Interactive Theorem Proving (ITP) Course

Thomas Tuerk (tuerk@kth.se)

KTH

Academic Year 2016/17, Period 4

version 5056611 of Wed May 3 09:55:18 2017

1 / 123

Part I

Introduction

2 / 123

Motivation

- Complex systems almost certainly contain bugs.
- Critical systems (e.g. avionics) need to meet very high standards.
- It is infeasible in practice to achieve such high standards just by testing.
- Debugging via testing suffers from diminishing returns.

"Program testing can be used to show the presence of bugs, but never to show their absence!"

— Edsger W. Dijkstra

Famous Bugs

- Pentium FDIV bug (1994)
 (missing entry in lookup table, \$475 million damage)
- Ariane V explosion (1996)
 (integer overflow, \$1 billion prototype destroyed)
- Mars Climate Orbiter (1999)
 (destroyed in Mars orbit, mixup of units pound-force and newtons)
- Knight Capital Group Error in Ultra Short Time Trading (2012) (faulty deployment, repurposing of critical flag, \$440 lost in 45 min on stock exchange)
- ...

Fun to read

http://www.cs.tau.ac.il/~nachumd/verify/horror.html https://en.wikipedia.org/wiki/List_of_software_bugs

3/123 4/123

Proof

- proof can show absence of errors in design
- but proofs talk about a design, not a real system
- ◆ testing and proving complement each other

"As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality."

— Albert Einstein

Mathematical vs. Formal Proof

Mathematical Proof

- informal, convince other mathematicians
- checked by community of domain experts
- subtle errors are hard to find
- often provide some new insight about our world
- often short, but require creativity and a brilliant idea

Formal Proof

- formal, rigorously use a logical formalism
- checkable by stupid machines
- very reliable
- often contain no new ideas and no amazing insights
- often long, very tedious, but largely trivial

We are interested in formal proofs in this lecture.

5 / 123

6 / 123

Detail Level of Formal Proof

In **Principia Mathematica** it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

Automated vs Manual (Formal) Proof

Fully Manual Proof

- very tedious one has to grind through many trivial but detailed proofs
- easy to make mistakes
- hard to keep track of all assumptions and preconditions
- hard to maintain, if something changes (see Ariane V)

Automated Proof

- amazing success in certain areas
- but still often infeasible for interesting problems
- hard to get insights in case a proof attempt fails
- even if it works, it is often not that automated
 - run automated tool for a few days
 - ▶ abort, change command line arguments to use different heuristics
 - run again and iterate till you find a set of heuristics that prove it fully automatically in a few seconds

7/123 8/123

Interactive Proofs

- combine strengths of manual and automated proofs
- many different options to combine automated and manual proofs
 - ► mainly check existing proofs (e.g. HOL Zero)
 - user mainly provides lemmata statements, computer searches proofs using previous lemmata and very few hints (e.g. ACL 2)
 - ▶ most systems are somewhere in the middle
- typically the human user
 - provides insights into the problem
 - ► structures the proof
 - provides main arguments
- typically the computer
 - ► checks proof
 - ► keeps track of all use assumptions
 - provides automation to grind through lengthy, but trivial proofs

9 / 123

- there are many different interactive provers, e.g.
 - ► Isabelle/HOL
 - ► Coa
 - ► PVS
 - ► HOL family of provers

Different Interactive Provers

- ► ACL2
- ▶ ...
- important differences
 - ▶ the formalism used
 - ► level of trustworthiness
 - ► level of automation
 - ► libraries
 - ► languages for writing proofs
 - user interface
 - ▶ ...

Typical Interactive Proof Activities

- provide precise definitions of concepts
- state properties of these concepts
- prove these properties
 - human provides insight and structure
 - ▶ computer does book-keeping and automates simple proofs
- build and use libraries of formal definitions and proofs
 - ▶ formalisations of mathematical theories like
 - ★ lists, sets, bags, ...
 - ★ real numbers
 - ★ probability theory
 - specifications of real-world artefacts like
 - **★** processors
 - * programming languages
 - ★ network protocols
 - ► reasoning tools

There is a strong connection with programming. Lessons learned in Software Engineering apply.

10 / 123

Which theorem prover is the best one? :-)

- there is no best theorem prover
- better question: Which is the best one for a certain purpose?
- important points to consider
 - existing libraries
 - ▶ used logic
 - ► level of automation
 - user interface
 - ► importance development speed versus trustworthiness
 - ► How familiar are you with the different provers?
 - ▶ Which prover do people in your vicinity use?
 - ► your personal preferences
 - ▶ ...

In this course we use the HOL theorem prover, because it is used by the TCS group.

Part II

Organisational Matters

13 / 123

Dates

- Interactive Theorem Proving Course takes place in Period 4 of the academic year 2016/2017
- always in room 4523 or 4532
- each week

Mondays 10:15 - 11:45 lecture
Wednesdays 10:00 - 12:00 practical session
Fridays 13:00 - 15:00 practical session

o no lecture on Monday, 1st of May, instead on Wednesday, 3rd May

• last lecture: 12th of June

last practical session: 21st of June9 lectures, 17 practical sessions

Aims of this Course

Aims

- introduction to interactive theorem proving (ITP)
- being able to evaluate whether a problem can benefit from ITP
- hands-on experience with HOL
- learn how to build a formal model
- learn how to express and prove important properties of such a model
- learn about basic conformance testing
- use a theorem prover on a small project

Required Prerequisites

- some experience with functional programming
- knowing Standard ML syntax
- basic knowledge about logic (e.g. First Order Logic)

14 / 123

Exercises

- after each lecture an exercise sheet is handed out.
- work on these exercises alone, except if stated otherwise explicitly
- exercise sheet contains due date
 - ▶ usually 10 days time to work on it
 - ► hand in during practical sessions
 - ► lecture Monday → hand in at latest in next week's Friday session
- main purpose: understanding ITP and learn how to use HOL
 - ▶ no detailed grading, just pass/fail
 - ► retries possible till pass
 - ▶ if stuck, ask me or one another
 - practical sessions intend to provide this opportunity

Practical Sessions

- very informal
- main purpose: work on exercises
 - ▶ I have a look and provide feedback
 - ► you can ask questions
 - ► I might sometimes explain things not covered in the lectures
 - ▶ I might provide some concrete tips and tricks
 - ▶ you can also discuss with each other
- attendance not required, but highly recommended
 - ► exception: session on 21st April
- only requirement: turn up long enough to hand in exercises
- you need to bring your own computer

17/123

Passing the ITP Course

- there is only a pass/fail mark
- to pass you need to
 - ▶ attend at least 7 of the 9 lectures
 - ▶ pass 8 of the 9 exercises

