Interactive Theorem Proving (ITP) Course

Parts V, VI Part V
Thomas Tuerk (tuerk@kth.se) Basic HOL Usage
KTH

Academic Year 2016/17, Period 4

version 5056611 of Wed May 3 09:55:18 2017

42 /65 43 /65

HOL Technical Usage Issues Installing HOL

©

practical issues are discussed in practical sessions
» how to install HOL

which key-combinations to use in emacs-mode

detailed signature of libraries and theories

all parameters and options of certain tools

©

webpage: https://hol-theorem-prover.org
HOL supports two SML implementations

» Moscow ML (http://mosml.org)
» PolyML (http://www.polyml.org)

©

vvyVvYy
©

| recommend using PolyML

o exercise sheets sometimes o please use emacs with
» ask to read some documentation > hol-mode
» provide examples » sml-mode
» list references where to get additional information » hol-unicode, if you want to type Unicode

©

please install recent revision from git repo or Kananaskis 11 release

©

if you have problems, ask me outside lecture (tuerk@kth.se)

©

documentation found on HOL webpage and with sources

©

covered only very briefly in lectures

44 /65 45 /65

General Architecture

©

©

©

HOL is a collection of SML modules
starting HOL starts a SML Read-Eval-Print-Loop (REPL) with

>

>

>

some HOL modules loaded
some default modules opened
an input wrapper to help parsing terms called unquote

unquote provides special quotes for terms and types

>

>

>

implemented as input filter
‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]
¢“:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]

main interfaces

>
>
>

emacs (used in the course)
vim
bare shell

46 /65

Directory Structure

©

©

©

bin — HOL binaries

src — HOL sources

examples — HOL examples

>

>

>

interesting projects by various people
examples owned by their developer
coding style and level of maintenance differ a lot

help — sources for reference manual

>

after compilation home of reference HTML page

Manual — HOL manuals

v

vV vy vY VY VvYYyYy

Tutorial

Description

Reference (PDF version)
Interaction

Quick (cheat pages)
Style-guide

48 /65

Filenames

o xScript.sml — HOL proof script file

» script files contain definitions and proof scripts

» executing them results in HOL searching and checking proofs
» this might take very long

> resulting theorems are stored in *Theory.{sml|sig} files

o *Theory.{sml|sig} — HOL theory

» auto-generated by corresponding script file
» load quickly, because they don't search/check proofs
» do not edit theory files

o *Syntax.{sml|sig} — syntax libraries

» contain syntax related functions
» i.e. functions to construct and destruct terms and types

o *Lib.{sml|sig} — general libraries
o *Simps.{sml|sig} — simplifications

o selftest.sml — selftest for current directory

Unicode

o HOL supports both Unicode and pure ASCII input and output
o advantages of Unicode compared to ASCII

» easier to read (good fonts provided)
» no need to learn special ASCII syntax

©

disadvanges of Unicode compared to ASCII

» harder to type (even with hol-unicode.el)
> less portable between systems

©

whether you like Unicode is highly a matter of personal taste
HOL's policy

» no Unicode in HOL's source directory src

» Unicode in examples directory examples is fine
o | recommend turning Unicode output off initially

» this simplifies learning the ASCII syntax
» no need for special fonts
> it is easier to copy and paste terms from HOL's output

©

47 /65

49 /65

Where to find help?

reference manual
» available as HTML pages, single PDF file and in-system help

description manual

Style-guide (still under development)

HOL webpage (https://hol-theorem-prover.org)
mailing-list hol-info

DB.match and DB.find

*Theory.sig and selftest.sml files

ask someone, e.g. me :-) (tuerk@kth.se)

50 /65

Kernel too detailed

©

©

©

©

we already discussed the HOL Logic

the kernel itself does not even contain basic logic operators
usually one uses a much higher level of abstraction

» many operations and datatypes are defined
> high-level derived inference rules are used

let's now look at this more common abstraction level

52 /65

Common Terms and

type vars

type annotated term
true

false

negation

conjunction

disjunction

implication

equivalence

disequation
all-quantification
existential quantification
Hilbert's choice operator

Part VI

Forward Proofs

Types
Unicode
a, B, ...

term:type

T

F

—b
bl A b2
bl V b2
bl — b2
bl < b2
vl # v2
Vx. P x
dx. P x
0x. P x

ASCII
’a, ’b, ...
term:type

T

F

~b
bl /\ b2
bl \/ b2
bl ==> b2
bl <=> b2
vl <> v2
'x. P x
?x. P x
0x. P x

51/65

There are similar restrictions to constant and variable names as in SML.
HOL specific: don't start variable names with an underscore

53 /65

Syntax conventions

@ common function syntax

» prefix notation, e.g. SUC x
» infix notation, e.g. x + y
» quantifier notation, e.g. Vx. P x means (V) (Ax. P x)

o infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are thesame asx + y

o quantifiers of the same type don't need to be repeated
Example: Vx y. P x yisshort for Vx. Vy. P x y

o there is special syntax for some functions
Example: if ¢ then vl else v2 is nice syntax for COND ¢ v1 v2

o associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as bl /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

54 /65

Creating Terms Il

Parser Syntax Funs

“¢:bool‘* mk_type ("bool", []) or bool type of Booleans

ceTec mk_const ("T", bool) or T term true

MR A mk_neg (negation of
mk_var ("b", bool)) Boolean var b

‘< /\ ...°¢ mkeconj (..., ...) conjunction

‘< \/ ...°¢ mkdisj (..., ...) disjunction

oo ==> 00 mkdimp (..., L)) implication

Chol. = Lo mkeq (..., ...) equation

flL.<=> ... mkeq (.., ll) equivalence

o <> ¢ mk neg (mkeq (..., ...)) negated equation

56 /65

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions

(usually defined in *Syntax.sml files) to create them.

