Interactive Theorem Proving (ITP) Course

Thomas Tuerk (tuerk@kth.se)
KTH

Academic Year 2016/17, Period 4

version 5056611 of Wed May 3 09:55:18 2017

1/123

Motivation

©

Complex systems almost certainly contain bugs.

©

Critical systems (e. g. avionics) need to meet very high standards.

©

It is infeasible in practice to achieve such high standards just by
testing.

©

Debugging via testing suffers from diminishing returns.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”
— Edsger W. Dijkstra

Part |

Introduction

Famous Bugs

o Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)
o Ariane V explosion (1996)
(integer overflow, $1 billion prototype destroyed)
o Mars Climate Orbiter (1999)
(destroyed in Mars orbit, mixup of units pound-force and newtons)

o Knight Capital Group Error in Ultra Short Time Trading (2012)
(faulty deployment, repurposing of critical flag, $440 lost in 45 min
on stock exchange)

o ...

Fun to read

http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

4/123

Proof

o proof can show absence of errors in design
o but proofs talk about a design, not a real system

@ => testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,

they do not refer to reality.”

— Albert Einstein

5/123

Detail Level of Formal Proof

In Principia Mathematica it takes 300 pages to prove 14+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

7/123

Mathematical vs. Formal Proof

Mathematical Proof Formal Proof

o informal, convince other o formal, rigorously use a
mathematicians logical formalism

o checked by community of o checkable by stupid
domain experts machines

@ subtle errors are hard to find o very reliable

o often provide some new o often contain no new ideas
insight about our world and no amazing insights

o often short, but require o often long, very tedious, but
creativity and a brilliant idea) largely trivial)

We are interested in formal proofs in this lecture.

6/123

Automated vs Manual (Formal) Proof

Fully Manual Proof
o very tedious one has to grind through many trivial but detailed proofs
o easy to make mistakes
o hard to keep track of all assumptions and preconditions

@ hard to maintain, if something changes (see Ariane V)

Automated Proof
© amazing success in certain areas
o but still often infeasible for interesting problems
o hard to get insights in case a proof attempt fails
o even if it works, it is often not that automated

run automated tool for a few days

abort, change command line arguments to use different heuristics

run again and iterate till you find a set of heuristics that prove it fully
automatically in a few seconds

8/123

Interactive Proofs

©

©

©

©

combine strengths of manual and automated proofs
many different options to combine automated and manual proofs

» mainly check existing proofs (e. g. HOL Zero)

» user mainly provides lemmata statements, computer searches proofs
using previous lemmata and very few hints (e.g. ACL 2)

» most systems are somewhere in the middle

typically the human user
» provides insights into the problem
» structures the proof
» provides main arguments
typically the computer

» checks proof
> keeps track of all use assumptions
» provides automation to grind through lengthy, but trivial proofs

9/123

Different Interactive Provers

(*]

(*]

there are many different interactive provers, e. g.
» Isabelle/HOL
» Coq

PVS

HOL family of provers

ACL2

vVvyVvy

important differences

» the formalism used
level of trustworthiness
level of automation
libraries
languages for writing proofs
user interface

vVvYy vy VY VvVyYy

11/123

Typical Interactive Proof Activities

o provide precise definitions of concepts
o state properties of these concepts
o prove these properties
> human provides insight and structure
» computer does book-keeping and automates simple proofs
o build and use libraries of formal definitions and proofs
» formalisations of mathematical theories like
* lists, sets, bags, ...
* real numbers
* probability theory
» specifications of real-world artefacts like
* processors
* programming languages
* network protocols
> reasoning tools

There is a strong connection with programming.
Lessons learned in Software Engineering apply.

Which theorem prover is the best one? :-)

o there is no best theorem prover

o better question: Which is the best one for a certain purpose?
o important points to consider
» existing libraries
used logic
level of automation
user interface
importance development speed versus trustworthiness
How familiar are you with the different provers?
Which prover do people in your vicinity use?
your personal preferences

Y VY VY VY VY VvV VY

In this course we use the HOL theorem prover,
because it is used by the TCS group.

10 /123

12/123

Aims of this Course

Aims
o introduction to interactive theorem proving (ITP)
Part |l o being able to evaluate whether a problem can benefit from ITP
o hands-on experience with HOL
o learn how to build a formal model
Organisationa| Matters o learn how to express and prove important properties of such a model
o learn about basic conformance testing

o use a theorem prover on a small project

Required Prerequisites
o some experience with functional programming

o knowing Standard ML syntax

o basic knowledge about logic (e. g. First Order Logic)

13 /123 14 /123

Dates Exercises

o Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016,/2017

o always in room 4523 or 4532

after each lecture an exercise sheet is handed out

©

©

work on these exercises alone, except if stated otherwise explicitly
exercise sheet contains due date
» usually 10 days time to work on it

©

o each week

Mondays 10:15 - 11:45 Iecture _ » hand in during practical sessions
Wednesdays 10:00 - 12:00 practical session » lecture Monday — hand in at latest in next week’s Friday session
Fridays 13:00 - 15:00 practical session @ main purpose: understanding ITP and learn how to use HOL

o no lecture on Monday, 1st of May, instead on Wednesday, 3rd May » no detailed grading, just pass/fail

> retries possible till pass
» if stuck, ask me or one another
» practical sessions intend to provide this opportunity

o last lecture: 12th of June
o last practical session: 21st of June

o 9 lectures, 17 practical sessions

15/123 16 /123

Practical Sessions

@ very informal
@ main purpose: work on exercises

» | have a look and provide feedback

you can ask questions

| might sometimes explain things not covered in the lectures
| might provide some concrete tips and tricks

>
>
»
» you can also discuss with each other

o attendance not required, but highly recommended
» exception: session on 21st April

o only requirement: turn up long enough to hand in exercises

o you need to bring your own computer

17 /123

Passing the ITP Course

o there is only a pass/fail mark
o to pass you need to

» attend at least 7 of the 9 lectures
» pass 8 of the 9 exercises

19/123

Handing-in Exercises

exercises are intended to be handed-in during practical sessions

o attend at least one practical session each week

leave reasonable time to discuss exercises
» don't try to hand your solution in Friday 14:55

o retries possible, but reasonable attempt before deadline required

handing-in outside practical sessions
» only if you have a good reason
» decided on a case-by-case basis
electronic hand-ins
» only to get detailed feedback
» does not replace personal hand-in
> exceptions on a case-by-case basis if there is a good reason
> | recommend using a KTH GitHub repo