Handing-in Exercises

- exercises are intended to be handed-in during practical sessions
- attend at least one practical session each week
- leave reasonable time to discuss exercises
 - ▶ don't try to hand your solution in Friday 14:55
- retries possible, but reasonable attempt before deadline required
- handing-in outside practical sessions
 - ▶ only if you have a good reason
 - ▶ decided on a case-by-case basis
- electronic hand-ins
 - ► only to get detailed feedback
 - ► does not replace personal hand-in
 - exceptions on a case-by-case basis if there is a good reason
 - ▶ I recommend using a KTH GitHub repo

Communication

- we have the advantage of being a small group
- therefore we are flexible
- so please ask questions, even during lectures
- there are many shy people, therefore
 - ► anonymous checklist after each lecture
 - ► anonymous background questionnaire in first practical session
- further information is posted on Interactive Theorem Proving Course group on Group Web
- contact me (Thomas Tuerk) directly, e.g. via email thomas@kth.se

Part III

HOL 4 History and Architecture

21 / 123

LCF Approach

- implement an abstract datatype thm to represent theorems
- semantics of ML ensure that values of type thm can only be created using its interface
- interface is very small
 - ► predefined theorems are axioms
 - ► function with result type theorem are inferences
- $\bullet \implies$ However you create a theorem, it is valid.
- together with similar abstract datatypes for types and terms, this forms the kernel

LCF - Logic of Computable Functions

- Standford LCF 1971-72 by Milner et al.
- formalism devised by Dana Scott in 1969
- intended to reason about recursively defined functions
- intended for computer science applications
- strengths
 - ► powerful simplification mechanism
 - ► support for backward proof
- limitations
 - ▶ proofs need a lot of memory
 - ► fixed, hard-coded set of proof commands

Robin Milner (1934 - 2010)

22 / 123

LCF - Logic of Computable Functions II

- Milner worked on improving LCF in Edinburgh
- research assistants
 - ► Lockwood Morris
 - ► Malcolm Newey
 - ► Chris Wadsworth
 - ► Mike Gordon
- Edinburgh LCF 1979
- introduction of Meta Language (ML)
- ML was invented to write proof procedures
- ML become an influential functional programming language
- using ML allowed implementing the LCF approach

LCF Approach II

Modus Ponens Example

Inference Rule

$\frac{\Gamma \vdash a \Rightarrow b \qquad \Delta \vdash a}{\Gamma \cup \Delta \vdash b}$

SML function

val MP : thm -> thm -> thm MP(
$$\Gamma \vdash a \Rightarrow b$$
)($\Delta \vdash a$) = ($\Gamma \cup \Delta \vdash b$)

- very trustworthy only the small kernel needs to be trusted
- efficient no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type theorem is produced, it has been created through the small trusted interface. Therefore the statement really holds.

25 / 123

26 / 123

History of HOL

- 1979 Edinburgh LCF by Milner, Gordon, et al.
- 1981 Mike Gordon becomes lecturer in Cambridge
- 1985 Cambridge LCF
 - ► Larry Paulson and Gèrard Huet
 - ► implementation of ML compiler
 - ► powerful simplifier
 - various improvements and extensions
- 1988 HOL
 - ► Mike Gordon and Keith Hanna
 - ► adaption of Cambridge LCF to classical higher order logic
 - ► intention: hardware verification
- 1990 HOL90 reimplementation in SML by Konrad Slind at University of Calgary
- 1998 HOL98 implementation in Moscow ML and new library and theory mechanism
- since then HOL Kananaskis releases, called informally HOL 4

LCF Style Systems

There are now many interactive theorem provers out there that use an approach similar to that of Edinburgh LCF.

- HOL family
 - ► HOL theorem prover
 - ► HOL Light
 - ► HOL Zero
 - ► Proof Power
 - ▶ ..
- Isabelle
- Nuprl
- Coq
- o . . .

Family of HOL

ProofPower

commercial version of HOL88 by Roger Jones, Rob Arthan et al.

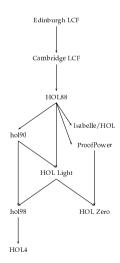
HOL Light

lean CAML / OCaml port by John Harrison

HOL Zero

trustworthy proof checker by Mark Adams

- Isabelle
 - ▶ 1990 by Larry Paulson
 - meta-theorem prover that supports multiple logics
 - ► however, mainly HOL used, ZF a little
 - nowadays probably the most widely used HOL system
 - originally designed for software verification



Part IV

HOL's Logic

29 / 123

Types

- SML datatype for types
 - ▶ Type Variables ('a, α , 'b, β , ...) Type variables are implicitly universally quantified. Theorems containing type variables hold for all instantiations of these. Proofs using type variables can be seen as proof schemata.
 - ► Atomic Types (c)
 Atomic types denote fixed types. Examples: num, bool, unit
 - ▶ Compound Types $((\sigma_1, \ldots, \sigma_n)op)$ op is a **type operator** of arity n and $\sigma_1, \ldots, \sigma_n$ argument types. Type operators denote operations for constructing types. Examples: num list or 'a # 'b.
 - ▶ Function Types $(\sigma_1 \to \sigma_2)$ $\sigma_1 \to \sigma_2$ is the type of **total** functions from σ_1 to σ_2 .
- types are never empty in HOL, i. e. for each type at least one value exists
- all HOL functions are total

HOL Logic

- the HOL theorem prover uses a version of classical higher order logic: classical higher order predicate calculus with terms from the typed lambda calculus (i. e. simple type theory)
- this sounds complicated, but is intuitive for SML programmers
- (S)ML and HOL logic designed to fit each other
- if you understand SML, you understand HOL logic

HOL = functional programming + logic

Ambiguity Warning

The acronym *HOL* refers to both the *HOL interactive theorem prover* and the *HOL logic* used by it. It's also a common abbreviation for *higher order logic* in general.

30 / 123

Terms

- SML datatype for terms
 - ► Variables (x, y, ...)
 - ► Constants (c,...)
 - ► Function Application (f a)
 - Lambda Abstraction (\x. f x or λx. fx) Lambda abstraction represents anonymous function definition. The corresponding SML syntax is fn x => f x.
- terms have to be well-typed
- same typing rules and same type-inference as in SML take place
- terms very similar to SML expressions
- notice: predicates are functions with return type bool, i. e. no distinction between functions and predicates, terms and formulae

Terms II

HOL term	SML expression	type HOL / SML
0	0	num / int
x:'a	x:'a	variable of type 'a
x:bool	x:bool	variable of type bool
x + 5	x + 5	applying function + to x and 5
\x . x + 5	$fn x \Rightarrow x + 5$	anonymous (a. k. a. inline) function
		of type num -> num
(5, T)	(5, true)	<pre>num # bool / int * bool</pre>
[5;3;2]++[6]	[5,3,2]@[6]	<pre>num list / int list</pre>

33 / 123

Theorems

- theorems are of the form $\Gamma \vdash p$ where
 - Γ is a set of hypothesis
 - ▶ *p* is the conclusion of the theorem
 - \blacktriangleright all elements of Γ and p are formulae, i. e. terms of type bool
- $\Gamma \vdash p$ records that using Γ the statement p has been proved
- notice difference to logic: there it means can be proved
- the proof itself is not recorded
- theorems can only be created through a small interface in the kernel

