

@ base case:
REVERSE (REVERSE [1) = []

@ induction step:

'h. REVERSE (REVERSE (h::11)) = h::11

REVERSE (REVERSE 1) =1

@ again both goals can be easily proved by rewriting

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1°¢¢,
Induct >| [
REWRITE_TAC [REVERSE_DEF],
ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]
D

123 /123

	Introduction
	Motivation
	Types of Proofs
	Interactive Theorem Provers

	Organisational Matters
	HOL 4 History and Architecture
	LCF
	History and Family of HOL

	HOL's Logic
	HOL Logic
	Kernel
	HOL Logic Summary

	Basic HOL Usage
	Forward Proofs
	Term Syntax
	Inference Rules
	Forward Proofs

	Backward Proofs
	Motivation
	Backward Proofs
	General Discussion

	Basic Tactics
	Basic Tactics
	Examples

	Induction Proofs