Communication

we have the advantage of being a small group
therefore we are flexible
so please ask questions, even during lectures

there are many shy people, therefore

» anonymous checklist after each lecture

» anonymous background questionnaire in first practical session
further information is posted on Interactive Theorem Proving
Course group on Group Web

18 /123

contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se

20/123

LCF - Logic of Computable Functions

o Standford LCF 1971-72 by Milner et al.
Part 11 o formalism devised by Dana Scott in 1969

o intended to reason about recursively defined
functions

HOL 4 History and Architecture

o intended for computer science applications
o strengths

» powerful simplification mechanism
» support for backward proof

o limitations

" ¢ Robin Milner
> proofs need a lot of memory (1934 - 2010)
» fixed, hard-coded set of proof commands
21/123 22 /123
LCF - Logic of Computable Functions Il LCF Approach
o Milner worked on improving LCF in Edinburgh
o research assistants o implement an abstract datatype thm to represent theorems
» Lockwood Morris o semantics of ML ensure that values of type thm can only be created
> Mal_colm Newey using its interface
> Chrls Wadsworth o interface is very small
» Mike Gordon) .
. » predefined theorems are axioms
o Edinburgh LCF 1979 » function with result type theorem are inferences
@ introduction of Meta Language (ML) o = However you create a theorem, it is valid.
o ML was invented to write proof procedures o together with similar abstract datatypes for types and terms, this
@ ML become an influential functional programming language forms the kernel

o using ML allowed implementing the LCF approach

23/123 24 /123

LCF Approach Il

Modus Ponens Example

Inference Rule SML function
NFa=b Ata val MP : thm -> thm -> thm
FTUAFD MP(TFa= b)(AFa)=(TUAF b)

o very trustworthy — only the small kernel needs to be trusted

o efficient — no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds.

History of HOL

@ 1979 Edinburgh LCF by Milner, Gordon, et al.
o 1981 Mike Gordon becomes lecturer in Cambridge

o 1985 Cambridge LCF

» Larry Paulson and Gerard Huet
» implementation of ML compiler
» powerful simplifier
» various improvements and extensions
o 1988 HOL
» Mike Gordon and Keith Hanna
» adaption of Cambridge LCF to classical higher order logic
» intention: hardware verification

o 1990 HOL90
reimplementation in SML by Konrad Slind at University of Calgary

o 1998 HOL98
implementation in Moscow ML and new library and theory mechanism

o since then HOL Kananaskis releases, called informally HOL 4

27 /123

LCF Style Systems

There are now many interactive theorem provers out there that use an
approach similar to that of Edinburgh LCF.
o HOL family
» HOL theorem prover
HOL Light
» HOL Zero

» Proof Power
-

v

Isabelle

©

©

Nuprl
o Coq

26/123

Family of HOL

Edinburgh LCF

o ProofPower
commercial version of HOL88 by Roger
Jones, Rob Arthan et al. Cambridge L.CF
o HOL Light
lean CAML / OCaml port by John Harrison HOLSS
o HOL Zero /
trustworthy proof checker by Mark Adams oo Isabele/HOL
o Isabelle ProofPower

» 1990 by Larry Paulson

» meta-theorem prover that supports
multiple logics

» however, mainly HOL used, ZF a little holos HOL Zero

» nowadays probably the most widely used
HOL system

» originally designed for software verification HOL4

HOL Light

28 /123

HOL Logic

©

the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

Part IV

©

this sounds complicated, but is intuitive for SML programmers
(S)ML and HOL logic designed to fit each other
if you understand SML, you understand HOL logic

©

©

HOL's Logic

HOL = functional programming + logic

Ambiguity Warning
The acronym HOL refers to both the HOL interactive theorem prover and

the HOL logic used by it. It's also a common abbreviation for higher order
logic in general.

29/123 30/123

Types Terms

o SML datatype for types

» Type Variables (’a, «, ’b, 3, ...) @ SML datatype for terms
Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

» Atomic Types (c)

Atomic types denote fixed types. Examples: num, bool, unit

» Compound Types ((o1,...,0,)0p)

Variables (x,y,...)

Constants (c,...)

Function Application (f a)

Lambda Abstraction (\x. £ x or Ax. fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

vYyVvYly

op is a type operator of arity n and oy,...,0, argument types. h b I d
Type operators denote operations for constructing types. @ terms have to be well-type
Examples: num list or ’a # ’b. o same typing rules and same type-inference as in SML take place

» Function Types (o1 — 03)

. . o terms very similar to SML expressions
01 — 07 is the type of total functions from oy to o3.

o notice: predicates are functions with return type bool, i.e. no

® types are never empty in HOL, i.e. distinction between functions and predicates, terms and formulae

for each type at least one value exists
o all HOL functions are total

31/123 32/123

Terms Il
HOL term SML expression type HOL / SML
0 0 num / int
x:’a X:’a variable of type ’a
x:bool x:bool variable of type bool
x +5 X +5 applying function + to x and 5
\x. x + 5 fn x => x + 5 anonymous (a.k. a. inline) function

(5, T) (5, true)
[5;3;2]1++[6] [5,3,2]@[6]

of type num -> num
num # bool / int * bool
num list / int list

33/123

Theorems

©

©

©

©

theorems are of the form ' - p where

» [is a set of hypothesis
» p is the conclusion of the theorem
> all elements of I and p are formulae, i.e. terms of type bool

I+ p records that using I the statement p has been proved

notice difference to logic: there it means can be proved

the proof itself is not recorded

theorems can only be created through a small interface in the kernel

35/123

Free and Bound Variables / Alpha Equivalence

in SML, the names of function arguments does not matter (much)

similarly in HOL, the names of variables used by lambda-abstractions
does not matter (much)

the lambda-expression Ax. t is said to bind the variables x in term t
variables that are guarded by a lambda expression are called bound
all other variables are free