Free and Bound Variables / Alpha Equivalence

- in SML, the names of function arguments does not matter (much)
- similarly in HOL, the names of variables used by lambda-abstractions does not matter (much)
- the lambda-expression λx . t is said to **bind** the variables x in term t
- variables that are guarded by a lambda expression are called bound
- all other variables are free
- Example: x is free and y is bound in $(x = 5) \land (\lambda y. (y < x))$ 3
- the names of bound variables are unimportant semantically
- two terms are called alpha-equivalent iff they differ only in the names of bound variables
- Example: λx . x and λy . y are alpha-equivalent
- Example: x and y are not alpha-equivalent

34 / 123

HOL Light Kernel

- the HOL kernel is hard to explain
 - ▶ for historic reasons some concepts are represented rather complicated
 - ▶ for speed reasons some derivable concepts have been added
- instead consider the HOL Light kernel, which is a cleaned-up version
- there are two predefined constants
 - ► = : 'a -> 'a -> bool ► @ : ('a -> bool) -> 'a
- there are two predefined types
 - ▶ bool
 - ▶ ind
- the meaning of these types and constants is given by inference rules and axioms

HOL Light Inferences I

37 / 123

HOL Light Axioms and Definition Principles

3 axioms needed

ETA_AX
$$|-(\lambda x. t x) = t$$

SELECT_AX $|-P x \Longrightarrow P((@)P))$
INFINITY_AX predefined type ind is infinite

- definition principle for constants
 - ► constants can be introduced as abbreviations
 - ► constraint: no free vars and no new type vars
- definition principle for types
 - ▶ new types can be defined as non-empty subtypes of existing types
- both principles
 - ► lead to conservative extensions
 - preserve consistency

HOL Light Inferences II

$$\frac{\Gamma \vdash p \Leftrightarrow q \qquad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{EQ_MP}$$

$$\frac{\Gamma \vdash p \qquad \Delta \vdash q}{(\Gamma - \{q\}) \cup (\Delta - \{p\}) \vdash p \Leftrightarrow q} \text{DEDUCT_ANTISYM_RULE}$$

$$\frac{\Gamma[x_1, \dots, x_n] \vdash p[x_1, \dots, x_n]}{\Gamma[t_1, \dots, t_n] \vdash p[t_1, \dots, t_n]} \text{INST}$$

$$\frac{\Gamma[\alpha_1, \dots, \alpha_n] \vdash p[\alpha_1, \dots, \alpha_n]}{\Gamma[\gamma_1, \dots, \gamma_n] \vdash p[\gamma_1, \dots, \gamma_n]} \text{INST_TYPE}$$

38 / 123

HOL Light derived concepts

Everything else is derived from this small kernel.

$$T =_{def} (\lambda p. p) = (\lambda p. p)$$

$$\wedge =_{def} \lambda p q. (\lambda f. f p q) = (\lambda f. f T T)$$

$$\Longrightarrow =_{def} \lambda p q. (p \wedge q \Leftrightarrow p)$$

$$\forall =_{def} \lambda P. (P = \lambda x. T)$$

$$\exists =_{def} \lambda P. (\forall q. (\forall x. P(x) \Longrightarrow q) \Longrightarrow q)$$

39 / 123 40 / 123

Multiple Kernels

- Kernel defines abstract datatypes for types, terms and theorems
- one does not need to look at the internal implementation
- therefore, easy to exchange
- there are at least 3 different kernels for HOL
 - ► standard kernel (de Bruijn indices)
 - ► experimental kernel (name / type pairs)
 - ► OpenTheory kernel (for proof recording)

41 / 123

HOL Logic Summary

- HOL theorem prover uses classical higher order logic
- HOL logic is very similar to SML
 - ► syntax
 - ► type system
 - ► type inference
- HOL theorem prover very trustworthy because of LCF approach
 - ▶ there is a small kernel
 - proofs are not stored explicitly
- you don't need to know the details of the kernel
- usually one works at a much higher level of abstraction

42 / 123

Part V

Basic HOL Usage

HOL Technical Usage Issues

- practical issues are discussed in practical sessions
 - ▶ how to install HOL
 - ▶ which key-combinations to use in emacs-mode
 - detailed signature of libraries and theories
 - ▶ all parameters and options of certain tools
 - ▶ ...
- exercise sheets sometimes
 - ► ask to read some documentation
 - provide examples
 - ▶ list references where to get additional information
- if you have problems, ask me outside lecture (tuerk@kth.se)
- covered only very briefly in lectures

43 / 123 44 / 123

Installing HOL

- webpage: https://hol-theorem-prover.org
- HOL supports two SML implementations
 - ► Moscow ML (http://mosml.org)
 - ► PolyML (http://www.polyml.org)
- I recommend using PolyML
- please use emacs with
 - ► hol-mode
 - ► sml-mode
 - ► hol-unicode, if you want to type Unicode
- please install recent revision from git repo or Kananaskis 11 release
- documentation found on HOL webpage and with sources

45 / 123

Filenames

- *Script.sml HOL proof script file
 - script files contain definitions and proof scripts
 - ► executing them results in HOL searching and checking proofs
 - ► this might take very long
 - ► resulting theorems are stored in *Theory.{sml|sig} files
- *Theory.{sml|sig} HOL theory
 - ► auto-generated by corresponding script file
 - ► load quickly, because they don't search/check proofs
 - ► do not edit theory files
- *Syntax.{sml|sig} syntax libraries
 - ► contain syntax related functions
 - ► i. e. functions to construct and destruct terms and types
- *Lib.{sml|sig} general libraries
- *Simps.{sml|sig} simplifications
- selftest.sml selftest for current directory

General Architecture

- HOL is a collection of SML modules
- starting HOL starts a SML Read-Eval-Print-Loop (REPL) with
 - ► some HOL modules loaded
 - ▶ some default modules opened
 - ▶ an input wrapper to help parsing terms called unquote
- unquote provides special quotes for terms and types
 - ► implemented as input filter
 - ► ''my-term'' becomes Parse.Term [QUOTE "my-term"]
 - '':my-type'' becomes Parse.Type [QUOTE ":my-type"]
- main interfaces
 - ► emacs (used in the course)
 - ▶ vim
 - ► bare shell

46 / 123

Directory Structure

- bin HOL binaries
- src HOL sources
- examples HOL examples
 - ► interesting projects by various people
 - examples owned by their developer
 - ► coding style and level of maintenance differ a lot
- help sources for reference manual
 - ▶ after compilation home of reference HTML page
- Manual HOL manuals
 - ▶ Tutorial
 - ► Description
 - ► Reference (PDF version)
 - ► Interaction
 - Quick (cheat pages)
 - ► Style-guide
 - ▶ ...