Inference Rules for Equality

REFL

Ft=t

[Fs=t
X not free in T
NF Ax. s = Ax.t

lFs=t
Atu=v
types fit

FTUAF s(u) = t(v)

ABS

MK_COMB

lEs=t

— GSYM
[Ft=s
lFs=t
AFt=u
——— TRANS
TUAFs=u

NN-pegq AF

P Bqmp
FTUAF g

————— BETA
F(\x. t)x=t

55 /65

57 /65

Inference Rules for free Variables Inference Rules for Implication

Fp=—=g¢q

Fp
—————— MP, MATCH_MP re
TUALgq P

DISCH
Fr—{q}Fqg=p

r[X17...,X,,]|_p[X1,...,X,,] [Fp=
INST P=4 .
Mtr,- .. ta Fple, ..ot TEp— g PQIMP-RULE Meq—
[t1 o] F plta] TFp—gq TFa=p .\ pson
Frqg=p ru{gttp
Mo, ... an] b ploa, ..., an)
M-l B el oyl INSTIYPE rFp=gq rFp=F
B e Abg— p ————— NOT.INTRO
2977 P I\P_ANTISYM.RULE ' ~P
FTUAFp=g
PP NorpLM
MFp=gq rFp=F
AFgq=r
— IMP_TRANS
TUAFp=—r
58 /65 59 /65
Inference Rules for Conjunction / Disjunction Inference Rules for Quantifiers
7P pisn
F=p Atgq lEp Vv ’ I+ plu/x
—— " CONJ pYa : PEpl/A prsrs
FTUAFpPp A g Ml=p xnotfreelnrGEN Me3x. p
L A, [Fvx. p
r-pAg Tp Vv ‘ Mk 3x
————" CONJUNCT1 pva P
le=p N-vx. p AU{plu/x]} Fr
M-pvg T o e u not free in I, A, p and r
pu/x CHOOSE
TEP A9 onguners ArUtp)Fr FUAF
kg Ay U{q}Fr

——————— DISJ_CASES
FTUATUAEr

60 /65 61/65

Forward Proofs Forward Proofs — Example |
Let's prove Vp. p = p.

o axioms and inference rules are used to derive theorems val IMP_REFL_THM = let

. . val tml = ‘‘p:bool‘‘; > = ‘pie.
o this method is called forward proof P val tml p term
i . o val thml = ASSUME tmi; > val thml = [p] |- p: thm
» one starts with basic building blocks 1 thm? = DISCH tml thmi: _ _
» one moves step by step forward Ve = m ;> val thm2 = |- p ==> p: thm
» finally the theorem one is interested in is derived in
. GEN tml thm2 > val IMP_REFL_THM =
o one can also implement own proof tools
|- !'p. p ==>p: thm
end
fun IMP_REFL t = > val IMP_REFL =
SPEC t IMP_REFL_THM; fn: term -> thm
62 /65 63 /65
Forward Proofs — Example Il Forward Proofs — Example Il cont.
Let's prove VP v. (3x. (x =Vv) AP x) <= P v. val thm2 = let
val thm2a = > val thm2a = [(u = v) /\ P ul |-
ASSUME ‘‘(u:’a =v) /\ P u‘* (u=v) /\ Pu: thm
val thm2b = AP_TERM tm_P > val thm2b = [(u = v) /\ P ul |-
val tm_v = ‘‘vi’a‘’; (CONJUNCT1 thm2a); Pu<=>Pyv
val tm P = ‘‘P:’a -> bool‘; val thm2c = EQ_MP thm2b > val thm2c = [(u = v) /\ P ul |-
val tm_lhs = ““?x. (x =v) /\ P x°° (CONJUNCT2 thm2a) ; Pv
val tm_rhs = mk_comb (tm_P, tm_v); val thm2d = > val thm2d = [?x. (x = v) /\ P x] |-
CHOOSE (‘‘u:’a‘‘, Pv
val thml = let ASSUME tm_lhs) thm2c
val thmla = ASSUME tm_rhs; > val thmia = [P v] |- P v: thm in
val thmlb = > val thmlb = DISCH tm_lhs thm2d > val thm2 = [] |-
CONJ (REFL tm_v) thmila; [Pv]l |- (v=v)/\Pv: thn end ?x. (x=v) /\Px==>Pyv
val thmlc = > val thmlc =
EXISTS (tm_lhs, tm_v) thmib [Pv] |I-7?x. (x=v) /\Px
in val thm3 = IMP_ANTISYM_RULE thm2 thml > val thm3 = [] |-
DISCH tm_rhs thmlc > val thml = [] |- ?x. (x=v) /\Px<=>Pyv
end Pv==>7%x. (x=v) /\Px:thn val thm4 = GENL [tm_P, tm_v] thm3 > val thm4 = [] |- !P v.

?7x. (x=v) /\Px<=>Pyv

64 /65 65 /65