Example: x is free and y is bound in (x =5) A (Ay. (y <x)) 3

the names of bound variables are unimportant semantically

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

Example: Ax. x and \y. y are alpha-equivalent

Example: x and y are not alpha-equivalent

HOL Light Kernel

the HOL kernel is hard to explain

» for historic reasons some concepts are represented rather complicated
» for speed reasons some derivable concepts have been added

instead consider the HOL Light kernel, which is a cleaned-up version

o there are two predefined constants

> = ’a -> ’a => bool
» @ : (’a -> bool) —> ’a
there are two predefined types
» bool
» ind
the meaning of these types and constants is given by inference rules
and axioms

36 /123

HOL Light Inferences |

REFL

Ft=1¢t [Fs=t
x not free in T
ABS
NEs=t N-=MAx.s=MXx. t
AFt=u
— TRANS
FTUAFs=u BETA
F(x. t)x=t
[Fs=1t
Aru=v ASSUME
t fit
ypes COMB {p}rp

FrUAF s(u) =t(v)

HOL Light Axioms and Definition Principles

o 3 axioms needed
ETA_AX |— (M. tx)=t
SELECT AX |—P x= P((Q)P))
INFINITY_AX predefined type ind is infinite
o definition principle for constants

» constants can be introduced as abbreviations
» constraint: no free vars and no new type vars

o definition principle for types
» new types can be defined as non-empty subtypes of existing types
o both principles

» lead to conservative extensions
> preserve consistency

39/123

HOL Light Inferences Il

l=p

NrN-ps AF
P9 P BQap
FTUAFg

AFg

DEDUCT_ANTISYM_RULE

Mr—{ahu@Aa-{pHFpeq

M1, .oy xa]l B oplx1, ..., Xn]

INST
Mte, ...y ta]l Fplta, ...t
MNaq, ..., = R
[0, el P plos - vend oo b
r[rYlv o ’77”] F P[’Yla cee 77!1]

HOL Light derived concepts

Everything else is derived from this small kernel.

T
A
—
v
|

=def
=def
=def
=def
=def

(Ap. p) = (Ap. p)

Apg. (M. fpqg)=(\f.fTT)
Apq. (PAq < p)

AP. (P =Ax. T)

AP. (Vq. (Vx. P(x) = q) = q)

38/123

40/123

Multiple Kernels

o Kernel defines abstract datatypes for types, terms and theorems

o one does not need to look at the internal implementation

]

therefore, easy to exchange
o there are at least 3 different kernels for HOL

» standard kernel (de Bruijn indices)
» experimental kernel (name / type pairs)
» OpenTheory kernel (for proof recording)

41/123

Part V

Basic HOL Usage

43 /123

HOL Logic Summary

©

©

©

©

©

HOL theorem prover uses classical higher order logic
HOL logic is very similar to SML

> syntax
» type system
» type inference

HOL theorem prover very trustworthy because of LCF approach

> there is a small kernel
» proofs are not stored explicitly

you don't need to know the details of the kernel

usually one works at a much higher level of abstraction

HOL Technical Usage Issues

©

©

©

©

practical issues are discussed in practical sessions
» how to install HOL

which key-combinations to use in emacs-mode

detailed signature of libraries and theories

all parameters and options of certain tools

v vy vy

exercise sheets sometimes

» ask to read some documentation
» provide examples
» list references where to get additional information

if you have problems, ask me outside lecture (tuerk@kth.se)

covered only very briefly in lectures

42 /123

44 /123

Installing HOL

©

webpage: https://hol-theorem-prover.org
HOL supports two SML implementations

» Moscow ML (http://mosml.org)
» PolyML (http://www.polyml.org)

©

©

| recommend using PolyML

©

please use emacs with
» hol-mode
» sml-mode
> hol-unicode, if you want to type Unicode

o please install recent revision from git repo or Kananaskis 11 release

o documentation found on HOL webpage and with sources

Filenames

o *Script.sml — HOL proof script file

» script files contain definitions and proof scripts

» executing them results in HOL searching and checking proofs
> this might take very long

» resulting theorems are stored in *Theory.{sml|sig} files

o *Theory.{sml|sig} — HOL theory

> auto-generated by corresponding script file
» load quickly, because they don't search/check proofs
» do not edit theory files

o *Syntax.{sml|sig} — syntax libraries

» contain syntax related functions
» i.e. functions to construct and destruct terms and types

o *Lib.{sml|sig} — general libraries
o *Simps.{sml|sig} — simplifications

o selftest.sml — selftest for current directory

45 /123

47 /123

General Architecture

©

©

©

HOL is a collection of SML modules
starting HOL starts a SML Read-Eval-Print-Loop (REPL) with

>

>

>

some HOL modules loaded
some default modules opened
an input wrapper to help parsing terms called unquote

unquote provides special quotes for terms and types

>

>

>

implemented as input filter
‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]
¢“:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]

main interfaces

>
>
>

emacs (used in the course)
vim
bare shell

Directory Structure

o bin — HOL binaries

Qo

Qo

src — HOL sources

examples — HOL examples

>

>

>

interesting projects by various people
examples owned by their developer
coding style and level of maintenance differ a lot

help — sources for reference manual

>

after compilation home of reference HTML page

Manual — HOL manuals

>

vV vy vY VY VvYYyYy

Tutorial

Description

Reference (PDF version)
Interaction

Quick (cheat pages)
Style-guide

46 /123

48 /123

Unicode

o HOL supports both Unicode and pure ASCII input and output
o advantages of Unicode compared to ASCII

» easier to read (good fonts provided)
> no need to learn special ASCII syntax

disadvanges of Unicode compared to ASCII

» harder to type (even with hol-unicode.el)
» less portable between systems

©

©

whether you like Unicode is highly a matter of personal taste
HOL'’s policy

» no Unicode in HOL's source directory src

» Unicode in examples directory examples is fine

©

©

| recommend turning Unicode output off initially

» this simplifies learning the ASCII syntax
» no need for special fonts
> it is easier to copy and paste terms from HOL's output