Unicode

- HOL supports both Unicode and pure ASCII input and output
- advantages of Unicode compared to ASCII
 - ► easier to read (good fonts provided)
 - ▶ no need to learn special ASCII syntax
- disadvanges of Unicode compared to ASCII
 - ► harder to type (even with hol-unicode.el)
 - ► less portable between systems
- whether you like Unicode is highly a matter of personal taste
- HOL's policy
 - ▶ no Unicode in HOL's source directory src
 - ▶ Unicode in examples directory examples is fine
- I recommend turning Unicode output off initially
 - ► this simplifies learning the ASCII syntax
 - ▶ no need for special fonts
 - ▶ it is easier to copy and paste terms from HOL's output

Where to find help?

- reference manual
 - ► available as HTML pages, single PDF file and in-system help

50 / 123

- description manual
- Style-guide (still under development)
- HOL webpage (https://hol-theorem-prover.org)
- mailing-list hol-info
- DB.match and DB.find
- *Theory.sig and selftest.sml files
- ask someone, e.g. me :-) (tuerk@kth.se)

3

49 / 123

Part VI

Forward Proofs

Kernel too detailed

- we already discussed the HOL Logic
- the kernel itself does not even contain basic logic operators
- usually one uses a much higher level of abstraction
 - ► many operations and datatypes are defined
 - ► high-level derived inference rules are used
- let's now look at this more common abstraction level

Common Terms and Types

	Unicode	ASCII
type vars	α , β ,	'a, 'b,
type annotated term	term:type	term:type
true	T	T
false	F	F
negation	$\neg b$	~b
conjunction	b1 ∧ b2	b1 /\ b2
disjunction	b1 ∨ b2	b1 \/ b2
implication	$b1 \implies b2$	b1 ==> b2
equivalence	b1 ⇔ b2	b1 <=> b2
disequation	$v1 \neq v2$	v1 <> v2
all-quantification	$\forall x. P x$!x. P x
existential quantification	$\exists x. P x$?x. P x
Hilbert's choice operator	0x. P x	0x. P x

There are similar restrictions to constant and variable names as in SML. HOL specific: don't start variable names with an underscore

53 / 123

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions (usually defined in *Syntax.sml files) to create them.

Syntax conventions

- common function syntax
 - ▶ prefix notation, e.g. SUC x
 - ► infix notation, e.g. x + y
 - ▶ quantifier notation, e.g. $\forall x$. P x means (\forall) $(\lambda x$. P x)
- infix and quantifier notation functions can turned into prefix notation
 Example: (+) x y and \$+ x y are the same as x + y
- quantifiers of the same type don't need to be repeated Example: ∀x y. P x y is short for ∀x. ∀y. P x y
- there is special syntax for some functions

 Example: if c then v1 else v2 is nice syntax for COND c v1 v2
- associative infix operators are usually right-associative
 Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore use plenty of parenthesis.

54 / 123

Creating Terms II

Parser	Syntax Funs	
":bool"	<pre>mk_type ("bool", []) or bool</pre>	type of Booleans
''T''	${\tt mk_const}$ ("T", bool) or T	term true
''~b''	mk_neg (negation of
	<pre>mk_var ("b", bool))</pre>	Boolean var b
''… /\ …''	mk_conj (,)	conjunction
''… \/ …''	mk_disj (,)	disjunction
'' ==>''	$mk_imp (,)$	implication
'' =''	$mk_eq (,)$	equation
'' <=>''	mk_eq (,)	equivalence
··· <> ··	mk_neg (mk_eq (,))	negated equation

Inference Rules for Equality

$$\frac{\Gamma \vdash s = t}{\Gamma \vdash t = t} \text{ REFL} \qquad \frac{\Gamma \vdash s = t}{\Gamma \vdash t = s} \text{ GSYM}$$

$$\frac{\Gamma \vdash s = t}{x \text{ not free in } \Gamma} \text{ ABS} \qquad \frac{\Delta \vdash t = u}{\Gamma \cup \Delta \vdash s = u} \text{ TRANS}$$

$$\frac{\Gamma \vdash s = t}{\Delta \vdash u = v} \text{ TRANS}$$

$$\frac{\Gamma \vdash s = t}{\Delta \vdash u = v} \text{ TVAMS}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q \quad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ EQ_MP}$$

$$\frac{types \text{ fit}}{\Gamma \cup \Delta \vdash s(u) = t(v)} \text{ MK_COMB}$$

$$\frac{\Gamma \vdash p \Leftrightarrow q \quad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ EQ_MP}$$

Inference Rules for free Variables

$$\frac{\Gamma[x_1,\ldots,x_n] \vdash p[x_1,\ldots,x_n]}{\Gamma[t_1,\ldots,t_n] \vdash p[t_1,\ldots,t_n]} \text{ INST}$$

$$\frac{\Gamma[\alpha_1,\ldots,\alpha_n] \vdash p[\alpha_1,\ldots,\alpha_n]}{\Gamma[\gamma_1,\ldots,\gamma_n] \vdash p[\gamma_1,\ldots,\gamma_n]} \text{ INST_TYPE}$$

58 / 123

57 / 123

Inference Rules for Implication

$$\frac{\Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ MP, MATCH_MP} \qquad \qquad \frac{\Gamma \vdash p}{\Gamma - \{q\} \vdash q \Longrightarrow p} \text{ DISCH}$$

$$\frac{\Gamma \vdash p = q}{\Gamma \vdash p \Longrightarrow q} \text{ EQ_IMP_RULE} \qquad \qquad \frac{\Gamma \vdash q \Longrightarrow p}{\Gamma \cup \{q\} \vdash p} \text{ UNDISCH}$$

$$\frac{\Gamma \vdash p \Longrightarrow q}{\Delta \vdash q \Longrightarrow p} \text{ IMP_ANTISYM_RULE} \qquad \qquad \frac{\Gamma \vdash p \Longrightarrow F}{\Gamma \vdash \sim p} \text{ NOT_INTRO}$$

$$\frac{\Delta \vdash q \Longrightarrow p}{\Gamma \cup \Delta \vdash p \Longrightarrow q} \text{ IMP_ANTISYM_RULE} \qquad \qquad \frac{\Gamma \vdash \sim p}{\Gamma \vdash \sim p} \text{ NOT_ELIM}$$

$$\frac{\Delta \vdash q \Longrightarrow r}{\Gamma \cup \Delta \vdash p \Longrightarrow r} \text{ IMP_TRANS}$$

Inference Rules for Conjunction / Disjunction

$$\frac{\Gamma \vdash p \quad \Delta \vdash q}{\Gamma \cup \Delta \vdash p \land q} \text{ CONJ}$$

$$\frac{\Gamma \vdash p \land q}{\Gamma \vdash p \land q} \text{ CONJUNCT1}$$

$$\frac{\Gamma \vdash p \land q}{\Gamma \vdash q} \text{ CONJUNCT2}$$

$$\frac{\Gamma \vdash p \land q}{\Gamma \vdash q} \text{ CONJUNCT2}$$

$$\frac{\Gamma \vdash p \land q}{\Gamma \vdash q} \text{ CONJUNCT2}$$

$$\frac{\Delta_1 \cup \{p\} \vdash r}{\Gamma \cup \Delta_1 \cup \Delta_2 \vdash r} \text{ DISJ_CASES}$$

Inference Rules for Quantifiers

$$\frac{\Gamma \vdash p \quad x \text{ not free in } \Gamma}{\Gamma \vdash \forall x. \ p} \text{ GEN} \qquad \frac{\frac{\Gamma \vdash p[u/x]}{\Gamma \vdash \exists x. \ p}}{\Gamma \vdash \exists x. \ p} \text{ EXISTS}$$

$$\frac{\Gamma \vdash \forall x. \ p}{\Gamma \vdash p[u/x]} \text{ SPEC} \qquad \frac{\Delta \cup \{p[u/x]\} \vdash r}{u \text{ not free in } \Gamma, \Delta, p \text{ and } r} \text{ CHOOSE}$$

Forward Proofs

- axioms and inference rules are used to derive theorems
- this method is called forward proof
 - ▶ one starts with basic building blocks
 - ▶ one moves step by step forward
 - finally the theorem one is interested in is derived
- one can also implement own proof tools

61 / 123

62 / 123

Forward Proofs — Example I

Let's prove $\forall p. \ p \Longrightarrow p$.

Forward Proofs — Example II

Let's prove $\forall P v. (\exists x. (x = v) \land P x) \iff P v.$

```
val tm_v = ''v:'a'';
val tm_P = ''P:'a -> bool'';
val tm_lhs = ''?x. (x = v) / P x''
val tm_rhs = mk_comb (tm_P, tm_v);
val thm1 = let
  val thm1a = ASSUME tm_rhs;
                                         > val thm1a = [P v] |- P v: thm
                                         > val thm1b =
  val thm1b =
                                              [P v] | - (v = v) / V v: thm
    CONJ (REFL tm_v) thm1a;
                                         > val thm1c =
  val thm1c =
    EXISTS (tm_lhs, tm_v) thm1b
                                             [P \ v] \mid -?x. (x = v) / \ P x
                                         > val thm1 = [] |-
 DISCH tm_rhs thm1c
                                             P v \Longrightarrow ?x. (x = v) / P x: thm
```

63 / 123 64 / 123

Forward Proofs — Example II cont.

```
val thm2 = let
 val thm2a =
                                      > val thm2a = [(u = v) /\ P u] |-
   ASSUME ((u: a = v) / P u')
                                         (u = v) / P u: thm
                                       > val thm2b = [(u = v) / P u] | -
 val thm2b = AP_TERM tm_P
   (CONJUNCT1 thm2a):
                                           P u <=> P v
                                      > val thm2c = [(u = v) / P u] | -
 val thm2c = EQ_MP thm2b
   (CONJUNCT2 thm2a);
                                       > val thm2d = [?x. (x = v) / P x] | -
 val thm2d =
   CHOOSE (''u:'a''.
                                           Ρv
     ASSUME tm_lhs) thm2c
                                       > val thm2 = [] |-
 DISCH tm_lhs thm2d
                                           ?x. (x = v) / P x \Longrightarrow P v
val thm3 = IMP_ANTISYM_RULE thm2 thm1 > val thm3 = [] |-
                                           ?x. (x = v) / P x \iff P v
val thm4 = GENL [tm_P, tm_v] thm3
                                       > val thm4 = [] |- !P v.
                                           ?x. (x = v) / P x \iff P v
```

Part VII

Backward Proofs

65/123

Motivation I

● let's prove !A B. A /\ B <=> B /\ A

```
(* Show |- A /\ B ==> B /\ A *)
val thm1a = ASSUME ''A /\ B'';
val thm1b = CONJ (CONJUNCT2 thm1a) (CONJUNCT1 thm1a);
val thm1 = DISCH ''A /\ B'' thm1b

(* Show |- B /\ A ==> A /\ B *)
val thm2a = ASSUME ''B /\ A'';
val thm2b = CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);
val thm2 = DISCH ''B /\ A'' thm2b

(* Combine to get |- A /\ B <=> B /\ A *)
val thm3 = IMP_ANTISYM_RULE thm1 thm2

(* Add quantifiers *)
val thm4 = GENL [''A:bool'', ''B:bool''] thm3
```

- this is how you write down a proof
- for finding a proof it is however often useful to think backwards

Motivation II - thinking backwards

- we want to prove
 - ▶ !A B. A /\ B <=> B /\ A
- all-quantifiers can easily be added later, so let's get rid of them
 - ► A /\ B <=> B /\ A
- now we have an equivalence, let's show 2 implications
 - ► A /\ B ==> B /\ A
 - ► B /\ A ==> A /\ B
- we have an implication, so we can use the precondition as an assumption
 - ▶ using A /\ B show B /\ A
 - ► A /\ B ==> B /\ A

67 / 123 68 / 123

Motivation III - thinking backwards

- we have a conjunction as assumption, let's split it
 - ▶ using A and B show B /\ A
 - ► A /\ B ==> B /\ A
- we have to show a conjunction, so let's show both parts
 - ▶ using A and B show B
 - ▶ using A and B show A
 - ► A /\ B ==> B /\ A
- the first two proof obligations are trivial
 - ► A /\ B ==> B /\ A
- o . . .
- we are done

69 / 123

HOL Implementation of Backward Proofs

- in HOL
 - proof tactics / backward proofs used for most user-level proofs
 - ► forward proofs used usually for writing automation
- backward proofs are implemented by tactics in HOL
 - ▶ decomposition into subgoals implemented in SML
 - ► SML datastructures used to keep track of all open subgoals
 - ► forward proof used to construct theorems
- to understand backward proofs in HOL we need to look at
 - ▶ goal SML datatype for proof obligations
 - ▶ goalStack library for keeping track of goals
 - ▶ tactic SML type for functions performing backward proofs

Motivation IV

- common practise
 - ► think backwards to find proof
 - write found proof down in forward style
- often switch between backward and forward style within a proof Example: induction proof
 - ▶ backward step: induct on . . .
 - ▶ forward steps: prove base case and induction case
- whether to use forward or backward proofs depend on
 - support by the interactive theorem prover you use
 - ★ HOL 4 and close family: emphasis on backward proof
 - ★ Isabelle/HOL: emphasis on forward proof
 - ★ Coq: emphasis on backward proof
 - your way of thinking
 - ► the theorem you try to prove

70 / 123

Goals

- goals represent proof obligations, i. e. theorems we need/want to prove
- the SML type goal is an abbreviation for term list * term
- the goal ([asm_1, ..., asm_n], c) records that we need/want to prove the theorem {asm_1, ..., asm_n} |- c