49 /123

Part VI

Forward Proofs

51/123

Where to find help?

reference manual
» available as HTML pages, single PDF file and in-system help

description manual

Style-guide (still under development)

HOL webpage (https://hol-theorem-prover.org)
mailing-list hol-info

DB.match and DB.find

*Theory.sig and selftest.sml files

ask someone, e.g. me :-) (tuerk@kth.se)

Kernel too detailed

©

©

we already discussed the HOL Logic

the kernel itself does not even contain basic logic operators
usually one uses a much higher level of abstraction

» many operations and datatypes are defined
> high-level derived inference rules are used

let's now look at this more common abstraction level

52/123

Common Terms and Types

type vars

type annotated term
true

false

negation

conjunction

disjunction

implication

equivalence

disequation
all-quantification
existential quantification
Hilbert's choice operator

Unicode
a, B, ...
term:type
T
F
—-b
bl A b2
bl V b2
bl — b2
bl < b2
vl # v2
Vx. P x
Jx. P x
0x. P x

ASCII
’a, ’b, ...
term:type

T

F

~b
bl /\ b2
bl \/ b2
bl ==> b2
bl <=> b2
vl <> v2
Ix. P x
?7x. P x
@x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don't start variable names with an underscore

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.

55/123

Syntax conventions

@ common function syntax

» prefix notation, e.g. SUC x
» infix notation, e.g. x + y
» quantifier notation, e.g. Vx. P x means (V) (Ax. P x)

o infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are thesameasx + y

o quantifiers of the same type don't need to be repeated
Example: Vx y. P x yis short for Vx. Vy. P x y

o there is special syntax for some functions
Example: if ¢ then vl else v2 is nice syntax for COND ¢ v1 v2

o associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as bl /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

Creating Terms Il

Parser Syntax Funs
€¢:bool‘F mk_type ("bool", []) or bool type of Booleans
ceTec mk_const ("T", bool) or T term true
MR A mk_neg (negation of
mk_var ("b", bool)) Boolean var b
oo /N oY mkeceonj (.., L) conjunction
oo N/ Lo mkdisjy G, L) disjunction
Choos==> .0 mkimp (..., L)) implication
Chol. = Lo mkeq (..., ...) equation
flLl.<=> ... mkeq (.., ll) equivalence
L. <> L. mkneg (mkeq (..., ...)) negated equation

56 /123

Inference Rules for Equality

REFL

Ft=t

lEs=t
X not free in I

- ABS
ME Ax. s = Ax.t

[Fs=t

— GSYM
[Ft=s

lFs=t
AFt=u

—— TRANS
TUAFs=u

Tkpeqg Abp

TEs=t EQ_MP
AFu=v FTUAFgq
types fit
ruAgp(T gy ME-cOMB BETA
S\ =Ry F(x t)x=t
Inference Rules for Implication
lFp=gq
Ep
—— ~ MP, MATCH.MP e
FTUAFg p DISCH
Fr—{q}Fg=0p
rFp=q EQ_IMP_RULE
N-p=gq B o mUNDISCH
rMN-g—p ry{qttp
Fp=gq T P=F NOT.INTRO
AFqg— - -
2977 P NP ANTISYM.RULE | 7P
FTUAFp=g
PP NoT.ELIM
'Ep=gq TEp=F)
AFg=r

—— IMP_TRANS
FTUAFp=r

123

Inference Rules for free Variables

r[Xl7 ..

Ll F ol

5 X,
d INST

I'[t17..

F[al,..

St Foplt, ...

s tn]

S an] Foplat, .. an]

I’[yl, e

77!7] l_ p[’YL e 7’7”]

Inference Rules for Conjunction / Disjunction

M=p
M+ A+ TLh VvV 4
MCONJ N=pVvag
FTUAEFpPp A g
M-q
lr=p A Tep VvV o
—— P29 consuneT TEpVa
l=p
l=pvag
lEp A g A U{p}tr
_ NJUNCT2
FEq CONJUNC A U{ghFr
FTUATUAEr

INST_TYPE

DISJ1

DISJ2

DISJ_CASES

60 /123

Inference Rules for Quantifiers Forward Proofs

e I plu/x] EXISTS o axioms and inference rules are used to derive theorems
ree x not free in T GEN IMN=3x.p o this method is called forward proof
-Vx. p » one starts with basic building blocks
M-3x.p » one moves step by step forward
M=Vvx. p SPEC AU {plu/x]}Fr » finally the theorem one is interested in is derived
I+ plu/x] unot freein I, A, p and r CHOOSE o one can also implement own proof tools
FTUAF T
61/123 62 /123
Forward Proofs — Example | Forward Proofs — Example Il
Let's prove Vp. p = p.)
prove vp- p P Let's prove VP v. (3x. (x =Vv) AP x) <= P v.
val IMP_REFL_THM = let val tmv = ‘ysralts
val tml = ‘‘p:bool‘‘; > val tml = “‘p‘‘: term val tm_P = ‘‘P:’a -> bool®;
val thmi = ASSUME tmi; > val thmi = [p] |- p: thm S e
val thm2 = DISCH tml thml; > val thm2 = |- p ==> p: thm
in val thml = let
val thmla = ASSUME tm_rhs; > val thmia = [P v] |- P v: thm
GEN tml thm2 > val IMP_REFL_THM = val thmib = > val thmib =
|- !'p. p ==> p: thm CONJ (REFL tm_v) thmla; [Pv] |- (=v)/\Pv: thm
val thmic = > val thmic =
end EXISTS (tm_lhs, tm_v) thmib [Pvl |-7x. (x=v) /\Px
in
fun IMP_REFL t = > val IMP_REFL = DISCH tm_rhs thmic > val thml = [] |-

end Pv==>7%x. (x=v) /\Px: thm

SPEC t IMP_REFL_THM; fn: term -> thm

63 /123 64 /123

Forward Proofs — Example Il cont.