Example Goals Goal ([''A'', ''B''], ''A /\ B'') {A, B} |- A /\ B ([''B'', ''A''], ''A /\ B'') {A, B} |- A /\ B ([''B /\ A''], ''A /\ B'') {B /\ A} |- A /\ B ([], ''(B /\ A) ==> (A /\ B)'') |- (B /\ A) ==> (A /\ B)

71 / 123 72 / 123

Tactics

- the SML type tactic is an abbreviation for the type goal -> goal list * validation
- validation is an abbreviation for thm list -> thm
- given a goal, a tactic
 - decides into which subgoals to decompose the goal
 - returns this list of subgoals
 - returns a validation that
 - ★ given a list of theorems for the computed subgoals
 - ★ produces a theorem for the original goal
- special case: empty list of subgoals
 - ▶ the validation (given []) needs to produce a theorem for the goal
- notice: a tactic might be invalid

73 / 123

 $t \equiv lhs = rhs$

Tactic Example — EQ_TAC

$$\begin{array}{l} \Gamma \vdash p \Longrightarrow q \\ \frac{\Delta \vdash q \Longrightarrow p}{\Gamma \cup \Delta \vdash p = q} \text{ IMP_ANTISYM_RULE} & \frac{\text{asl} \vdash \text{lhs} \implies \text{rhs}}{\text{asl} \vdash \text{rhs} \implies \text{lhs}} \\ \hline \text{val EQ_TAC: tactic = fn (asl, t) =>} \\ \text{let} & \text{val (lhs, rhs) = dest_eq t} \\ \text{in} & ([(\text{asl, mk_imp (lhs, rhs)}), (\text{asl, mk_imp (rhs, lhs)})],} \\ \text{fn [th1, th2] => IMP_ANTISYM_RULE th1 th2} \\ & \mid _ => \text{raise Match}) \\ \text{end} \\ & \text{handle HOL_ERR} => \text{raise ERR "EQ_TAC"} \\ \end{array}$$

Tactic Example — CONJ_TAC

```
\frac{\Gamma \vdash \rho \quad \Delta \vdash q}{\Gamma \cup \Delta \vdash \rho \land q} \, \text{CONJ} \qquad \frac{\text{asl} \vdash \text{conj1} \quad \text{asl} \vdash \text{conj2}}{\text{asl} \vdash \text{t}}
\text{val CONJ\_TAC: tactic = fn (asl, t) => let} \\ \text{val (conj1, conj2) = dest\_conj t} \\ \text{in} \\ \text{([(asl, conj1), (asl, conj2)],} \\ \text{fn [th1, th2] => CONJ th1 th2 | _ => raise Match)} \\ \text{end} \\ \text{handle HOL\_ERR } => \text{raise ERR "CONJ\_TAC" ""}
```

74 / 123

proofManagerLib / goalStack

- the proofManagerLib keeps track of open goals
- it uses goalStack internally
- important commands
 - ▶ g set up new goal
 - ► e expand a tactic
 - ▶ p print the current status
 - ► top_thm get the proved thm at the end

75 / 123 76 / 123

Tactic Proof Example I

Previous Goalstack

User Action

g '!A B. A /\ B <=> B /\ A';

New Goalstack

Initial goal:

!A B. A /\ B <=> B /\ A

: proof

77 / 123

Tactic Proof Example III

Previous Goalstack

A /\ B <=> B /\ A

: proof

User Action

e EQ_TAC;

New Goalstack

B /\ A ==> A /\ B

 $A / B \Longrightarrow B / A$

: proof

Tactic Proof Example II

Previous Goalstack

Initial goal:

!A B. A /\ B <=> B /\ A

: proof

User Action

- e GEN_TAC;
- e GEN_TAC;

New Goalstack

A /\ B <=> B /\ A

: proof

78 / 123

Tactic Proof Example IV

Previous Goalstack

B /\ A ==> A /\ B

A /\ B ==> B /\ A : proof

User Action

e STRIP_TAC;

New Goalstack

B /\ A

- O. A
- 1. B

Tactic Proof Example V

Previous Goalstack B /\ A ---- 0. A 1. B

User Action e CONJ_TAC;

```
New Goalstack

A

O. A

1. B

B

O. A

1. B
```

81 / 123

Tactic Proof Example VII

```
Previous Goalstack

B /\ A ==> A /\ B

: proof
```

```
User Action
e STRIP_TAC;
e (ASM_REWRITE_TAC[]);
```

```
New Goalstack
Initial goal proved.
|- !A B. A /\ B <=> B /\ A:
proof
```

Tactic Proof Example VI

```
Previous Goalstack

A

O. A

1. B

B

O. A

1. B
```

```
User Action
e (ACCEPT_TAC (ASSUME ''B:bool''));
e (ACCEPT_TAC (ASSUME ''A:bool''));
```

```
New Goalstack
B /\ A ==> A /\ B
: proof
```

82 / 123

Tactic Proof Example VIII

```
Previous Goalstack
Initial goal proved.
|- !A B. A /\ B <=> B /\ A:
proof
```

```
User Action
val thm = top_thm();
```

```
Result
val thm =
    |- !A B. A /\ B <=> B /\ A:
    thm
```

83 / 123 84 / 123

Tactic Proof Example IX

```
Combined Tactic
val thm = prove (''!A B. A /\ B <=> B /\ A'',
 GEN_TAC >> GEN_TAC >>
  EQ_TAC >| [
   STRIP_TAC >>
   STRIP_TAC >| [
     ACCEPT_TAC (ASSUME ''B:bool''),
     ACCEPT_TAC (ASSUME ''A:bool'')
   STRIP_TAC >>
   ASM_REWRITE_TAC[]
 ]);
```

```
Result
val thm =
  |- !A B. A /\ B <=> B /\ A:
   thm
```

85 / 123

Summary Backward Proofs

- in HOL most user-level proofs are tactic-based
 - ► automation often written in forward style
 - ► low-level, basic proofs written in forward style
 - ▶ nearly everything else is written in backward (tactic) style
- there are many different tactics
- in the lecture only the most basic ones will be discussed
- you need to learn about tactics on your own
 - ▶ good starting point: Quick manual
 - ► learning finer points takes a lot of time
 - exercises require you to read up on tactics
- often there are many ways to prove a statement, which tactics to use depends on
 - ▶ personal way of thinking
 - personal style and preferences
 - ► maintainability, clarity, elegance, robustness
 - ▶ ...

Tactic Proof Example X

```
Cleaned-up Tactic
val thm = prove (''!A B. A /\ B <=> B /\ A'',
  REPEAT GEN_TAC >>
  EQ_TAC >> (
   REPEAT STRIP_TAC >>
   ASM REWRITE TAC []
 ));
```

```
Result
val thm =
  |- !A B. A /\ B <=> B /\ A:
```

86 / 123

Part VIII

Basic Tactics

87 / 123 88 / 123

Syntax of Tactics in HOL

originally tactics were written all in capital letters with underscores
 Example: ALL_TAC

• since 2010 more and more tactics have overloaded lower-case syntax Example: all_tac

 sometimes, the lower-case version is shortened Example: REPEAT, rpt

 $\, \bullet \,$ sometimes, there is special syntax

Example: THEN, \\, >>

which one to use is mostly a matter of personal taste

► all-capital names are hard to read and type

► however, not for all tactics there are lower-case versions

▶ mixed lower- and upper-case tactics are even harder to read

▶ often shortened lower-case name is not speaking

In the lecture we will use mostly the old-style names.

89 / 123

Tacticals

- tacticals are SML functions that combine tactics to form new tactics
- common workflow
 - ► develop large tactic interactively
 - ▶ using goalStack and editor support to execute tactics one by one
 - ▶ combine tactics manually with tacticals to create larger tactics
 - ► finally end up with one large tactic that solves your goal
 - ▶ use prove or store_thm instead of goalStack
- make sure to **clearly mark proof structure** by e.g.
 - ▶ use indentation
 - ▶ use parentheses
 - use appropriate connectives
 - •
- goalStack commands like e or g should not appear in your final proof

Some Basic Tactics

GEN_TAC	remove outermost all-quantifier	
DISCH_TAC	move antecedent of goal into assumptions	
$CONJ_TAC$	splits conjunctive goal	
STRIP_TAC	splits on outermost connective (combination	
	of GEN_TAC, CONJ_TAC, DISCH_TAC,)	
DISJ1_TAC	selects left disjunct	
DISJ2_TAC	selects right disjunct	
EQ_TAC	reduce Boolean equality to implications	
ASSUME_TAC thm	add theorem to list of assumptions	
EXISTS_TAC term	provide witness for existential goal	

90 / 123

Some Basic Tacticals

tac1 >> tac2	THEN, \\	applies tactics in sequence
tac > tacL	THENL	applies list of tactics to subgoals
tac1 >- tac2	THEN1	applies tac2 to the first subgoal of tac1
REPEAT tac	rpt	repeats tac until it fails
NTAC n tac		apply tac n times
REVERSE tac	reverse	reverses the order of subgoals
tac1 ORELSE tac2		applies tac1 only if tac2 fails
TRY tac		do nothing if tac fails
ALL_TAC	all_tac	do nothing
NO_TAC		fail

91/123 92/123

Basic Rewrite Tactics

• (equational) rewriting is at the core of HOL's automation

we will discuss it in detail later

details complex, but basic usage is straightforward

▶ given a theorem rewr_thm of form |- P x = Q x and a term t

► rewriting t with rewr_thm means

▶ replacing each occurrence of a term P c for some c with Q c in t

warning: rewriting may loop

Example: rewriting with theorem $|-X| <=> (X / \ T)$

REWRITE_TAC thms rewrite goal using equations found

in given list of theorems

ASM_REWRITE_TAC thms in addition use assumptions

ONCE_REWRITE_TAC thms rewrite once in goal using equations
ONCE_ASM_REWRITE_TAC thms rewrite once using assumptions

Case-Split and Induction Tactics

Induct_on 'term' induct on term
Induct induct on all-quantor
Cases_on 'term' case-split on term
Cases case-split on all-quantor

MATCH_MP_TAC thm apply rule

IRULE_TAC thm generalised apply rule

94/123

Assumption Tactics

POP_ASSUM thm-tac use and remove first assumption

common usage POP_ASSUM MP_TAC

PAT_ASSUM term thm-tac use (and remove) first

also PAT_X_ASSUM term thm-tac $\;\;\;\;$ assumption matching pattern

WEAKEN_TAC term-pred removes first assumption

satisfying predicate

Decision Procedure Tactics

- decision procedures try to solve the current goal completely
- they either succeed of fail
- no partial progress
- decision procedures vital for automation

TAUT_TAC propositional logic tautology checker

DECIDE_TAC linear arithmetic for num

METIS_TAC thms first order prover numLib.ARITH_TAC Presburger arithmetic intLib.ARITH_TAC uses Omega test

95 / 123 96 / 123

Subgoal Tactics

- it is vital to structure your proofs well
 - ► improved maintainability
 - ► improved readability
 - ► improved reusability
 - ► saves time in medium-run
- therefore, use many small lemmata
- also, use many explicit subgoals

 $\hbox{`term-frag' by tac} \qquad \qquad \hbox{show term with tac and} \\$

add it to assumptions

'term-frag' sufficies_by tac show it sufficies to prove term

Term Fragments / Term Quotations

- notice that by and sufficies_by take term fragments
- term fragments are also called **term quotations**
- they represent (partially) unparsed terms
- parsing takes time place during execution of tactic in context of goal
- this helps to avoid type annotations
- however, this means syntax errors show late as well
- the library **Q** defines many tactics using term fragments

97 / 123

98 / 123

Importance of Exercises

- here many tactics are presented in a very short amount of time
- there are many, many more important tactics out there
- few people can learn a programming language just by reading manuals
- similar few people can learn HOL just by reading and listening
- you should write your own proofs and play around with these tactics
- solving the exercises is highly recommended (and actually required if you want credits for this course)

Tactical Proof - Example I - Slide 1

- we want to prove !1. LENGTH (APPEND 1 1) = 2 * LENGTH 1
- first step: set up goal on goalStack
- at same time start writing proof script

```
Proof Script
val LENGTH_APPEND_SAME = prove (
    ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'',
```

Actions

- run g ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1''
- this is done by hol-mode
- move cursor inside term and press M-h g (menu-entry HOL - Goalstack - New goal)

Tactical Proof - Example I - Slide 2

Current Goal !1. LENGTH (1 ++ 1) = 2 * LENGTH 1

- the outermost connective is an all-quantor
- let's get rid of it via GEN_TAC

```
Proof Script
val LENGTH_APPEND_SAME = prove (
    ''!1. LENGTH (1 ++ 1) = 2 * LENGTH 1'',
GEN_TAC
```

Actions

- run e GEN_TAC
- this is done by hol-mode
- mark line with GEN_TAC and press M-h e (menu-entry HOL - Goalstack - Apply tactic)

101 / 123

Tactical Proof - Example I - Slide 4

```
Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1
```

• let's rewrite with found theorem listTheory.LENGTH_APPEND

```
Proof Script
val LENGTH_APPEND_SAME = prove (
    ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'',
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]
```

Actions

- o connect the new tactic with tactical >> (THEN)
- use hol-mode to expand the new tactic

Tactical Proof - Example I - Slide 3

```
Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1
```

- LENGTH of APPEND can be simplified
- let's search an appropriate lemma with DB.match

```
Actions

• run DB.print_match [] ''LENGTH (_ ++ _)''

• this is done via hol-mode

• press M-h m and enter term pattern
(menu-entry HOL - Misc - DB match)

• this finds the theorem listTheory.LENGTH_APPEND
|- !11 12. LENGTH (11 ++ 12) = LENGTH 11 + LENGTH 12
```