val thm2 = let

val thm2a = > val thm2a = [(u = v) /\ P ul |-
ASSUME ‘‘(u:’a = v) /\ P u‘‘ (u=v) /\ Pu: thm
val thm2b = AP_TERM tm_P > val thm2b = [(u = v) /\ P ul |- Part VII
(CONJUNCT1 thm2a) ; Pu<=>Pv
val thm2c = EQ_MP thm2b > val thm2c = [(u = v) /\ P u] |-
(CONJUNCT2 thm2a) ; Pv
val thm2d = > val thm2d = [?x. (x = v) /\ P x] |- Backward Proofs
CHOOSE (‘‘u:’a‘‘, Pv
ASSUME tm_lhs) thm2c
in
DISCH tm_lhs thm2d > val thm2 = [] |-
end ?7x. (x=v) /\Px=>Pv
val thm3 = IMP_ANTISYM_RULE thm2 thmil > val thm3 = [] |-
7x. (x =v) \Px<=>Pv
val thm4 = GENL [tm_P, tm_v] thm3 > val thm4 = [] |- P v.
?x. (x=v) /\Px<=>Pyv
65/123 66 /123
Motivation | Motivation Il - thinking backwards

o let’'s prove 'A B. A /\ B <=>B /\ A

(x Show - A /\ B ==> B /\ A) © we want to prove

val thmla = ASSUME ‘‘A /\ B‘¢; » IAB. A/\B<=>B/\A
val thmib = CONJ (CONJUNCT2 thmla) (CONJUNCT! thmia); g . , .
val thml = DISCH ‘‘A /\ B‘‘ thmib o all-quantifiers can easily be added later, so let's get rid of them

(% Show |- B /\ A ==> A /\ B) »A/NB<=>B/\A

val thm2a = ASSUME ‘‘B /\ A‘;
val thm2b = CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);
val thm2 = DISCH ‘‘B /\ A‘¢ thm2b » A /\B==>B/\A

»B/\A==>A4/\B

o now we have an equivalence, let's show 2 implications

(* Combine to get |- A /\ B <=> B /\ A %)
val thm3 = IMP_ANTISYM_RULE thml thm2 T .
o we have an implication, so we can use the precondition as an
(* Add quantifiers *) assumption
val thmd = GENL [‘‘A:bool‘‘, ‘‘B:bool‘] thm3 .
» using A /\ BshowB /\ A
» A /\B==>B/\A
o this is how you write down a proof

o for finding a proof it is however often useful to think backwards

67 /123 68 /123

Motivation Il - thinking backwards

o we have a conjunction as assumption, let's split it
» using A and B show B /\ A
» A/\B==>B/\A
we have to show a conjunction, so let's show both parts
> using A and B show B
> using A and B show A
» A/\NB==>B/\A
the first two proof obligations are trivial
» A/\B==>B/\ A

©

©

o we are done

69 /123

HOL Implementation of Backward Proofs

o in HOL
» proof tactics / backward proofs used for most user-level proofs
» forward proofs used usually for writing automation
o backward proofs are implemented by tactics in HOL
» decomposition into subgoals implemented in SML
» SML datastructures used to keep track of all open subgoals
» forward proof used to construct theorems
o to understand backward proofs in HOL we need to look at
» goal — SML datatype for proof obligations
» goalStack — library for keeping track of goals
» tactic — SML type for functions performing backward proofs

71/123

Motivation IV

@ common practise

» think backwards to find proof

» write found proof down in forward style

o often switch between backward and forward style within a proof
Example: induction proof

Goals

» backward step: induct on ...

» forward steps: prove base case and induction case
o whether to use forward or backward proofs depend on
> support by the interactive theorem prover you use

* HOL 4 and close family: emphasis on backward proof
* |sabelle/HOL: emphasis on forward proof
* Coq : emphasis on backward proof

» your way of thinking
» the theorem you try to prove

70 /123

o goals represent proof obligations, i. e. theorems we need/want to prove

o the SML type goal is an abbreviation for term list * term

o the goal ([asm_1,

Goal

prove the theorem {asm_1, ., asmn} |- c
Example Goals
Theorem
([t{All’ ((Bll:l’ ((A /\ B(() {A, B} I_ A
([t{Btt’ ((A(l]’ ((A /\ Bt() {A, B} I_ A

(LB /\ A““], ““A/\ BY)

(1,

““(B /\ A) ==> (A /\ B)‘9)

{B/\ A} |I-A/\B

- B /\ &)

., asmn], c) records that we need/want to

/\ B
/\ B

==> (A /\ B)

72 /123

Tactics

©

©

©

the SML type tactic is an abbreviation for
the type goal -> goal list * validation

validation is an abbreviation for thm list -> thm

given a goal, a tactic
» decides into which subgoals to decompose the goal

» returns this list of subgoals
» returns a validation that

* given a list of theorems for the computed subgoals
* produces a theorem for the original goal

special case: empty list of subgoals
» the validation (given [1) needs to produce a theorem for the goal

notice: a tactic might be invalid

Tactic Example — EQ_TAC

t = 1lhs = rhs

rN-p=g¢g asl - lhs ==> rhs
AFg=p aslt rhs ==> 1hs
———— IMP_ANTISYM_RULE
FTUAFp=gq aslkt

val EQ_TAC: tactic = fn (asl, t) =>
let
val (lhs, rhs) = dest_eq t
in

([(asl, mk_imp (lhs, rhs)), (asl, mk_imp (rhs, 1lhs))],
fn [th1l, th2] => IMP_ANTISYM_RULE thl th2
| _ => raise Match)
end
handle HOL_ERR _ => raise ERR "EQ_TAC" ""

75 /123

Tactic Example — CONJ_TAC

t =conjl /\ conj2

MN-p Al g aslt conj1 aslt conj2

CONJ

FTUAFpP A g aslkt

val CONJ_TAC: tactic = fn (asl, t) =>

let

val (conjl, conj2) = dest_conj t

in

([(asl, conj1l), (asl, conj2)],

fn [thl, th2] => CONJ thl th2 |

end

=> raise Match)

handle HOL_ERR _ => raise ERR "CONJ_TAC" ""

proofManagerLib / goalStack

o the proofManagerLib keeps track of open goals

o it uses goalStack internally

o important commands

>

»>
>
>

g — set up new goal

e — expand a tactic

p — print the current status

top_thm — get the proved thm at the end

76 /123

Tactic Proof Example |

Previous Goalstack

User Action
g “'AB. A/\B<=>B/\ A%

New Goalstack
Initial goal:

'1AB. A/\B<=>B/\A

: proof

Tactic Proof Example Ill

Previous Goalstack
A/\NB<=>B/\A

: proof

77/123

User Action
e EQ_TAC;

New Goalstack
B/\ A==>A/\B

A/NB==>B/\A

: proof

79/123

Tactic Proof Example Il

Previous Goalstack
Initial goal:

'1AB. A/\B<=>B/\A

: proof

User Action
e GEN_TAC;
e GEN_TAC;

New Goalstack
A /\ B<=>B/\A

: proof

Tactic Proof Example IV

Previous Goalstack
B/\ A==>A/\B

A /\ B==>B /\ A : proof

78 /123

User Action
e STRIP_TAC;

New Goalstack

B /\ A
0. A
1. B

80/123

Tactic Proof Example V

2

B/\ A
0. A
1. B

e CONJ_TAC; '
A

0. A

1. B
B

0. A

1. B

81/123

Tactic Proof Example VII

B/\A==>A/\B

proof

e STRIP_TAC;
e (ASM_REWRITE_TAC[]);

Initial goal proved.
I- 'AB. A/\ B <=>B/\A:
proof

83/123

Tactic Proof Example VI

0. A

1. B
B

0. A

1. B

e (ACCEPT_TAC (ASSUME ‘‘B:bool‘¢));
e (ACCEPT_TAC (ASSUME ‘‘A:bool‘‘));

|

B/\A==>A4/\B

: proof

82/123

Tactic Proof Example VIII

Initial goal proved.
I- 'AB. A/\ B <=>B/\A:
proof

val thm = top_thm(); l

val thm =
|- 1A B. A /\ B<=>B/\A:
thm

84/123

Tactic Proof Example IX

Combined Tactic

val thm = prove (‘“!A B. A /\ B <=> B /\ A‘¢,
GEN_TAC >> GEN_TAC >>
EQ_TAC >| [
STRIP_TAC >>
STRIP_TAC >| [
ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘),
ACCEPT_TAC (ASSUME ¢ ‘A:bool‘‘)
s

STRIP_TAC >>
ASM_REWRITE_TAC[]
1;

Result

val thm =
|- 'AB. A/\ B<=>B/\A:
thm

85/123

Summary Backward Proofs

o in HOL most user-level proofs are tactic-based
» automation often written in forward style
> low-level, basic proofs written in forward style
» nearly everything else is written in backward (tactic) style

©

there are many different tactics

©

in the lecture only the most basic ones will be discussed
you need to learn about tactics on your own

» good starting point: Quick manual
» learning finer points takes a lot of time
> exercises require you to read up on tactics

often there are many ways to prove a statement, which tactics to use
depends on

(+]

©

» personal way of thinking

» personal style and preferences

» maintainability, clarity, elegance, robustness
-

87/123

Tactic Proof Example X

Cleaned-up Tactic

val thm = prove (‘‘!A B. A /\ B <=> B /\ A‘¢,
REPEAT GEN_TAC >>
EQ_TAC >> (
REPEAT STRIP_TAC >>
ASM_REWRITE_TAC []
DE

Result

val thm =
|- 'AB. A/\ B<=>B/\A:
thm

Part VI

Basic Tactics

86 /123

88 /123

Syntax of Tactics in HOL

%]

originally tactics were written all in capital letters with underscores
Example: ALL_TAC

since 2010 more and more tactics have overloaded lower-case syntax
Example: all_tac

sometimes, the lower-case version is shortened

Example: REPEAT, rpt

sometimes, there is special syntax

Example: THEN, \\, >>

which one to use is mostly a matter of personal taste

> all-capital names are hard to read and type

» however, not for all tactics there are lower-case versions

» mixed lower- and upper-case tactics are even harder to read
» often shortened lower-case name is not speaking

In the lecture we will use mostly the old-style names.

89/123

Tacticals

©

©

©

tacticals are SML functions that combine tactics to form new tactics
common workflow

» develop large tactic interactively
using goalStack and editor support to execute tactics one by one
combine tactics manually with tacticals to create larger tactics
finally end up with one large tactic that solves your goal
use prove or store_thm instead of goalStack

vVvyVvy

make sure to clearly mark proof structure by e. g.

» use indentation

> use parentheses

> use appropriate connectives
>

goalStack commands like e or g should not appear in your final proof

91/123

Some Basic Tactics

GEN_TAC
DISCH_TAC
CONJ_TAC
STRIP_TAC

DISJ1_TAC
DISJ2_TAC
EQ_TAC
ASSUME_TAC thm
EXISTS_TAC term

remove outermost all-quantifier
move antecedent of goal into assumptions
splits conjunctive goal

splits on outermost connective (combination

of GEN_TAC, CONJ_TAC, DISCH_TAC, ...)
selects left disjunct
selects right disjunct
reduce Boolean equality to implications
add theorem to list of assumptions
provide witness for existential goal

Some Basic Tacticals

tacl >> tac2

tac >| tacL

tacl >- tac2
REPEAT tac

NTAC n tac
REVERSE tac
tacl ORELSE tac2
TRY tac

ALL_TAC

NO_TAC

THEN, \\
THENL
THEN1
rpt

reverse

all_tac

applies tactics in sequence
applies list of tactics to subgoals

90 /123

applies tac2 to the first subgoal of tacl

repeats tac until it fails
apply tac n times

reverses the order of subgoals
applies tacl only if tac2 fails
do nothing if tac fails

do nothing

fail

92/123

Basic Rewrite Tactics

©

we will discuss it in detail later

©

©

(equational) rewriting is at the core of HOL's automation

details complex, but basic usage is straightforward

» given a theorem rewr_thm of form |- P x = Q xand aterm t
» rewriting t with rewr_thm means
» replacing each occurrence of a term P ¢ for some c with Q cin t

o warning: rewriting may loop

Example: rewriting with theorem |- X <=> (X /\ T)