102 / 123

Tactical Proof - Example I - Slide 5

```
Current Goal
LENGTH 1 + LENGTH 1 = 2 * LENGTH 1
```

- let's search a theorem for simplifying 2 * LENGTH 1
- prepare for extending the previous rewrite tactic

```
Proof Script
val LENGTH_APPEND_SAME = prove (
    ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'',
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]
```

Actions

- DB.match finds theorem arithmeticTheory.TIMES2
- press M-h b and undo last tactic expansion (menu-entry HOL - Goalstack - Back up)

Tactical Proof - Example I - Slide 6

Current Goal LENGTH (1 ++ 1) = 2 * LENGTH 1

- extend the previous rewrite tactic
- finish proof

```
Proof Script
val LENGTH_APPEND_SAME = prove (
    ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'',
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);
```

Actions

- add TIMES2 to the list of theorems used by rewrite tactic
- use hol-mode to expand the extended rewrite tactic
- goal is solved, so let's add closing parenthesis and semicolon

105 / 123

Tactical Proof - Example II - Slide 1

- let's prove something slightly more complicated
- drop old goal by pressing M-h d (menu-entry HOL - Goalstack - Drop goal)
- set up goal on goalStack (M-h g)
- at same time start writing proof script

Tactical Proof - Example I - Slide 7

- we have a finished tactic proving our goal
- notice that GEN_TAC is not needed
- let's polish the proof script

```
Proof Script
val LENGTH_APPEND_SAME = prove (
    ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'',
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);
```

```
Polished Proof Script
val LENGTH_APPEND_SAME = prove (
    ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'',
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);
```

106 / 123

Tactical Proof - Example II - Slide 2

```
Current Goal

!x1 x2 x3 11 12 13.

(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\

x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>

~ALL_DISTINCT (11 ++ 12 ++ 13)
```

let's strip the goal

```
Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (''!x1 x2 x3 11 12 13.

(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\

((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>

"(ALL_DISTINCT (11 ++ 12 ++ 13))'',

REPEAT STRIP_TAC
```

Tactical Proof - Example II - Slide 2

Current Goal !x1 x2 x3 11 12 13. (MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\ x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==> ~ALL_DISTINCT (11 ++ 12 ++ 13)

let's strip the goal

```
Proof Script
val LENGTH_APPEND_SAME = prove (
    ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'',
REPEAT STRIP_TAC
```

Actions

- add REPEAT STRIP_TAC to proof script
- expand this tactic using hol-mode

109 / 123

Tactical Proof - Example II - Slide 4

- now let's simplify ALL_DISTINCT
- search suitable theorems with DB.match
- use them with rewrite tactic

```
Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (''...'',
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND]
```

Tactical Proof - Example II - Slide 3

• oops, we did too much, we would like to keep ALL_DISTINCT in goal

```
Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (''...'',
REPEAT GEN_TAC >> STRIP_TAC
```

Actions

- undo REPEAT STRIP_TAC (M-h b)
- expand more fine-tuned strip tactic

110 / 123

Tactical Proof - Example II - Slide 5

- from assumptions 3, 4 and 5 we know $x2 = x1 \ / \ x2 = x3$
- let's deduce this fact by DECIDE_TAC

```
Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (''...'',
REPEAT GEN.TAC >> STRIP.TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
'(x2 = x1) \/ (x2 = x3)' by DECIDE_TAC
```

Tactical Proof - Example II - Slide 6

- both goals are easily solved by first-order reasoning
- let's use METIS_TAC[] for both subgoals

```
Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (''...'',
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
'(x2 = x1) \/ (x2 = x3)' by DECIDE_TAC >> (
    METIS_TAC[]
));
```

113 / 12

Part IX

Induction Proofs

Tactical Proof - Example II - Slide 7

- notice that proof structure is explicit
- parentheses and indentation used to mark new subgoals

114 / 123

Mathematical Induction

- mathematical (a. k. a. natural) induction principle: If a property P holds for 0 and P(n) implies P(n+1) for all n, then P(n) holds for all n.
- HOL is expressive enough to encode this principle as a theorem.

```
|-!P.P0/\ (!n.Pn \Longrightarrow P(SUCn)) \Longrightarrow !n.Pn
```

- Performing mathematical induction in HOL means applying this theorem (e.g. via HO_MATCH_MP_TAC)
- there are many similarish induction theorems in HOL
- Example: complete induction principle

```
|-!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n
```

Structural Induction Theorems

- structural induction theorems are an important special form of induction theorems
- they describe performing induction on the structure of a datatype
- Example: |- !P. P [] /\ (!t. P t ==> !h. P (h::t)) ==> !1. P 1
- structural induction is used very frequently in HOL
- for each algabraic datatype, there is an induction theorem

117 / 123

Induction (and Case-Split) Tactics

- the tactic Induct (or Induct_on) usually used to start induction proofs
- it looks at the type of the quantifier (or its argument) and applies the default induction theorem for this type
- this is usually what one needs
- other (non default) induction theorems can be applied via INDUCT_THEN or HO_MATCH_MP_TAC
- similarish Cases_on picks and applies default case-split theorems

Other Induction Theorems

- there are many induction theorems in HOL
 - ► datatype definitions lead to induction theorems
 - recursive function definitions produce corresponding induction theorems
 - ► recursive relation definitions give rise to induction theorems
 - ► many are manually defined
- Examples

118 / 123

Induction Proof - Example I - Slide 1

```
let's prove via induction
!11 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11
we set up the goal and start and induction proof on 11
```

```
Proof Script
val REVERSE_APPEND = prove (
''!11 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11'',
Induct
```

119 / 123 120 / 123

Induction Proof - Example I - Slide 2

- the induction tactic produced two cases
- base case:

```
!12. REVERSE ([] ++ 12) = REVERSE 12 ++ REVERSE []
```

• induction step:

```
!h 12. REVERSE (h::11 ++ 12) = REVERSE 12 ++ REVERSE (h::11)
------!12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11
```

both goals can be easily proved by rewriting

121 / 123

Induction Proof - Example II - Slide 2

- the induction tactic produced two cases
- base case:

```
REVERSE (REVERSE []) = []
```

• induction step:

again both goals can be easily proved by rewriting

```
Proof Script

val REVERSE_REVERSE = prove (
    ''!1. REVERSE (REVERSE 1) = 1'',
    Induct > | [
        REWRITE_TAC[REVERSE_DEF],
        ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]
]);
```

123 / 123

Induction Proof - Example II - Slide 2

```
let's prove via induction
```

- !1. REVERSE (REVERSE 1) = 1
- we set up the goal and start and induction proof on 1

```
Proof Script
val REVERSE_REVERSE = prove (
''!1. REVERSE (REVERSE 1) = 1'',
Induct
```