REWRITE_TAC thms

rewrite goal using equations found

in given list of theorems

ASM REWRITE TAC thms
ONCE_REWRITE_TAC thms

in addition use assumptions
rewrite once in goal using equations

ONCE_ASM REWRITE_TAC thms rewrite once using assumptions

Assumption Tactics

POP_ASSUM thm-tac

PAT_ASSUM term thm-tac
also PAT_X_ASSUM term thm-tac

WEAKEN_TAC term-pred

93 /123

use and remove first assumption
common usage POP_ASSUM MP_TAC

use (and remove) first
assumption matching pattern

removes first assumption
satisfying predicate

95 /123

Case-Split and Induction Tactics

Induct_on ‘term’
Induct

Cases_on ‘term’
Cases
MATCH_MP_TAC thm
IRULE_TAC thm

induct on term

induct on all-quantor
case-split on term
case-split on all-quantor

apply rule
generalised apply rule

Decision Procedure Tactics

o decision procedures try to solve the current goal completely

©

they either succeed of fail

@ no partial progress

o decision procedures vital for automation

TAUT_TAC
DECIDE_TAC
METIS_TAC thms
numLib.ARITH_TAC
intLib.ARITH_TAC

propositional logic tautology checker
linear arithmetic for num

first order prover

Presburger arithmetic

uses Omega test

96 /123

Subgoal Tactics

o it is vital to structure your proofs well
» improved maintainability
» improved readability
» improved reusability
» saves time in medium-run

o therefore, use many small lemmata

o also, use many explicit subgoals

show term with tac and
add it to assumptions
‘term-frag’ sufficies_by tac show it sufficies to prove term

‘term-frag’ by tac

Importance of Exercises

here many tactics are presented in a very short amount of time

©

©

there are many, many more important tactics out there

few people can learn a programming language just by reading manuals

©

similar few people can learn HOL just by reading and listening

©

©

you should write your own proofs and play around with these tactics

©

solving the exercises is highly recommended
(and actually required if you want credits for this course)

99 /123

Term Fragments / Term Quotations

@ notice that by and sufficies_by take term fragments

o term fragments are also called term quotations

o they represent (partially) unparsed terms

o parsing takes time place during execution of tactic in context of goal
o this helps to avoid type annotations

o however, this means syntax errors show late as well

o the library Q defines many tactics using term fragments

98 /123

Tactical Proof - Example | - Slide 1

o we want to prove !1. LENGTH (APPEND 1 1) = 2 * LENGTH 1
o first step: set up goal on goalStack

o at same time start writing proof script

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,

Actions
o rung “‘!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢¢
o this is done by hol-mode

o move cursor inside term and press M-h g
(menu-entry HOL - Goalstack - New goal)

100 /123

Tactical Proof - Example | - Slide 2

Current Goal
11. LENGTH (1 ++ 1) = 2 * LENGTH 1

o the outermost connective is an all-quantor
o let's get rid of it via GEN_TAC

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (1 ++ 1) = 2 * LENGTH 1°°¢,
GEN_TAC

Actions
@ run e GEN_TAC
o this is done by hol-mode

o mark line with GEN_TAC and press M-h e
(menu-entry HOL - Goalstack - Apply tactic)

101 /123

Tactical Proof - Example | - Slide 4

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1

o let's rewrite with found theorem listTheory.LENGTH_APPEND

Proof Script

val LENGTH_APPEND_SAME = prove (

€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°‘°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
o connect the new tactic with tactical >> (THEN)

o use hol-mode to expand the new tactic

103 /123

Tactical Proof - Example | - Slide 3

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

o LENGTH of APPEND can be simplified

o let's search an appropriate lemma with DB.match

Actions
o run DB.print match [] ‘‘LENGTH (_ ++ _) ‘¢
o this is done via hol-mode
o press M-h m and enter term pattern
(menu-entry HOL - Misc - DB match)

o this finds the theorem listTheory.LENGTH APPEND
|- 111 12. LENGTH (11 ++ 12) = LENGTH 11 + LENGTH 12

102 /123

Tactical Proof - Example | - Slide 5

Current Goal
LENGTH 1 + LENGTH 1 = 2 * LENGTH 1 J

o let's search a theorem for simplifying 2 * LENGTH 1
o prepare for extending the previous rewrite tactic

Proof Script

val LENGTH_APPEND_SAME = prove (

€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
o DB.match finds theorem arithmeticTheory.TIMES2

o press M-h b and undo last tactic expansion
(menu-entry HOL - Goalstack - Back up)

104 /123

Tactical Proof - Example | - Slide 6

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1

o extend the previous rewrite tactic
o finish proof

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Actions
o add TIMES2 to the list of theorems used by rewrite tactic

o use hol-mode to expand the extended rewrite tactic

o goal is solved, so let's add closing parenthesis and semicolon

Tactical Proof - Example Il - Slide 1

©

let’s prove something slightly more complicated

©

drop old goal by pressing M-h d
(menu-entry HOL - Goalstack - Drop goal)

©

set up goal on goalStack (M-h g)

©

at same time start writing proof script

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
~(ALL_DISTINCT (11 ++ 12 ++ 13))¢¢,

107 /123

Tactical Proof - Example | - Slide 7

o we have a finished tactic proving our goal
o notice that GEN_TAC is not needed
o let's polish the proof script

Proof Script
val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,

GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Polished Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

106 /123

Tactical Proof - Example Il - Slide 2

Current Goal

Ixl x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>
~ALL_DISTINCT (11 ++ 12 ++ 13)

o let's strip the goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
~“(ALL_DISTINCT (11 ++ 12 ++ 13))°¢,

REPEAT STRIP_TAC

108 /123

Tactical Proof - Example Il - Slide 2

Current Goal

Ix1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==
~ALL_DISTINCT (11 ++ 12 ++ 13)

o let's strip the goal

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1‘°¢,
REPEAT STRIP_TAC

Actions
o add REPEAT STRIP_TAC to proof script
o expand this tactic using hol-mode

109 /123

Tactical Proof - Example Il - Slide 4

Current Goal
~ALL_DISTINCT (11 ++ 12 ++ 13)

0. MEM x1 11 3. x1 <= x2

1. MEM x2 12 4. x2 <= x3

2. MEM x3 13 5. x3 <= SUC x1
o now let's simplify ALL_ DISTINCT

o search suitable theorems with DB.match

o use them with rewrite tactic

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...°¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM_APPEND]

111 /123

Tactical Proof - Example Il - Slide 3

Current Goal

F
0. MEM x1 11 4. x2 <= x3
1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6. ALL_DISTINCT (11 ++ 12 ++ 13)
3. x1 <= x2

o oops, we did too much, we would like to keep ALL_DISTINCT in goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...°¢,
REPEAT GEN_TAC >> STRIP_TAC

Actions
o undo REPEAT STRIP_TAC (M-h b)

o expand more fine-tuned strip tactic

110 /123

Tactical Proof - Example Il - Slide 5

Current Goal

~((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ 'e. MEM e 11 ==> "MEM e 12) /\
ALL_DISTINCT 13 /\ 'e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)

0. MEM x1 11 3. x1 <=x2
1. MEM x2 12 4. x2 <= x3
2. MEM x3 13 5. x3 <= SUC x1

o from assumptions 3, 4 and 5 we know x2 = x1 \/ x2 = x3
o let’s deduce this fact by DECIDE_TAC

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,

REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC

112 /123

Tactical Proof - Example Il - Slide 6

Current Goals — 2 subgoals, one for each disjunct

“((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ '!e. MEM e 11 ==> “MEM e 12) /\
ALL_DISTINCT 13 /\ !e. MEM e 11 \/ MEM e 12 ==> “MEM e 13)

0. MEM x1 11 4. x2 <= x3

1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6a. x2 = x1

3. x1 <= x2 6b. x2 = x3

o both goals are easily solved by first-order reasoning
o let's use METIS_TAC[] for both subgoals

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
“(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC >> (
METIS_TAC[]
));

113 /123

Part IX

Induction Proofs

115 /123

Tactical Proof - Example Il - Slide 7

Finished Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (
“f1x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
~(ALL_DISTINCT (11 ++ 12 ++ 13))¢°¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND] >>
“(x2 = x1) \/ (x2 = x3)° by DECIDE_TAC >> (
METIS_TAC[]
));

@ notice that proof structure is explicit

o parentheses and indentation used to mark new subgoals

Mathematical Induction

o mathematical (a. k. a. natural) induction principle:
If a property P holds for 0 and P(n) implies P(n+ 1) for all n,
then P(n) holds for all n.

o HOL is expressive enough to encode this principle as a theorem.
|- 'P. PO /\ (!n. Pn==>P (SUCn)) ==>In. Pn

o Performing mathematical induction in HOL means applying this
theorem (e. g. via HO_MATCH MP_TAC)

o there are many similarish induction theorems in HOL

o Example: complete induction principle

|- 'P. ('n. (!m. m <n==>Pm) ==>Pn) ==>In. Pn

114 /123

116 /123

Structural Induction Theorems

structural induction theorems are an important special form of
induction theorems

they describe performing induction on the structure of a datatype
Example: |- tp. P [J /\ (1t. P t ==> th. P (h::t)) ==> !11. P 1
structural induction is used very frequently in HOL

for each algabraic datatype, there is an induction theorem

Induction (and Case-Split) Tactics

the tactic Induct (or Induct_on) usually used to start induction
proofs

it looks at the type of the quantifier (or its argument) and applies the
default induction theorem for this type

this is usually what one needs

other (non default) induction theorems can be applied via
INDUCT_THEN or HO_MATCH_MP_TAC

similarish Cases_on picks and applies default case-split theorems

119 /123

Other Induction Theorems

o there are many induction theorems in HOL
» datatype definitions lead to induction theorems
» recursive function definitions produce corresponding induction theorems
» recursive relation definitions give rise to induction theorems
» many are manually defined

o Examples

|- 'P. P [1/\ (11. P1==>1Ix. P (SNOC x 1)) ==> !1. P 1

|- 'P. P FEMPTY /\
(1f. P £ ==> !x y. x NOTIN FDOM f ==> P (f |+ (x,y))) ==> !f. P f

|- tp. P {} /\
(!s. FINITE s /\ P s ==> le. e NOTIN s ==> P (e INSERT s)) ==>
!s. FINITE s ==> P s

|I-"mP. (!xy.Rxy==>Pxy) /\ (xyz. Pxy/\Pyz==>Pxz) ==

luv. Rfruv==>Puv

118 /123

Induction Proof - Example | - Slide 1

o let's prove via induction
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

o we set up the goal and start and induction proof on 11

Proof Script

val REVERSE_APPEND = prove (
€111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°¢°¢,
Induct

120 /123

Induction Proof - Example | - Slide 2

o the induction tactic produced two cases

o base case:
112. REVERSE ([] ++ 12) = REVERSE 12 ++ REVERSE []

o induction step:

'h 12. REVERSE (h::11 ++ 12) = REVERSE 12 ++ REVERSE (h::11)

112. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

o both goals can be easily proved by rewriting

Proof Script

val REVERSE_APPEND = prove (‘¢
'11 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°¢°,
Induct >| [
REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_NIL],
ASM_REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_ASSOC]
1;

Induction Proof - Example Il - Slide 2

o the induction tactic produced two cases

o base case:
REVERSE (REVERSE []) = []

o induction step:

'h. REVERSE (REVERSE (h::11)) = h::11

REVERSE (REVERSE 1) = 1

o again both goals can be easily proved by rewriting

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1°°¢,
Induct >| [
REWRITE_TAC[REVERSE_DEF],
ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]
D;

121 /123

123 /123

Induction Proof - Example Il - Slide 2

o let's prove via induction
'1. REVERSE (REVERSE 1) =1

o we set up the goal and start and induction proof on 1

Proof Script

val REVERSE_REVERSE = prove (
€€11. REVERSE (REVERSE 1) = 1¢¢,
Induct

122 /123

